Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Reprod Med Biol ; 20(1): 62-70, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33488284

RESUMEN

PURPOSE: The effects of estradiol on oocyte development seem to be varied among species. The present study investigated the effects of 17ß-estradiol on in vitro maturation of buffalo and goat oocytes. METHODS: Cumulus oocyte complexes (COCs) were aspirated from large antral follicles of slaughtered buffalo and goat ovaries. COCs were cultured in TCM-199 medium supplemented with 0, 0.5, 1, and 1.5 µg/mL of 17ß-estradiol for in vitro maturation. Then, oocytes were used for the examination of state of nuclear maturation and cumulus expansion. RESULTS: In both species, oocytes treated with 17ß-estradiol showed higher cumulus expansion rate than control (0 µg/mL treated). In buffalo, the percentage of oocytes matured to the metaphase II (MII) stage increased in the concentration-dependent manner of 17ß-estradiol. Similarly, estradiol positively influenced nuclear maturation of goat oocytes in vitro. CONCLUSIONS: Estradiol has promoting effects on normalprogress of in vitro oocyte meiosis in buffalos and goats.

2.
Theriogenology ; 228: 54-63, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39096624

RESUMEN

Endoplasmic reticulum (ER) stress interferes with developmental processes in oocyte maturation and embryo development. Invitro growth (IVG) is associated with low developmental competence, and ER stress during IVG culture may play a role. Therefore, this study aimed to examine the effect of tauroursodeoxycholic acid (TUDCA), an ER stress inhibitor, on the IVG of bovine oocytes to understand the role of ER stress. Oocyte-granulosa cell complexes (OGCs) were collected from early antral follicles (1.5-1.8 mm) and allowed to grow in vitro for 5 days at 38.5 °C in a humidified atmosphere containing 5 % CO2. Basic growth culture medium was supplemented with TUDCA at various concentrations (0, 50, 100, 250, and 500 µM). After IVG, oocyte diameters were similar among groups, but the antrum formation rate tended to be higher in the TUDCA 100 µM group. The mRNA expression levels of ER stress-associated genes (PERK, ATF6, ATF4, CHOP, BAX, IRE1, and XBP1) in OGCs were downregulated in the TUDCA 100 µM group than those in the control group. Moreover, the TUDCA 100 µM group exhibited reduced ROS production with higher GSH levels and improved in vitro-grown oocyte maturation compared with those in the control group. In contrast, no difference in the developmental competence of embryos following invitro fertilization was observed between the control and TUDCA 100 µM groups. These results indicate that ER stress could impair IVG and subsequent maturation rate of bovine oocytes, and TUDCA could alleviate these detrimental effects. These outcomes might improve the quality of oocytes in IVG culture in assisted reproductive technology.

3.
Animals (Basel) ; 12(15)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35953946

RESUMEN

This study aimed to determine the effect of L-carnitine on the growth and subsequent nuclear maturation of buffalo small growing oocytes (92−108 µm in diameter) in vitro. Oocyte-granulosa cell complexes (OGCs) were dissected from early antral follicles of slaughtered buffaloes and cultured in in vitro growth (IVG) medium with the supplementation of different concentrations (0, 1.25, 1.875 or 2.5 mM) of L-carnitine for 6 days. The results revealed that L-carnitine increased the diameter of buffalo oocytes in vitro. The degeneration rate was significantly (p < 0.05) lower in 2.5 mM of L-carnitine-treated oocytes (10%) than others (55%, 45% and 32.5% in 0, 1.25 and 1.875 mM of L-carnitine-supplemented groups, respectively). The OGCs showed antrum-like structures significantly (p < 0.05) higher in the 2.5 mM of L-carnitine group (74.0%) than the 0- and 1.25-mM groups (34.6% and 38.1%, respectively). Furthermore, in vitro grown oocytes were placed in in vitro maturation (IVM) medium for 24 h to examine meiotic competence of in vitro grown oocytes with L-carnitine. The L-carnitine (1.875 and 2.5 mM) treated oocytes showed a higher rate of nuclear maturation up to the metaphase II (MII) stage and a lower rate of degeneration. In conclusion, L-carnitine enhances the growth, prevents degeneration, promotes the formation of antrum-like structures and supports nuclear maturation of buffalo oocytes in vitro.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA