Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Biol Chem ; 298(2): 101582, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35031322

RESUMEN

Lysine N-pyrrolation, a posttranslational modification, which converts lysine residues to Nε-pyrrole-L-lysine, imparts electronegative properties to proteins, causing them to mimic DNA. Apolipoprotein E (apoE) has been identified as a soluble receptor for pyrrolated proteins (pyrP), and accelerated lysine N-pyrrolation has been observed in apoE-deficient (apoE-/-) hyperlipidemic mice. However, the impact of pyrP accumulation consequent to apoE deficiency on the innate immune response remains unclear. Here, we investigated B-1a cells known to produce germline-encoded immunoglobulin M (IgM) from mice deficient in apoE and identified a particular cell population that specifically produces IgM antibodies against pyrP and DNA. We demonstrated an expansion of B-1a cells involved in IgM production in the peritoneal cavity of apoE-/- mice compared with wild-type mice, consistent with a progressive increase of IgM response in the mouse sera. We found that pyrP exhibited preferential binding to B-1a cells and facilitated the production of IgM. B cell receptor analysis of pyrP-specific B-1a cells showed restricted usage of gene segments selected from the germline gene set; most sequences contained high levels of non-templated-nucleotide additions (N-additions) that could contribute to junctional diversity of B cell receptors. Finally, we report that a subset of monoclonal IgM antibodies against pyrP/DNA established from the apoE-/- mice also contained abundant N-additions. These results suggest that the accumulation of pyrP due to apoE deficiency may influence clonal diversity in the pyrP-specific B cell repertoire. The discovery of these unique B-1a cells for pyrP/DNA provides a key link connecting covalent protein modification, lipoprotein metabolism, and innate immunity.


Asunto(s)
Apolipoproteínas E , Subgrupos de Linfocitos B , ADN , Animales , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Subgrupos de Linfocitos B/metabolismo , ADN/genética , ADN/metabolismo , Inmunoglobulina M/metabolismo , Lisina/metabolismo , Ratones , Receptores de Antígenos de Linfocitos B
2.
J Biol Chem ; 298(11): 102529, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36162500

RESUMEN

Antioxidants are sensitive to oxidation and are immediately converted into their oxidized forms that can react with proteins. We have recently found that proteins incubated with oxidized vitamin C (dehydroascorbate) gain a new function as a histone-binding ligand. This finding led us to predict that antioxidants, through conversion to their oxidized forms, may generally have similar functions. In the present study, we identified several natural polyphenols as a source of histone ligands and characterized the mechanism for the interaction of protein-bound polyphenols with histone. Through screening of 25 plant-derived polyphenols by assessing their ability to convert bovine serum albumin into histone ligands, we identified seven polyphenols, including (-)-epigallocatechin-3-O-gallate (EGCG). Additionally, we found that the histone tail domain, which is a highly charged and conformationally flexible region, is involved in the interaction with the polyphenol-modified proteins. Further mechanistic studies showed the involvement of a complex heterogeneous group of the polyphenol-derived compounds bound to proteins as histone-binding elements. We also determined that the interaction of polyphenol-modified proteins with histones formed aggregates and exerted a protective effect against histone-mediated cytotoxicity toward endothelial cells. These findings demonstrated that histones are one of the major targets of polyphenol-modified proteins and provide important insights into the chemoprotective functions of dietary polyphenols.


Asunto(s)
Catequina , Histonas , Polifenoles , Antioxidantes/química , Catequina/química , Células Endoteliales/química , Histonas/química , Ligandos , Polifenoles/química , Albúmina Sérica Bovina/química
3.
Biochem Biophys Res Commun ; 657: 1-7, 2023 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-36963174

RESUMEN

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) acts as a sensor under oxidative stress, leading to induction of various biological responses. Given that mitogen-activated protein kinase (MAPK) signaling pathways mediate cellular responses to a wide variety of stimuli, including oxidative stress, here, we aimed to elucidate whether a cross-talk cascade between GAPDH and MAPKs occurs under oxidative stress. Of the three typical MAPKs investigated-extracellular signal-regulated kinase, p38, and c-Jun N-terminal kinase (JNK)-we found that hydrogen peroxide (H2O2)-induced JNK activation is significantly reduced in HEK293 cells treated with small-interfering (si)RNA targeting GAPDH. Co-immunoprecipitation with a GAPDH antibody further revealed protein-protein interactions between GAPDH and JNK in H2O2-stmulated cells. Notably, both JNK activation and these interactions depend on oxidation of the active-site cysteine (Cys152) in GAPDH, as demonstrated by rescue experiments with either exogenous wild-type GAPDH or the cysteine-substituted mutant (C152A) in endogenous GAPDH-knockdown HEK293 cells. Moreover, H2O2-induced translocation of Bcl-2-associated X protein (Bax) into mitochondria, which occurs downstream of JNK activation, is attenuated by endogenous GAPDH knockdown in HEK293 cells. These results suggest a novel role for GAPDH in the JNK signaling pathway under oxidative stress.


Asunto(s)
Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante) , Peróxido de Hidrógeno , Proteínas Quinasas JNK Activadas por Mitógenos , Proteína Quinasa 8 Activada por Mitógenos , Humanos , Cisteína/metabolismo , Células HEK293 , Peróxido de Hidrógeno/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Estrés Oxidativo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/farmacología , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo
4.
J Biol Chem ; 296: 100648, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33839149

RESUMEN

Natural antibodies, predominantly immunoglobulin M (IgM), play an important role in the defense against pathogens and in maintaining homeostasis against oxidized molecules known as oxidation-specific epitopes, such as those contained in oxidized low-density lipoproteins. However, owing to the complexity of the oxidized products, very few individual epitopes have been characterized in detail. In the present study, to identify endogenous sources of oxidation-specific epitopes, we stimulated mouse spleen and peritoneal cavity (PerC) cells in vitro with bovine serum albumin modified with a variety of lipid peroxidation-related carbonyl compounds and identified the acrolein-modified bovine serum albumin as the most efficient trigger studied for the production of IgM in PerC cells. The acrolein-specific epitopes accelerated the differentiation of B-1a cells, a fetal-derived B cell lineage, to plasma cells. In addition, acrolein-modified bovine serum albumin was specifically bound to B-1a cells, suggesting the presence of an acrolein-specific IgM-B cell receptor (BCR). A hybridoma, RE-G25, producing an acrolein-specific IgM, was established from the PerC cells and was indeed identified as a population of B cells expressing a specific IgM-BCR. In addition, we analyzed the BCR repertoire of acrolein-specific B cells and identified the most frequent IgM heavy chain gene segments of the B cells. These data established the presence of innate B cells expressing the acrolein-specific BCR and suggested that in addition to our understanding of acrolein as a toxic aldehyde, it may play a role as a trigger of the innate immune response.


Asunto(s)
Acroleína/inmunología , Epítopos/inmunología , Inmunidad Innata/inmunología , Inmunoglobulina M/inmunología , Receptores de Antígenos de Linfocitos B/inmunología , Acroleína/metabolismo , Animales , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Oxidación-Reducción
5.
J Biol Chem ; 297(3): 101035, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34339739

RESUMEN

Polyphenols, especially catechol-type polyphenols, exhibit lysyl oxidase-like activity and mediate oxidative deamination of lysine residues in proteins. Previous studies have shown that polyphenol-mediated oxidative deamination of lysine residues can be associated with altered electrical properties of proteins and increased crossreactivity with natural immunoglobulin M antibodies. This interaction suggested that oxidized proteins could act as innate antigens and elicit an innate immune response. However, the structural basis for oxidatively deaminated lysine residues remains unclear. In the present study, to establish the chemistry of lysine oxidation, we characterized oxidation products obtained via incubation of the lysine analog N-biotinyl-5-aminopentylamine with eggshell membranes containing lysyl oxidase and identified a unique six-membered ring 2-piperidinol derivative equilibrated with a ring-open product (aldehyde) as the major product. By monitoring these aldehyde-2-piperidinol products, we evaluated the lysyl oxidase-like activity of polyphenols. We also observed that this reaction was mediated by some polyphenols, especially o-diphenolic-type polyphenols, in the presence of copper ions. Interestingly, the natural immunoglobulin M monoclonal antibody recognized these aldehyde-2-piperidinol products as an innate epitope. These findings establish the existence of a dynamic equilibrium of oxidized lysine and provide important insights into the chemopreventive function of dietary polyphenols for chronic diseases.


Asunto(s)
Aldehídos/química , Lisina/química , Piperidinas/química , Polifenoles/química , Aldehídos/inmunología , Ciclización , Desaminación , Oxidación-Reducción , Piperidinas/inmunología , Proteína-Lisina 6-Oxidasa/química
6.
J Biol Chem ; 294(28): 11035-11045, 2019 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-31167785

RESUMEN

Lysine N-pyrrolation, converting lysine residues to Nϵ-pyrrole-l-lysine, is a recently discovered post-translational modification. This naturally occurring reaction confers electrochemical properties onto proteins that potentially produce an electrical mimic to DNA and result in specificity toward DNA-binding molecules such as anti-DNA autoantibodies. The discovery of this unique covalent protein modification provides a rationale for establishing the molecular mechanism and broad functional significance of the formation and regulation of Nϵ-pyrrole-l-lysine-containing proteins. In this study, we used microbeads coupled to pyrrolated or nonpyrrolated protein to screen for binding activities of human serum-resident nonimmunoglobin proteins to the pyrrolated proteins. This screen identified apolipoprotein E (apoE) as a protein that innately binds the DNA-mimicking proteins in serum. Using an array of biochemical assays, we observed that the pyrrolated proteins bind to the N-terminal domain of apoE and that oligomeric apoE binds these proteins better than does monomeric apoE. Employing surface plasmon resonance and confocal microscopy, we further observed that apoE deficiency leads to significant accumulation of pyrrolated serum albumin and is associated with an enhanced immune response. These results, along with the observation that apoE facilitates the binding of pyrrolated proteins to cells, suggest that apoE may contribute to the clearance of pyrrolated serum proteins. Our findings uncover apoE as a binding target of pyrrolated proteins, providing a key link connecting covalent protein modification, lipoprotein metabolism, and innate immunity.


Asunto(s)
Apolipoproteínas E/metabolismo , Imitación Molecular/fisiología , Pirroles/metabolismo , Adulto , Secuencia de Aminoácidos/genética , Animales , Apolipoproteína E3/sangre , Apolipoproteína E3/metabolismo , Apolipoproteína E4/sangre , Apolipoproteína E4/metabolismo , Apolipoproteínas E/sangre , Apolipoproteínas E/fisiología , Fenómenos Biofísicos , ADN/genética , ADN/metabolismo , Femenino , Humanos , Hiperlipidemias/metabolismo , Cinética , Lisina/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Unión Proteica/fisiología , Dominios y Motivos de Interacción de Proteínas/fisiología , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína/fisiología , Proteínas/metabolismo , Pirroles/química
7.
J Biol Chem ; 292(11): 4727-4742, 2017 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-28167533

RESUMEN

Glycolytic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional protein that also mediates cell death under oxidative stress. We reported previously that the active-site cysteine (Cys-152) of GAPDH plays an essential role in oxidative stress-induced aggregation of GAPDH associated with cell death, and a C152A-GAPDH mutant rescues nitric oxide (NO)-induced cell death by interfering with the aggregation of wild type (WT)-GAPDH. However, the detailed mechanism underlying GAPDH aggregate-induced cell death remains elusive. Here we report that NO-induced GAPDH aggregation specifically causes mitochondrial dysfunction. First, we observed a correlation between NO-induced GAPDH aggregation and mitochondrial dysfunction, when GAPDH aggregation occurred at mitochondria in SH-SY5Y cells. In isolated mitochondria, aggregates of WT-GAPDH directly induced mitochondrial swelling and depolarization, whereas mixtures containing aggregates of C152A-GAPDH reduced mitochondrial dysfunction. Additionally, treatment with cyclosporin A improved WT-GAPDH aggregate-induced swelling and depolarization. In doxycycline-inducible SH-SY5Y cells, overexpression of WT-GAPDH augmented NO-induced mitochondrial dysfunction and increased mitochondrial GAPDH aggregation, whereas induced overexpression of C152A-GAPDH significantly suppressed mitochondrial impairment. Further, NO-induced cytochrome c release into the cytosol and nuclear translocation of apoptosis-inducing factor from mitochondria were both augmented in cells overexpressing WT-GAPDH but ameliorated in C152A-GAPDH-overexpressing cells. Interestingly, GAPDH aggregates induced necrotic cell death via a permeability transition pore (PTP) opening. The expression of either WT- or C152A-GAPDH did not affect other cell death pathways associated with protein aggregation, such as proteasome inhibition, gene expression induced by endoplasmic reticulum stress, or autophagy. Collectively, these results suggest that NO-induced GAPDH aggregation specifically induces mitochondrial dysfunction via PTP opening, leading to cell death.


Asunto(s)
Muerte Celular , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Mitocondrias/patología , Óxido Nítrico/metabolismo , Estrés Oxidativo , Agregado de Proteínas , Factor Inductor de la Apoptosis/metabolismo , Línea Celular Tumoral , Citocromos c/metabolismo , Humanos , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial
8.
Biochem Biophys Res Commun ; 484(2): 385-389, 2017 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-28130107

RESUMEN

Synthesis of poly(ADP-ribose) (PAR) is catalyzed by PAR polymerase-1 (PARP-1) in neurons. PARP1 plays a role in various types of brain damage in neurodegenerative disorders. In neurons, overactivation of PARP-1 during oxidative stress induces robust PAR formation, which depletes nicotinamide adenine dinucleotide levels and leads to cell death. However, the role of the newly-formed PAR in neurodegenerative disorders remains elusive. We hypothesized that the effects of PAR could occur in the extracellular space after it is leaked from damaged neurons. Here we report that extracellular PAR (EC-PAR) functions as a neuroprotective molecule by inducing the synthesis of glial cell line-derived neurotrophic factor (GDNF) in astrocytes during neuronal cell death, both in vitro and in vivo. In primary rat astrocytes, exogenous treatment with EC-PAR produced GDNF but not other neurotrophic factors. The effect was concentration-dependent and did not affect cell viability in rat C6 astrocytoma cells. Topical injection of EC-PAR into rat striatum upregulated GDNF levels in activated astrocytes and improved pathogenic rotation behavior in a unilateral 6-hydroxydopamine model of Parkinson disease in rats. These findings indicate that EC-PAR acts as a neurotrophic enhancer by upregulating GDNF levels. This effect protects the remaining neurons following oxidative stress-induced brain damage, such as that seen with Parkinson disease.


Asunto(s)
Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Poli Adenosina Difosfato Ribosa/metabolismo , Animales , Astrocitos/metabolismo , Línea Celular Tumoral , Células Cultivadas , Modelos Animales de Enfermedad , Espacio Extracelular/metabolismo , Técnicas In Vitro , Factores de Crecimiento Nervioso/metabolismo , Enfermedad de Parkinson/terapia , Ratas , Ratas Wistar , Regulación hacia Arriba
9.
J Biol Chem ; 290(43): 26072-87, 2015 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-26359500

RESUMEN

Alzheimer disease (AD) is a progressive neurodegenerative disorder characterized by loss of neurons and formation of pathological extracellular deposits induced by amyloid-ß peptide (Aß). Numerous studies have established Aß amyloidogenesis as a hallmark of AD pathogenesis, particularly with respect to mitochondrial dysfunction. We have previously shown that glycolytic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) forms amyloid-like aggregates upon exposure to oxidative stress and that these aggregates contribute to neuronal cell death. Here, we report that GAPDH aggregates accelerate Aß amyloidogenesis and subsequent neuronal cell death both in vitro and in vivo. Co-incubation of Aß40 with small amounts of GAPDH aggregates significantly enhanced Aß40 amyloidogenesis, as assessed by in vitro thioflavin-T assays. Similarly, structural analyses using Congo red staining, circular dichroism, and atomic force microscopy revealed that GAPDH aggregates induced Aß40 amyloidogenesis. In PC12 cells, GAPDH aggregates augmented Aß40-induced cell death, concomitant with disruption of mitochondrial membrane potential. Furthermore, mice injected intracerebroventricularly with Aß40 co-incubated with GAPDH aggregates exhibited Aß40-induced pyramidal cell death and gliosis in the hippocampal CA3 region. These observations were accompanied by nuclear translocation of apoptosis-inducing factor and cytosolic release of cytochrome c from mitochondria. Finally, in the 3×Tg-AD mouse model of AD, GAPDH/Aß co-aggregation and mitochondrial dysfunction were consistently detected in an age-dependent manner, and Aß aggregate formation was attenuated by GAPDH siRNA treatment. Thus, this study suggests that GAPDH aggregates accelerate Aß amyloidogenesis, subsequently leading to mitochondrial dysfunction and neuronal cell death in the pathogenesis of AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Péptidos beta-Amiloides/biosíntesis , Animales , Humanos , Ratones , Ratones Transgénicos , Microscopía de Fuerza Atómica , Mitocondrias/fisiología , Células PC12 , Ratas
10.
J Biol Chem ; 290(23): 14493-503, 2015 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-25882840

RESUMEN

In addition to its role in DNA repair, nuclear poly(ADP-ribose) polymerase-1 (PARP-1) mediates brain damage when it is over-activated by oxidative/nitrosative stress. Nonetheless, it remains unclear how PARP-1 is activated in neuropathological contexts. Here we report that PARP-1 interacts with a pool of glyceradehyde-3-phosphate dehydrogenase (GAPDH) that translocates into the nucleus under oxidative/nitrosative stress both in vitro and in vivo. A well conserved amino acid at the N terminus of GAPDH determines its protein binding with PARP-1. Wild-type (WT) but not mutant GAPDH, that lacks the ability to bind PARP-1, can promote PARP-1 activation. Importantly, disrupting this interaction significantly diminishes PARP-1 overactivation and protects against both brain damage and neurological deficits induced by middle cerebral artery occlusion/reperfusion in a rat stroke model. Together, these findings suggest that nuclear GAPDH is a key regulator of PARP-1 activity, and its signaling underlies the pathology of oxidative/nitrosative stress-induced brain damage including stroke.


Asunto(s)
Encéfalo/patología , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/patología , Estrés Oxidativo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Secuencia de Aminoácidos , Animales , Encéfalo/irrigación sanguínea , Encéfalo/enzimología , Encéfalo/metabolismo , Línea Celular , Núcleo Celular/enzimología , Núcleo Celular/metabolismo , Núcleo Celular/patología , Activación Enzimática , Gliceraldehído-3-Fosfato Deshidrogenasas/análisis , Humanos , Infarto de la Arteria Cerebral Media/enzimología , Masculino , Modelos Moleculares , Datos de Secuencia Molecular , Nitrocompuestos/análisis , Nitrocompuestos/metabolismo , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/análisis , Ratas , Ratas Wistar
11.
Nitric Oxide ; 53: 13-21, 2016 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-26725192

RESUMEN

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a homotetrameric enzyme involved in a key step of glycolysis, also has a role in mediating cell death under nitrosative stress. Our previous reports suggest that nitric oxide-induced intramolecular disulfide-bonding GAPDH aggregation, which occurs through oxidation of the active site cysteine (Cys-152), participates in a mechanism to account for nitric oxide-induced death signaling in some neurodegenerative/neuropsychiatric disorders. Here, we demonstrate a rescue strategy for nitric oxide-induced cell death accompanied by GAPDH aggregation in a mutant with a substitution of Cys-152 to alanine (C152A-GAPDH). Pre-incubation of purified wild-type GAPDH with C152A-GAPDH under exposure to nitric oxide inhibited wild-type GAPDH aggregation in a concentration-dependent manner in vitro. Several lines of structural analysis revealed that C152A-GAPDH extensively interfered with nitric oxide-induced GAPDH-amyloidogenesis. Overexpression of doxycycline-inducible C152A-GAPDH in SH-SY5Y neuroblastoma significantly rescued nitric oxide-induced death, concomitant with the decreased formation of GAPDH aggregates. Further, both co-immunoprecipitation assays and simulation models revealed a heterotetramer composed of one dimer each of wild-type GAPDH and C152A-GAPDH. These results suggest that the C152A-GAPDH mutant acts as a dominant-negative molecule against GAPDH aggregation via the formation of this GAPDH heterotetramer. This study may contribute to a new therapeutic approach utilizing C152A-GAPDH against brain damage in nitrosative stress-related disorders.


Asunto(s)
Cisteína/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Óxido Nítrico/farmacología , Dominio Catalítico/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cisteína/genética , Relación Dosis-Respuesta a Droga , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Humanos , Agregado de Proteínas/efectos de los fármacos , Relación Estructura-Actividad , Células Tumorales Cultivadas
12.
Biochem Biophys Res Commun ; 467(2): 373-6, 2015 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-26431872

RESUMEN

The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has multiple functions, including mediating oxidative stress-induced neuronal cell death. This process is associated with disulfide-bonded GAPDH aggregation. Some reports suggest a link between GAPDH and the pathogenesis of several oxidative stress-related diseases. However, the pathological significance of GAPDH aggregation in disease pathogenesis remains unclear due to the lack of an effective GAPDH aggregation inhibitor. In this study, we identified a GAPDH aggregation inhibitor (GAI) peptide and evaluated its biological profile. The decapeptide GAI specifically inhibited GAPDH aggregation in a concentration-dependent manner. Additionally, the GAI peptide did not affect GAPDH glycolytic activity or cell viability. The GAI peptide also exerted a protective effect against oxidative stress-induced cell death in SH-SY5Y cells. This peptide could potentially serve as a tool to investigate GAPDH aggregation-related neurodegenerative and neuropsychiatric disorders and as a possible therapy for diseases associated with oxidative stress-induced cell death.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Gliceraldehído-3-Fosfato Deshidrogenasas/antagonistas & inhibidores , Neuronas/efectos de los fármacos , Oligopéptidos/farmacología , Agregado de Proteínas/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Apoptosis/efectos de los fármacos , Dominio Catalítico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Inhibidores Enzimáticos/síntesis química , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Gliceraldehído-3-Fosfato Deshidrogenasas/química , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Glucólisis/efectos de los fármacos , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Neuronas/metabolismo , Neuronas/patología , Oligopéptidos/síntesis química , Oxidación-Reducción , Estrés Oxidativo , Células PC12 , Unión Proteica , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
13.
Biochem Biophys Res Commun ; 447(2): 311-4, 2014 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-24713302

RESUMEN

Recent reports indicate that interruption of acetylcholine release by intrastriatal injection of botulinum neurotoxin type A (BoNT/A) in a rat Parkinson's disease model reduces pathogenic behavior without adverse side effects such as memory dysfunction. Current knowledge suggests that BoNT/A subtype 1 (BoNT/A1) and BoNT/A subtype 2 (BoNT/A2) exert different effects. In the present study, we compared the effects of BoNT/A1 and BoNT/A2 on rotation behavior and in vivo cleavage of presynaptic protein SNAP-25 in a rat unilateral 6-hydroxydopamine-induced Parkinson's disease model. BoNT/A2 more effectively reduced pathogenic behavior by efficiently cleaving SNAP-25 in the striatum compared with that of BoNT/A1. Our results suggest that BoNT/A2 has greater clinical therapeutic value for treating subjects with Parkinson's disease compared to that of BoNT/A1.


Asunto(s)
Toxinas Botulínicas Tipo A/administración & dosificación , Enfermedad de Parkinson Secundaria/tratamiento farmacológico , Animales , Toxinas Botulínicas Tipo A/efectos adversos , Colina O-Acetiltransferasa/metabolismo , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Femenino , Masculino , Oxidopamina/farmacología , Enfermedad de Parkinson Secundaria/inducido químicamente , Enfermedad de Parkinson Secundaria/fisiopatología , Proteolisis , Ratas , Rotación , Proteína 25 Asociada a Sinaptosomas/metabolismo
14.
Commun Biol ; 7(1): 149, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38310133

RESUMEN

Anti-DNA antibodies (Abs), serological hallmarks of systemic lupus erythematosus (SLE) and markers for diagnosis and disease activity, show a specificity for non-nucleic acid molecules, such as N-pyrrolated proteins (pyrP) containing Nε-pyrrole-L-lysine (pyrK) residues. However, the detailed mechanism for the binding of anti-DNA Abs to pyrP remains unknown. In the present study, to gain structural insights into the dual-specificity of anti-DNA Abs, we used phage display to obtain DNA-binding, single-chain variable fragments (scFvs) from SLE-prone mice and found that they also cross-reacted with pyrP. It was revealed that a variable heavy chain (VH) domain is sufficient for the recognition of DNA/pyrP. Identification of an antigenic sequence containing pyrK in pyrP suggested that the presence of both pyrK and multiple acidic amino acid residues plays important roles in the electrostatic interactions with the Abs. X-ray crystallography and computer-predicted simulations of the pyrK-containing peptide-scFv complexes identified key residues of Abs involved in the interaction with the antigens. These data provide a mechanistic insight into the molecular basis of the dual-specificity of the anti-DNA Abs and provide a basis for therapeutic intervention against SLE.


Asunto(s)
Lupus Eritematoso Sistémico , Anticuerpos de Cadena Única , Ratones , Animales , Anticuerpos Antinucleares/metabolismo , Especificidad de Anticuerpos , Lupus Eritematoso Sistémico/genética , ADN/genética
15.
Nat Commun ; 13(1): 2974, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35624109

RESUMEN

Reducing sugars can covalently react with proteins to generate a heterogeneous and complex group of compounds called advanced glycation end products (AGEs). AGEs are generally considered as pathogenic molecules, mediating a pro-inflammatory response and contributing to the development of a number of human diseases. However, the intrinsic function of AGEs remains to be elucidated. We now provide multiple lines of evidence showing that AGEs can specifically bind histone localized on the cell surface as an AGE-binding protein, regulate the function of histone as a plasminogen receptor, and result in the regulation of monocytes/macrophage recruitment to the site of inflammation. Our finding of histone as a cell-surface receptor for AGEs suggests that, beside our common concept of AGEs as danger-associated molecular patterns mediating a pro-inflammatory response, they may also be involved in the homeostatic response via binding to histone.


Asunto(s)
Productos Finales de Glicación Avanzada , Histonas , Productos Finales de Glicación Avanzada/metabolismo , Humanos , Inflamación/patología , Receptores de Superficie Celular/metabolismo
16.
Neurochem Int ; 119: 171-177, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29108865

RESUMEN

Insulin resistance in brain has been reported in Alzheimer's diseases (AD). Insulin signaling is important for homeostasis in brain function and reported to be disturbed in neurons leading to tau phosphorylation and neurofibrillary tangles. Many investigations of insulin in neurons have been reported; however, it has not been reported whether astrocytes also produce insulin. In the present study, we assessed the expression of insulin in astrocytes cultured from rat embryonic brain and the effects of amyloid ß1-42 (Aß) and lipopolysaccharide (LPS) on the expression. We found that astrocytes expressed preproinsulin mRNAs and insulin protein, and that Aß or LPS decreased these expressions. Antioxidants, glutathione and N-acetylcysteine, restored the decreases in insulin mRNA expression by Aß and by LPS. Insulin protein was detected in astrocyte conditioned medium. These results suggest that astrocytes express and secrete insulin. Oxidative stress might be involved in the decreased insulin expression by Aß or LPS. The insulin decrease by Aß in astrocytes could be a novel disturbing mechanism for brain insulin signaling in AD.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Antioxidantes/farmacología , Astrocitos/metabolismo , Insulina/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Células Cultivadas , Neuronas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosforilación/efectos de los fármacos , Precursores de Proteínas/metabolismo , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Proteínas tau/metabolismo
17.
J Vet Med Sci ; 76(8): 1189-93, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24849052

RESUMEN

Botulinum neurotoxin type A (BoNT/A) cleaves SNAP-25 and interrupts the release of acetylcholine. We previously reported that BoNT/A subtype 2 (BoNT/A2) ameliorates pathologic behavior more effectively than subtype 1 (BoNT/A1) in a rat Parkinson's disease model. Here, we further show BoNT/A2 has fewer adverse effects than BoNT/A1. We first confirmed that intrastriatal treatments of both BoNT/As had no-effect on dopaminergic terminals in the striatum. SNAP-25 cleaved by BoNT/A2 was strictly localized to the striatum on the injected side; however, SNAP-25 cleaved by BoNT/A1 diffused contralaterally. Furthermore, treatment with BoNT/A1 caused a significant reduction in body weight, while BoNT/A2 treatment did not. These results suggest that BoNT/A2 is more beneficial for clinical application against Parkinson's disease than BoNT/A1.


Asunto(s)
Toxinas Botulínicas Tipo A/efectos adversos , Toxinas Botulínicas Tipo A/farmacología , Cuerpo Estriado/efectos de los fármacos , Enfermedad de Parkinson/tratamiento farmacológico , Proteína 25 Asociada a Sinaptosomas/metabolismo , Animales , Western Blotting , Toxinas Botulínicas Tipo A/administración & dosificación , Neuronas Dopaminérgicas/efectos de los fármacos , Técnica del Anticuerpo Fluorescente , Proteolisis , Ratas , Pérdida de Peso/efectos de los fármacos
18.
J Biotechnol ; 157(2): 326-33, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22079868

RESUMEN

There has been a dramatic expansion of the literature on RNA interference and with it, increasing interest in the potential clinical utility of targeted inhibition of gene expression and associated protein knockdown. However, a critical factor limiting the experimental and therapeutic application of RNA interference is the ability to deliver small interfering RNAs (siRNAs), particularly in the central nervous system, without complications such as toxicity and inflammation. Here we show that a single intracerebroventricular injection of Accell siRNA, a new type of naked siRNA that has been modified chemically to allow for delivery in the absence of transfection reagents, even into differentiated cells such mature neurons, leads to neuron-specific protein knockdown in the adult rat brain. Following in vivo delivery, targeted Accell siRNAs were incorporated successfully into various types of mature neurons, but not glia, for 1 week in diverse brain regions (cortex, striatum, hippocampus, midbrain, and cerebellum) with an efficacy of delivery of approximately 97%. Immunohistochemical and Western blotting analyses revealed widespread, targeted inhibition of the expression of two well-known reference proteins, cyclophilin-B (38-68% knockdown) and glyceraldehyde 3-phosphate dehydrogenase (23-34% knockdown). These findings suggest that this novel procedure is likely to be useful in experimental investigations of neuropathophysiological mechanisms.


Asunto(s)
Encéfalo/metabolismo , Técnicas de Silenciamiento del Gen/métodos , Neuronas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Animales , Encéfalo/citología , Diferenciación Celular , Ciclofilinas/genética , Ciclofilinas/metabolismo , Sistemas de Liberación de Medicamentos , Regulación de la Expresión Génica , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Inyecciones Intraventriculares , Neuroglía/citología , Neuroglía/metabolismo , Neuronas/citología , Especificidad de Órganos , ARN Interferente Pequeño/química , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA