RESUMEN
In this study were successfully observed the one- (1H, 13C) and two-dimensional (1H-13C, 1H-15N, 1H-31P) NMR spectra of milk directly without any pretreatment. The signals of each NMR spectrum were assigned, and their existing states were also analyzed. Lactose existed in a free state in milk. The signals due to the butyric acid chain can be assigned among the other fatty acid chains. Monounsaturated fatty acid (oleic acid chains) and polyunsaturated fatty acid chains (linoleic and linolenic acid) were assigned by their characteristic signals. The signals from citrate, N-acetylcarbohydrates, and lecithin could be observed directly in the 1H-13C HSQC NMR spectra; the assignment of their signals was made through the 1H-13C, 1H-15N, and 1H-31P HMBC spectra of extracted milk. Signals from creatine and N-acetylcarbohydrates were detected for the first time.
Asunto(s)
Espectroscopía de Resonancia Magnética , Leche/química , Acetilación , Animales , Carbohidratos/análisis , Bovinos , Ácido Cítrico/análisis , Creatina/análisis , Ácidos Grasos/análisis , Lactosa/análisis , Lípidos/análisis , Fosfatidilcolinas/análisisRESUMEN
Rhizonin is a hepatotoxic cyclopeptide isolated from cultures of a fungal Rhizopus microsporus strain that grew on moldy ground nuts in Mozambique. Reinvestigation of this fungal strain by a series of experiments unequivocally revealed that this "first mycotoxin from lower fungi" is actually not produced by the fungus. PCR experiments and phylogenetic studies based on 16S rRNA gene sequences revealed that the fungus is associated with bacteria belonging to the genus Burkholderia. By transmission electron microscopy, the bacteria were localized within the fungal cytosol. Toxin production and the presence of the endosymbionts were correlated by curing the fungus with an antibiotic, yielding a nonproducing, symbiont-free phenotype. The final evidence for a bacterial biogenesis of the toxin was obtained by the successful fermentation of the endosymbiotic bacteria in pure culture and isolation of rhizonin A from the broth. This finding is of particular interest since Rhizopus microsporus and related Rhizopus species are frequently used in food preparations such as tempeh and sufu.