Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Development ; 151(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39206939

RESUMEN

Shoot apical meristems (SAMs) continuously initiate organ formation and maintain pluripotency through dynamic genetic regulations and cell-to-cell communications. The activity of meristems directly affects the plant's structure by determining the number and arrangement of organs and tissues. We have taken a forward genetic approach to dissect the genetic pathway that controls cell differentiation around the SAM. The rice mutants, adaxial-abaxial bipolar leaf 1 and 2 (abl1 and abl2), produce an ectopic leaf that is fused back-to-back with the fourth leaf, the first leaf produced after embryogenesis. The abaxial-abaxial fusion is associated with the formation of an ectopic shoot meristem at the adaxial base of the fourth leaf primordium. We cloned the ABL1 and ABL2 genes of rice by mapping their chromosomal positions. ABL1 encodes OsHK6, a histidine kinase, and ABL2 encodes a transcription factor, OSHB3 (Class III homeodomain leucine zipper). Expression analyses of these mutant genes as well as OSH1, a rice ortholog of the Arabidopsis STM gene, unveiled a regulatory circuit that controls the formation of an ectopic meristem near the SAM at germination.


Asunto(s)
Citocininas , Regulación de la Expresión Génica de las Plantas , Meristema , Oryza , Hojas de la Planta , Proteínas de Plantas , Meristema/genética , Meristema/metabolismo , Oryza/genética , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Citocininas/metabolismo , Citocininas/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Mutación/genética , Genes de Plantas , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética
2.
PLoS Genet ; 17(5): e1009292, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33970916

RESUMEN

The plastochron, the time interval between the formation of two successive leaves, is an important determinant of plant architecture. We genetically and phenotypically investigated many-noded dwarf (mnd) mutants in barley. The mnd mutants exhibited a shortened plastochron and a decreased leaf blade length, and resembled previously reported plastochron1 (pla1), pla2, and pla3 mutants in rice. In addition, the maturation of mnd leaves was accelerated, similar to pla mutants in rice. Several barley mnd alleles were derived from three genes-MND1, MND4, and MND8. Although MND4 coincided with a cytochrome P450 family gene that is a homolog of rice PLA1, we clarified that MND1 and MND8 encode an N-acetyltransferase-like protein and a MATE transporter-family protein, which are respectively orthologs of rice GW6a and maize BIGE1 and unrelated to PLA2 or PLA3. Expression analyses of the three MND genes revealed that MND1 and MND4 were expressed in limited regions of the shoot apical meristem and leaf primordia, but MND8 did not exhibit a specific expression pattern around the shoot apex. In addition, the expression levels of the three genes were interdependent among the various mutant backgrounds. Genetic analyses using the double mutants mnd4mnd8 and mnd1mnd8 indicated that MND1 and MND4 regulate the plastochron independently of MND8, suggesting that the plastochron in barley is controlled by multiple genetic pathways involving MND1, MND4, and MND8. Correlation analysis between leaf number and leaf blade length indicated that both traits exhibited a strong negative association among different genetic backgrounds but not in the same genetic background. We propose that MND genes function in the regulation of the plastochron and leaf growth and revealed conserved and diverse aspects of plastochron regulation via comparative analysis of barley and rice.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Hordeum/crecimiento & desarrollo , Hordeum/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/genética , Alelos , Sistemas CRISPR-Cas/genética , División Celular , Hordeum/citología , Mutación , Oryza/genética , Fenotipo , Células Vegetales , Hojas de la Planta/citología , Factores de Tiempo
3.
Plant Cell Physiol ; 63(2): 265-278, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34865135

RESUMEN

The molecular basis for leaf development, a major focus in developmental biology, remains unclear in the monocotyledonous grass, rice (Oryza sativa). Here, we performed a mutant screen in rice and identified an AP2-type transcription factor family protein, NARROW AND DWARF LEAF1 (NDL1). NDL1 is the ortholog of Arabidopsis thaliana (subsequently called Arabidopsis) ENHANCER OF SHOOT REGENERATION1 (ESR1)/DORNRÖSCHEN (DRN) and mediates leaf development and maintenance of the shoot apical meristem (SAM). Loss of function of NDL1 results in bladeless leaves and SAMs that are flat, rather than dome-shaped, and lack cell proliferation activity. This loss of function also causes reduced auxin signaling. Moreover, as is the case with Arabidopsis ESR1/DRN, NDL1 plays crucial roles in shoot regeneration. Importantly, we found that NDL1 is not expressed in the SAM but is expressed in leaf primordia. We propose that NDL1 cell autonomously regulates leaf development, but non-cell autonomously regulates SAM maintenance in rice.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Oryza , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Meristema/genética , Meristema/metabolismo , Mutación/genética , Oryza/genética , Oryza/metabolismo
4.
Plant Cell Physiol ; 63(2): 265-278, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35166362

RESUMEN

The molecular basis for leaf development, a major focus in developmental biology, remains unclear in the monocotyledonous grass, rice (Oryza sativa). Here, we performed a mutant screen in rice and identified an AP2-type transcription factor family protein, NARROW AND DWARF LEAF1 (NDL1). NDL1 is the ortholog of Arabidopsis thaliana (subsequently called Arabidopsis) ENHANCER OF SHOOT REGENERATION1 (ESR1)/DORNRÖSCHEN (DRN) and mediates leaf development and maintenance of the shoot apical meristem (SAM). Loss of function of NDL1 results in bladeless leaves and SAMs that are flat, rather than dome-shaped, and lack cell proliferation activity. This loss of function also causes reduced auxin signaling. Moreover, as is the case with Arabidopsis ESR1/DRN, NDL1 plays crucial roles in shoot regeneration. Importantly, we found that NDL1 is not expressed in the SAM but is expressed in leaf primordia. We propose that NDL1 cell autonomously regulates leaf development, but non-cell autonomously regulates SAM maintenance in rice.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Oryza , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Meristema/genética , Meristema/metabolismo , Mutación/genética , Oryza/genética , Oryza/metabolismo
5.
Development ; 146(13)2019 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-31118231

RESUMEN

Asymmetric cell division is a key step in cellular differentiation in multicellular organisms. In plants, asymmetric zygotic division produces the apical and basal cells. The mitogen-activated protein kinase (MPK) cascade in Arabidopsis acts in asymmetric divisions such as zygotic division and stomatal development, but whether the effect on cellular differentiation of this cascade is direct or indirect following asymmetric division is not clear. Here, we report the analysis of a rice mutant, globular embryo 4 (gle4). In two- and four-cell-stage embryos, asymmetric zygotic division and subsequent cell division patterns were indistinguishable between the wild type and gle4 mutants. However, marker gene expression and transcriptome analyses showed that specification of the basal region was compromised in gle4 We found that GLE4 encodes MPK6 and that GLE4/MPK6 is essential in cellular differentiation rather than in asymmetric zygotic division. Our findings provide a new insight into the role of MPK in plant development. We propose that the regulation of asymmetric zygotic division is separate from the regulation of cellular differentiation that leads to apical-basal polarity.


Asunto(s)
División Celular Asimétrica/genética , Proteína Quinasa 6 Activada por Mitógenos/fisiología , Oryza , Cigoto/citología , División Celular/genética , Clonación Molecular , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteína Quinasa 6 Activada por Mitógenos/genética , Oryza/embriología , Oryza/enzimología , Oryza/genética , Plantas Modificadas Genéticamente , Semillas/genética , Semillas/metabolismo
6.
BMC Genomics ; 22(1): 169, 2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33750294

RESUMEN

BACKGROUND: Rice leaves consist of three distinct regions along a proximal-distal axis, namely the leaf blade, sheath, and blade-sheath boundary region. Each region has a unique morphology and function, but the genetic programs underlying the development of each region are poorly understood. To fully elucidate rice leaf development and discover genes with unique functions in rice and grasses, it is crucial to explore genome-wide transcriptional profiles during the development of the three regions. RESULTS: In this study, we performed microarray analysis to profile the spatial and temporal patterns of gene expression in the rice leaf using dissected parts of leaves sampled in broad developmental stages. The dynamics in each region revealed that the transcriptomes changed dramatically throughout the progress of tissue differentiation, and those of the leaf blade and sheath differed greatly at the mature stage. Cluster analysis of expression patterns among leaf parts revealed groups of genes that may be involved in specific biological processes related to rice leaf development. Moreover, we found novel genes potentially involved in rice leaf development using a combination of transcriptome data and in situ hybridization, and analyzed their spatial expression patterns at high resolution. We successfully identified multiple genes that exhibit localized expression in tissues characteristic of rice or grass leaves. CONCLUSIONS: Although the genetic mechanisms of leaf development have been elucidated in several eudicots, direct application of that information to rice and grasses is not appropriate due to the morphological and developmental differences between them. Our analysis provides not only insights into the development of rice leaves but also expression profiles that serve as a valuable resource for gene discovery. The genes and gene clusters identified in this study may facilitate future research on the unique developmental mechanisms of rice leaves.


Asunto(s)
Oryza , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Oryza/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma
7.
Development ; 145(7)2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29567670

RESUMEN

Regulation of cell proliferation is crucial for establishing the shape of plant leaves. We have identified MAKIBA3 (MKB3), a loss-of-function mutant of which exhibits a narrowed- and rolled-leaf phenotype in rice. MKB3 was found to be an ortholog of Arabidopsis ANGUSTIFOLIA3 (AN3), which positively regulates cell proliferation. The reduced leaf size of mkb3 plants with enlarged cells and the increased size of MKB3-overexpressing leaves with normal-sized cells indicate that MKB3 is a positive regulator of leaf proliferation and that mkb3 mutation triggers a compensation syndrome, as does Arabidopsis an3 Expression analysis revealed that MKB3 is predominantly expressed on the epidermis of leaf primordia, which is different from the location of AN3 A protein movement assay demonstrated that MKB3 moves from an MKB3-expressing domain to a non-expressing domain, which is required for normal leaf development. Our results suggest that rice MKB3 and Arabidopsis AN3 have conserved functions and effects on leaf development. However, the expression pattern of MKB3 and direction of protein movement are different between rice and Arabidopsis, which might reflect differences in leaf primordia development in these two species.


Asunto(s)
Arabidopsis/metabolismo , Proliferación Celular/genética , Oryza/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Transactivadores/metabolismo , Proteínas de Arabidopsis/metabolismo , Aumento de la Célula , Regulación de la Expresión Génica de las Plantas , Mutación , Oryza/genética , Fenotipo , Hojas de la Planta/metabolismo , Transactivadores/genética
8.
Endocr J ; 68(3): 329-343, 2021 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-33390421

RESUMEN

This study was aimed to evaluate the effects of intensive exercise in addition to the administration of sodium-glucose cotransporter 2 inhibitor dapagliflozin (DAPA) on body composition, including fat-free mass, in type 2 diabetes. We randomly assigned 146 patients to 24 weeks of treatment with intensive exercise, including resistance training, plus 5 mg (up to 10 mg) of DAPA daily (IT group) or DAPA alone (CT group). The primary endpoint was the difference in the change in fat-free mass from baseline to 24 weeks between the groups. The skeletal muscle mass index (SMI); metabolic profile, including HbA1c; and regional fat mass were also determined. ANCOVA was used for the group comparison, with least squares mean (LSM) differences and 95% confidence interval (CI). There was no significant difference in the change in fat-free mass (LSM difference -0.1 kg (95% CI: -0.5 to 0.4) and SMI (LSM difference -0.1 kg (95% CI: -0.2 to 0.1) between the groups. In contrast, the reduction of trunk fat mass was significantly higher in the IT group than in the CT group ((LSM difference -0.5 kg [95% CI -0.9 to -0.1]). Higher adherence to the resistance training tended to be associated with changes in HbA1c and high-sensitivity CRP levels. Our study suggests that intensive exercise do not prevent the reduction of fat-free mass after administration of SGLT2 inhibitors but can increase the reduction in abdominal fat, presumably leading to further improvements of hyperglycemia and chronic inflammation than DAPA alone in type 2 diabetes patients.


Asunto(s)
Compuestos de Bencidrilo/uso terapéutico , Composición Corporal , Diabetes Mellitus Tipo 2/terapia , Glucósidos/uso terapéutico , Entrenamiento de Fuerza/métodos , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Tejido Adiposo/patología , Anciano , Diabetes Mellitus Tipo 2/metabolismo , Terapia por Ejercicio/métodos , Femenino , Hemoglobina Glucada/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético/patología , Tamaño de los Órganos
9.
Development ; 143(7): 1217-27, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26903508

RESUMEN

Embryogenesis in rice is different from that of most dicotolydonous plants in that it shows a non-stereotypic cell division pattern, formation of dorsal-ventral polarity, and endogenous initiation of the radicle. To reveal the transcriptional features associated with developmental events during rice early embryogenesis, we used microarray analysis coupled with laser microdissection to obtain both spatial and temporal transcription profiles. Our results allowed us to determine spatial expression foci for each expressed gene in the globular embryo, which revealed the importance of phytohormone-related genes and a suite of transcription factors to early embryogenesis. Our analysis showed the polarized expression of a small number of genes along the apical-basal and dorsal-ventral axes in the globular embryo, which tended to fluctuate in later developmental stages. We also analyzed gene expression patterns in the early globular embryo and how this relates to expression in embryonic organs at later stages. We confirmed the accuracy of the expression patterns found by microarray analysis of embryo subdomains using in situ hybridization. Our study identified homologous genes from Arabidopsis thaliana with known functions in embryogenesis in addition to unique and uncharacterized genes that show polarized expression patterns during embryogenesis. The results of this study are presented in a database to provide a framework for spatiotemporal gene expression during rice embryogenesis, to serve as a resource for future functional analysis of genes, and as a basis for comparative studies of plant embryogenesis.


Asunto(s)
Arabidopsis/embriología , Regulación del Desarrollo de la Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Oryza/embriología , Reguladores del Crecimiento de las Plantas/genética , División Celular/fisiología , Perfilación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos
10.
Development ; 143(18): 3407-16, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27578792

RESUMEN

Juvenile-to-adult phase transition is an important shift for the acquisition of adult vegetative characteristics and subsequent reproductive competence. We identified a recessive precocious (pre) mutant exhibiting a long leaf phenotype in rice. The long leaf phenotype is conspicuous in the second to the fourth leaves, which are juvenile and juvenile-to-adult transition leaves. We found that morphological and physiological traits, such as midrib formation, shoot meristem size, photosynthetic rate and plastochron, in juvenile and juvenile-to-adult transition stages of the pre mutant have precociously acquired adult characteristics. In agreement with these results, expression patterns of miR156 and miR172, which are microRNAs regulating phase change, support the accelerated juvenile-to-adult phase change in the pre mutant. The mutated gene encodes an allene oxide synthase (OsAOS1), which is a key enzyme for the biosynthesis of jasmonic acid (JA). The pre mutant showed a low level of JA and enhanced sensitivity to gibberellic acid, which promotes the phase change in some plant species. We also show that prolonged plastochron in the pre mutant is caused by accelerated PLASTOCHRON1 (PLA1) function. The present study reveals a substantial role of JA as a negative regulator of vegetative phase change.


Asunto(s)
Ciclopentanos/metabolismo , Oryza/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Oryza/genética , Proteínas de Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA