Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339065

RESUMEN

Stroke results in neuronal cell death, which causes long-term disabilities in adults. Treatment options are limited and rely on a narrow window of opportunity. Apoptosis inhibitors demonstrate efficacy in improving neuronal cell survival in animal models of stroke. However, many inhibitors non-specifically target apoptosis pathways and high doses are needed for treatment. We explored the use of a novel caspase-3/7 inhibitor, New World Laboratories (NWL) 283, with a lower IC50 than current caspase-3/7 inhibitors. We performed in vitro and in vivo assays to determine the efficacy of NWL283 in modulating cell death in a preclinical model of stroke. In vitro and in vivo assays show that NWL283 enhances cell survival of neural precursor cells. Delivery of NWL283 following stroke enhances endogenous NPC migration and leads to increased neurogenesis in the stroke-injured cortex. Furthermore, acute NWL283 administration is neuroprotective at the stroke injury site, decreasing neuronal cell death and reducing microglia activation. Coincident with NWL283 delivery for 8 days, stroke-injured mice exhibited improved functional outcomes that persisted following cessation of the drug. Therefore, we propose that NWL283 is a promising therapeutic warranting further investigation to enhance stroke recovery.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Células-Madre Neurales , Accidente Cerebrovascular , Animales , Ratones , Supervivencia Celular , Caspasa 3 , Accidente Cerebrovascular/tratamiento farmacológico , Apoptosis , Neurogénesis/fisiología , Ratones Endogámicos C57BL , Isquemia Encefálica/tratamiento farmacológico
2.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38928255

RESUMEN

Activation of neural stem cells (NSCs) correlates with improved functional outcomes in mouse models of injury. In the murine brain, NSCs have been extensively characterized and comprise (1) primitive NSCs (pNSCs) and (2) definitive NSCs (dNSCs). pNSCs are the earliest cells in the NSC lineage giving rise to dNSCs in the embryonic and adult mouse brain. pNSCs are quiescent under baseline conditions and can be activated upon injury. Herein, we asked whether human pNSCs and dNSCs can be isolated during the maturation of human cerebral organoids (COs) and activated by drugs known to regulate mouse NSC behavior. We demonstrate that self-renewing, multipotent pNSC and dNSC populations are present in human COs and express genes previously characterized in mouse NSCs. The drug NWL283, an inhibitor of apoptosis, reduced cell death in COs but did not improve NSC survival. Metformin, a drug used to treat type II diabetes that is known to promote NSC activation in mice, was found to expand human NSC pools. Together, these findings are the first to identify and characterize human pNSCs, advancing our understanding of the human NSC lineage and highlighting drugs that enhance their activity.


Asunto(s)
Células-Madre Neurales , Organoides , Humanos , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/efectos de los fármacos , Organoides/metabolismo , Organoides/citología , Organoides/efectos de los fármacos , Animales , Ratones , Diferenciación Celular , Metformina/farmacología , Células Cultivadas , Encéfalo/metabolismo , Encéfalo/citología
3.
Mol Psychiatry ; 26(7): 2929-2942, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32807843

RESUMEN

N-methyl-D-aspartate receptors (NMDARs) are required to shape activity-dependent connections in the developing and adult brain. Impaired NMDAR signalling through genetic or environmental insults causes a constellation of neurodevelopmental disorders that manifest as intellectual disability, epilepsy, autism, or schizophrenia. It is not clear whether the developmental impacts of NMDAR dysfunction can be overcome by interventions in adulthood. This question is paramount for neurodevelopmental disorders arising from mutations that occur in the GRIN genes, which encode NMDAR subunits, and the broader set of mutations that disrupt NMDAR function. We developed a mouse model where a congenital loss-of-function allele of Grin1 can be restored to wild type by gene editing with Cre recombinase. Rescue of NMDARs in adult mice yields surprisingly robust improvements in cognitive functions, including those that are refractory to treatment with current medications. These results suggest that neurodevelopmental disorders arising from NMDAR deficiency can be effectively treated in adults.


Asunto(s)
Receptores de N-Metil-D-Aspartato , Alelos , Animales , Encéfalo/metabolismo , Edición Génica , Mutación con Pérdida de Función , Ratones , Proteínas del Tejido Nervioso/genética , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
4.
BMC Health Serv Res ; 22(1): 257, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35216607

RESUMEN

BACKGROUND: Asian Americans represent one of the fastest-growing immigrant groups in the U.S. and are at high risk for cardiometabolic diseases (CMDs), including type 2 diabetes, hypertension, coronary artery disease, and stroke. Despite the growth of Asians in the U. S, there is a gap in understanding the heterogeneity of CMDs across Asian subgroups and how these might be affected by the social determinants of health (SDOH), or the environment in which people live and work. OBJECTIVE: The purpose of this systematic review is to examine the current literature on CMDs among Asian Americans and identify the SDOH that are associated with the incidence and/or prevalence of CMDs among specific Asian subgroups. METHODS: PubMed, Embase, Web of Science were searched for articles published in Jan 2000-Nov 2020. The reproducible strategy yielded 2732 articles. The articles were reviewed based on the following inclusion criteria: (1) observational study published in the U.S., (2) adult population includes specific Asian subgroups, (3) exposures include SDOH, and (4) outcomes include a CMD, defined as type 2 diabetes, hypertension, coronary artery disease, or stroke. RESULTS: In this review, 14 studies were identified and organized into four key themes: acculturation (n = 9), socioeconomic status (SES) (n = 6), social context (n = 2), and health literacy (n = 1). The most represented Asian subgroups in the literature were Chinese, Filipino, and South Asians. Acculturation was the most described social factor in the included reviews. Seven studies found associations between higher acculturation levels and higher prevalence of CMD. However, the measure of acculturation varied by study and included various combinations of the country of birth, number of years residing in the U.S., and English proficiency. The effects of SES, measured as income level and educational attainment, varied by racial subgroups. One study found that higher levels of education were associated with CMD among South Asians. CONCLUSION: Acculturation, SES, social context, and health literacy impact the risk of CMD among Asian Americans; these vary across subgroups. Future research disentangling SDOHs on the risk of CMDs by Asian subgroup is necessary to provide better informed preventive practices and interventions.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Aculturación , Adulto , Asiático , Diabetes Mellitus Tipo 2/epidemiología , Humanos , Estudios Observacionales como Asunto , Determinantes Sociales de la Salud
5.
Neurobiol Dis ; 132: 104527, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31299220

RESUMEN

NMDA receptor dysfunction is central to the encephalopathies caused by missense mutations in the NMDA receptor subunit genes. Missense variants of GRIN1, GRIN2A, and GRIN2B cause similar syndromes with varying severity of intellectual impairment, autism, epilepsy, and motor dysfunction. To gain insight into possible biomarkers of NMDAR hypofunction, we asked whether a loss-of-function variant in the Grin1 gene would cause structural changes in the brain that could be detected by MRI. We also studied the developmental trajectory of these changes to determine whether structural changes coincided with reported cognitive impairments in the mice. We performed magnetic resonance imaging in male Grin1-/- knockdown mice (GluN1KD) that were three, six, or twelve weeks old. Deformation-based morphometry was used to assess neuroanatomical differences. Volumetric reductions were detected in substantia nigra and striatum of GluN1KD mice at all ages. Changes in limbic structures were only evident at six weeks of age. Reductions in white matter volumes were first evident at three weeks, and additional deficits were detected at six and twelve weeks. FluoroJade immunofluorescence revealed degenerating neurons in twelve-week old GluN1KD mice. We conclude that Grin1 loss-of-function mutations cause volume reductions in dopaminergic structures early in development, while changes to limbic and white matter structures are delayed and are more pronounced in post-adolescent ages. The evidence of degenerating neurons in the mature brain indicates an ongoing process of cell loss as a consequence of NMDAR hypofunction.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/crecimiento & desarrollo , Mutación con Pérdida de Función/genética , Proteínas del Tejido Nervioso/genética , Receptores de N-Metil-D-Aspartato/genética , Factores de Edad , Animales , Encéfalo/diagnóstico por imagen , Neuronas Dopaminérgicas/fisiología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Tamaño de los Órganos/fisiología
6.
Front Cell Neurosci ; 15: 654290, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33994947

RESUMEN

Stroke is a leading cause of death and long-term disability worldwide. Current therapeutic options are limited in terms of their time for implementation and efficacy in promoting recovery. Cell transplantation has been shown to have promise in several animal models however significant challenges remain, including the optimal source of cells to promote neural repair. Here, we report on the use of a population of human ESC derived, cortically specified, neuroepithelial precursor cells (cNEPs) that are neurally restricted in their lineage potential. CNEPs have the potential to give rise to mature neural cell types following transplantation, including neurons, astrocytes and oligodendrocytes. With a view towards translation, we sought to determine whether this human cell source was effective in promoting improved functional outcomes following stroke. Undifferentiated cNEPs were transplanted in a pre-clinical endothelin-1 (ET-1) model of ischemic motor cortical stroke in immunocompromised SCID-beige mice and cellular and functional outcomes were assessed. We demonstrate that cNEP transplantation in the acute phase (4 days post-stroke) improves motor function as early as 20 days post-stroke, compared to stroke-injured, non-transplanted mice. At the time of recovery, a small fraction (<6%) of the transplanted cNEPs are observed within the stroke injury site. The surviving cells expressed the immature neuronal marker, doublecortin, with no differentiation into mature neural phenotypes. At longer survival times (40 days), the majority of recovered, transplanted mice had a complete absence of surviving cNEPS. Hence, human cNEPs grafted at early times post-stroke support the observed functional recovery following ET-1 stroke but their persistence is not required, thereby supporting a by-stander effect rather than cell replacement.

7.
NPJ Schizophr ; 3: 12, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28560258

RESUMEN

Several studies have found decreased levels of ω-3 polyunsaturated fatty acids in the brain and blood of schizophrenia patients. Furthermore, dietary ω-3 supplements may improve schizophrenia symptoms and delay the onset of first-episode psychosis. We used an animal model of NMDA receptor hypofunction, NR1KD mice, to understand whether changes in glutamate neurotransmission could lead to changes in brain and serum fatty acids. We further asked whether dietary manipulations of ω-3, either depletion or supplementation, would affect schizophrenia-relevant behaviors of NR1KD mice. We discovered that NR1KD mice have elevated brain levels of ω-6 fatty acids regardless of their diet. While ω-3 supplementation did not improve any of the NR1KD behavioral abnormalities, ω-3 depletion exacerbated their deficits in executive function. Omega-3 depletion also caused extreme mortality among male mutant mice, with 75% mortality rate by 12 weeks of age. Our studies show that alterations in NMDAR function alter serum and brain lipid composition and make the brain more vulnerable to dietary ω-3 deprivation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA