RESUMEN
Cyclic peptides are attracting attention as therapeutic agents due to their potential for oral absorption and easy access to tough intracellular targets. LUNA18, a clinical KRAS inhibitor, was transformed-without scaffold hopping-from the initial hit by using an mRNA display library that met our criteria for drug-likeness. In drug discovery using mRNA display libraries, hit compounds always possess a site linked to an mRNA tag. Here, we describe our examination of the Structure-Activity Relationship (SAR) using X-ray structures for chemical optimization near the site linked to the mRNA tag, equivalent to the C-terminus. Structural modifications near the C-terminus demonstrated a relatively wide range of tolerance for side chains. Furthermore, we show that a single atom modification is enough to change the pharmacokinetic (PK) profile. Since there are four positions where side chain modification is permissible in terms of activity, it is possible to flexibly adjust the pharmacokinetic profile by structurally optimizing the side chain. The side chain transformation findings demonstrated here may be generally applicable to hits obtained from mRNA display libraries.
Asunto(s)
Péptidos Cíclicos , Proteínas Proto-Oncogénicas p21(ras) , ARN Mensajero , Relación Estructura-Actividad , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/farmacocinética , Humanos , ARN Mensajero/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Estructura Molecular , Animales , Relación Dosis-Respuesta a DrogaRESUMEN
Cyclic peptides as a therapeutic modality are attracting a lot of attention due to their potential for oral absorption and accessibility to intracellular tough targets. Here, starting with a drug-like hit discovered using an mRNA display library, we describe a chemical optimization that led to the orally available clinical compound known as LUNA18, an 11-mer cyclic peptide inhibitor for the intracellular tough target RAS. The key findings are as follows: (i) two peptide side chains were identified that each increase RAS affinity over 10-fold; (ii) physico-chemical properties (PCP) including Clog P can be adjusted by side-chain modification to increase membrane permeability; (iii) restriction of cyclic peptide conformation works effectively to adjust PCP and improve bio-activity; (iv) cellular efficacy was observed in peptides with a permeability of around 0.4 × 10-6 cm/s or more in a Caco-2 permeability assay; and (v) while keeping the cyclic peptide's main-chain conformation, we found one example where the RAS protein structure was changed dramatically through induced-fit to our peptide side chain. This study demonstrates how the chemical optimization of bio-active peptides can be achieved without scaffold hopping, much like the processes for small molecule drug discovery that are guided by Lipinski's rule of five. Our approach provides a versatile new strategy for generating peptide drugs starting from drug-like hits.
Asunto(s)
Péptidos , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Células CACO-2 , Péptidos/farmacología , Péptidos/metabolismo , Péptidos Cíclicos/química , Conformación MolecularRESUMEN
Establishing a technological platform for creating clinical compounds inhibiting intracellular protein-protein interactions (PPIs) can open the door to many valuable drugs. Although small molecules and antibodies are mainstream modalities, they are not suitable for a target protein that lacks a deep cavity for a small molecule to bind or a protein found in intracellular space out of an antibody's reach. One possible approach to access these targets is to utilize so-called middle-size cyclic peptides (defined here as those with a molecular weight of 1000-2000 g/mol). In this study, we validated a new methodology to create oral drugs beyond the rule of 5 for intracellular tough targets by elucidating structural features and physicochemical properties for drug-like cyclic peptides and developing library technologies to afford highly N-alkylated cyclic peptide hits. We discovered a KRAS inhibitory clinical compound (LUNA18) as the first example of our platform technology.
Asunto(s)
Péptidos Cíclicos , Péptidos Cíclicos/químicaRESUMEN
Functional and structural characterizations of pyridoxal 5'-phosphate-independent aspartate racemase of the acidothermophilic archaeon Picrophilus torridus were performed. Picrophilus aspartate racemase exhibited high substrate specificity to aspartic acid. The optimal reaction temperature was 60 °C, which is almost the same as the optimal growth temperature. Reflecting the low pH in the cytosol, the optimal reaction pH of Picrophilus aspartate racemase was approximately 5.5. However, the activity at the putative cytosolic pH of 4.6 was approximately 6 times lower than that at the optimal pH of 5.5. The crystal structure of Picrophilus aspartate racemase was almost the same as that of other pyridoxal 5'-phosphate -independent aspartate racemases. In two molecules of the dimer, one molecule contained a tartaric acid molecule in the catalytic site; the structure of the other molecule was relatively flexible. Finally, we examined the intracellular existence of D-amino acids. Unexpectedly, the proportion of D-aspartate to total aspartate was not very high. In contrast, both D-proline and D-alanine were observed. Because Picrophilus aspartate racemase is highly specific to aspartate, other amino acid racemases might exist in Picrophilus torridus.
Asunto(s)
Isomerasas de Aminoácido/química , Proteínas Arqueales/química , Thermoplasmales/enzimología , Isomerasas de Aminoácido/genética , Isomerasas de Aminoácido/metabolismo , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Estabilidad de Enzimas , Especificidad por Sustrato , Thermoplasmales/genéticaRESUMEN
Anaplastic lymphoma kinase (ALK) receptor tyrosine kinase is considered an attractive therapeutic target for human cancers, especially non-small cell lung cancer (NSCLC). Our previous study revealed that 8,9-side-chains of 6,6-dimethyl-11-oxo-6,11-dihydro-5H-benzo[b]carbazole scaffold crucially affected kinase selectivity, cellular activity, and metabolic stability. In this work, we optimized the side-chains and identified highly selective, orally active and potent ALK inhibitor CH5424802 (18a) as the clinical candidate.
Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Administración Oral , Quinasa de Linfoma Anaplásico , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Haplorrinos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/farmacocinética , Ratas , Ratas Sprague-Dawley , Proteínas Tirosina Quinasas Receptoras/metabolismoRESUMEN
Kinase fusions involving tropomyosin receptor kinases (TRKs) have been proven to act as strong oncogenic drivers and are therefore recognized as attractive therapeutic targets. We screened an in-house kinase-focused library and identified a promising hit compound with a unique tetracyclic scaffold. Compound 1 showed high TRK selectivity but moderate cell growth inhibitory activity as well as a potential risk of inducing CYP3A4. In this report, chemical modification intended to improve TRK inhibition and avoid CYP3A4 induction enabled us to identify an orally bioavailable, selective, and potent TRK inhibitor 7.
Asunto(s)
Neoplasias , Tropomiosina , Proliferación Celular , Citocromo P-450 CYP3A , Humanos , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/química , Receptor trkARESUMEN
Anaplastic lymphoma kinase (ALK) receptor tyrosine kinase is considered a promising therapeutic target for human cancers. We identified novel tetracyclic derivatives as potent ALK inhibitors. Among them, compound 27 showed strong cytotoxicity against KARPAS-299 with an IC(50) value of 21 nM and significant antitumor efficacy in ALK fusion-positive blood and solid cancer xenograft models in mice without body weight loss.
Asunto(s)
Antineoplásicos/síntesis química , Descubrimiento de Drogas , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Tetraciclinas/síntesis química , Quinasa de Linfoma Anaplásico , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Modelos Animales de Enfermedad , Activación Enzimática/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Ratones , Estructura Molecular , Tetraciclinas/química , Tetraciclinas/farmacologíaRESUMEN
The first enantioselective total synthesis of (-)-erinacine B has been achieved. Our approach features convergent construction of the 5-6-7 tricyclic cyathane core system via chiral building blocks prepared using asymmetric catalysis developed by us and highly stereoselective construction of all stereogenic centers in the aglycon. [reaction: see text].
Asunto(s)
Diterpenos/química , Compuestos Heterocíclicos de 4 o más Anillos/síntesis química , Cetonas/química , Catálisis , Compuestos Heterocíclicos de 4 o más Anillos/química , Conformación Molecular , Saccharomyces cerevisiae/química , EstereoisomerismoRESUMEN
9-Substituted 6,6-dimethyl-11-oxo-6,11-dihydro-5H-benzo[b]carbazoles were discovered as highly selective and potent anaplastic lymphoma kinase (ALK) inhibitors by structure-based drug design. The high target selectivity was achieved by introducing a substituent close to the E(0) region of the ATP binding site, which has a unique amino acid sequence. Among the identified inhibitors, compound 13d showed highly selective and potent inhibitory activity against ALK with an IC(50) value of 2.9 nM and strong antiproliferative activity against KARPAS-299 with an IC(50) value of 12.8 nM. The compound also displayed significant antitumor efficacy in an established ALK fusion gene-positive anaplastic large-cell lymphoma (ALCL) xenograft model in mice without body weight loss.