Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
EMBO J ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907032

RESUMEN

Dynamin 1 mediates fission of endocytic synaptic vesicles in the brain and has two major splice variants, Dyn1xA and Dyn1xB, which are nearly identical apart from the extended C-terminal region of Dyn1xA. Despite a similar set of binding partners, only Dyn1xA is enriched at endocytic zones and accelerates vesicle fission during ultrafast endocytosis. Here, we report that Dyn1xA achieves this localization by preferentially binding to Endophilin A1 through a newly defined binding site within its long C-terminal tail extension. Endophilin A1 binds this site at higher affinity than the previously reported site, and the affinity is determined by amino acids within the Dyn1xA tail but outside the binding site. This interaction is regulated by the phosphorylation state of two serine residues specific to the Dyn1xA variant. Dyn1xA and Endophilin A1 colocalize in patches near the active zone, and mutations disrupting Endophilin A binding to the long tail cause Dyn1xA mislocalization and stalled endocytic pits on the plasma membrane during ultrafast endocytosis. Together, these data suggest that the specificity for ultrafast endocytosis is defined by the phosphorylation-regulated interaction of Endophilin A1 with the C-terminal extension of Dyn1xA.

2.
Mol Cell ; 63(6): 1034-43, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27635761

RESUMEN

Mitochondria divide to control their size, distribution, turnover, and function. Dynamin-related protein 1 (Drp1) is a critical mechanochemical GTPase that drives constriction during mitochondrial division. It is generally believed that mitochondrial division is regulated during recruitment of Drp1 to mitochondria and its oligomerization into a division apparatus. Here, we report an unforeseen mechanism that regulates mitochondrial division by coincident interactions of Drp1 with the head group and acyl chains of phospholipids. Drp1 recognizes the head group of phosphatidic acid (PA) and two saturated acyl chains of another phospholipid by penetrating into the hydrophobic core of the membrane. The dual phospholipid interactions restrain Drp1 via inhibition of oligomerization-stimulated GTP hydrolysis that promotes membrane constriction. Moreover, a PA-producing phospholipase, MitoPLD, binds Drp1, creating a PA-rich microenvironment in the vicinity of a division apparatus. Thus, PA controls the activation of Drp1 after the formation of the division apparatus.


Asunto(s)
Dinaminas/genética , Mitocondrias/metabolismo , Dinámicas Mitocondriales/genética , Proteínas Mitocondriales/genética , Ácidos Fosfatidicos/metabolismo , Fosfolipasa D/genética , Testículo/metabolismo , Animales , Sitios de Unión , Dinaminas/metabolismo , Fibroblastos/metabolismo , Fibroblastos/ultraestructura , Regulación de la Expresión Génica , Guanosina Trifosfato/metabolismo , Masculino , Ratones , Mitocondrias/ultraestructura , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/ultraestructura , Proteínas Mitocondriales/metabolismo , Fosfolipasa D/metabolismo , Unión Proteica , Transducción de Señal , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo , Testículo/ultraestructura
4.
Int J Mol Sci ; 21(15)2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-32751702

RESUMEN

Mitochondria and peroxisomes are ubiquitous subcellular organelles that are highly dynamic and possess a high degree of plasticity. These organelles proliferate through division of pre-existing organelles. Studies on yeast, mammalian cells, and unicellular algae have led to a surprising finding that mitochondria and peroxisomes share the components of their division machineries. At the heart of the mitochondrial and peroxisomal division machineries is a GTPase dynamin-like protein, Dnm1/Drp1, which forms a contractile ring around the neck of the dividing organelles. During division, Dnm1/Drp1 functions as a motor protein and constricts the membrane. This mechanochemical work is achieved by utilizing energy from GTP hydrolysis. Over the last two decades, studies have focused on the structure and assembly of Dnm1/Drp1 molecules around the neck. However, the regulation of GTP during the division of mitochondrion and peroxisome is not well understood. Here, we review the current understanding of Dnm1/Drp1-mediated divisions of mitochondria and peroxisomes, exploring the mechanisms of GTP regulation during the Dnm1/Drp1 function, and provide new perspectives on their potential contribution to mitochondrial and peroxisomal biogenesis.


Asunto(s)
GTP Fosfohidrolasas/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Proteínas Motoras Moleculares/genética , Peroxisomas/genética , Proteínas de Saccharomyces cerevisiae/genética , Animales , División Celular/genética , Dinaminas/genética , Humanos , Dinámicas Mitocondriales
5.
J Biol Chem ; 293(30): 11809-11822, 2018 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-29853636

RESUMEN

Dynamin-related protein 1 (Drp1) constricts mitochondria as a mechanochemical GTPase during mitochondrial division. The Drp1 gene contains several alternative exons and produces multiple isoforms through RNA splicing. Here we performed a systematic analysis of Drp1 transcripts in different mouse tissues and identified a previously uncharacterized isoform that is highly enriched in the brain. This Drp1 isoform is termed Drp1ABCD because it contains four alterative exons: A, B, C, and D. Remarkably, Drp1ABCD is located at lysosomes, late endosomes, and the plasma membrane in addition to mitochondria. Furthermore, Drp1ABCD is concentrated at the interorganelle interface between mitochondria and lysosomes/late endosomes. The localizations of Drp1ABCD at lysosomes, late endosomes, and the plasma membrane require two exons, A and B, that are present in the GTPase domain. Drp1ABCD assembles onto these membranes in a manner that is regulated by its oligomerization and GTP hydrolysis. Experiments using lysosomal inhibitors show that the association of Drp1ABCD with lysosomes/late endosomes depends on lysosomal pH but not their protease activities. Thus, Drp1 may connect mitochondria to endosomal-lysosomal pathways in addition to mitochondrial division.


Asunto(s)
Encéfalo/metabolismo , Membrana Celular/metabolismo , Dinaminas/metabolismo , Endosomas/metabolismo , Lisosomas/metabolismo , Animales , Dinaminas/análisis , Ratones , Mitocondrias/metabolismo , Peroxisomas/metabolismo , Isoformas de Proteínas/análisis , Isoformas de Proteínas/metabolismo
6.
J Biol Chem ; 293(24): 9292-9300, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29735527

RESUMEN

Defects in phosphatase and tensin homolog (PTEN) are associated with neurological disorders and tumors. PTEN functions at two primary intracellular locations: the plasma membrane and the nucleus. At the membrane, PTEN functions as a phosphatidylinositol (3,4,5)-trisphosphate phosphatase and suppresses PI 3-kinase signaling that drives cell growth and tumorigenesis. However, the in vivo function of nuclear PTEN is unclear. Here, using CRISPR/Cas9, we generated a mouse model in which PTEN levels in the nucleus are decreased. Nuclear PTEN-deficient mice were born with microcephaly and maintained a small brain during adulthood. The size of neuronal soma was significantly smaller in the cerebellum, cerebral cortex, and hippocampus. Also, these mice were prone to seizure. No changes in PI 3-kinase signaling were observed. By contrast, the size of other organs was unaffected. Therefore, nuclear PTEN is essential for the health of the brain by promoting the growth of neuronal soma size during development.


Asunto(s)
Sistemas CRISPR-Cas , Núcleo Celular/genética , Microcefalia/genética , Neuronas/patología , Fosfohidrolasa PTEN/genética , Convulsiones/genética , Sustitución de Aminoácidos , Animales , Encéfalo/metabolismo , Encéfalo/patología , Núcleo Celular/metabolismo , Núcleo Celular/patología , Tamaño de la Célula , Femenino , Edición Génica , Masculino , Ratones , Microcefalia/complicaciones , Microcefalia/patología , Mutación , Neuronas/metabolismo , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Convulsiones/complicaciones , Convulsiones/patología , Transducción de Señal
7.
J Cell Mol Med ; 22(4): 2210-2219, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29397578

RESUMEN

Activation of hepatic stellate cells (HSCs) is an integral component of the wound-healing process in liver injury/inflammation. However, uncontrolled activation of HSCs leads to constant secretion of collagen-rich extracellular matrix (ECM) proteins, resulting in liver fibrosis. The enhanced ECM synthesis/secretion demands an uninterrupted supply of intracellular energy; however, there is a paucity of data on the bioenergetics, particularly the mitochondrial (mito) metabolism of fibrogenic HSCs. Here, using human and rat HSCs in vitro, we show that the mito-respiration, mito-membrane potential (Δψm) and cellular 'bioenergetic signature' distinguish fibrogenic HSCs from normal, less-active HSCs. Ex vivo, HSCs from mouse and rat models of liver fibrosis further confirmed the altered 'bioenergetic signature' of fibrogenic HSCs. Importantly, the distinctive elevation in mito-Δψm sensitized fibrogenic HSCs for selective inhibition by mitotropic doxorubicin while normal, less-active HSCs and healthy human primary hepatocytes remained minimally affected if not, unaffected. Thus, the increased mito-Δψm may provide an opportunity to selectively target fibrogenic HSCs in liver fibrosis.


Asunto(s)
Doxorrubicina/farmacología , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Mitocondrias Hepáticas/metabolismo , Animales , Línea Celular , Metabolismo Energético , Células Estrelladas Hepáticas/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Análisis de Flujos Metabólicos , Mitocondrias Hepáticas/efectos de los fármacos , Ratas
8.
Neurobiol Dis ; 119: 159-171, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30092269

RESUMEN

Following the involvement of CHCHD10 in FrontoTemporal-Dementia-Amyotrophic Lateral Sclerosis (FTD-ALS) clinical spectrum, a founder mutation (p.Gly66Val) in the same gene was identified in Finnish families with late-onset spinal motor neuronopathy (SMAJ). SMAJ is a slowly progressive form of spinal muscular atrophy with a life expectancy within normal range. In order to understand why the p.Ser59Leu mutation, responsible for severe FTD-ALS, and the p.Gly66Val mutation could lead to different levels of severity, we compared their effects in patient cells. Unlike affected individuals bearing the p.Ser59Leu mutation, patients presenting with SMAJ phenotype have neither mitochondrial myopathy nor mtDNA instability. The expression of CHCHD10S59L mutant allele leads to disassembly of mitochondrial contact site and cristae organizing system (MICOS) with mitochondrial dysfunction and loss of cristae in patient fibroblasts. We also show that G66V fibroblasts do not display the loss of MICOS complex integrity and mitochondrial damage found in S59L cells. However, S59L and G66V fibroblasts show comparable accumulation of phosphorylated mitochondrial TDP-43 suggesting that the severity of phenotype and mitochondrial damage do not depend on mitochondrial TDP-43 localization. The expression of the CHCHD10G66V allele is responsible for mitochondrial network fragmentation and decreased sensitivity towards apoptotic stimuli, but with a less severe effect than that found in cells expressing the CHCHD10S59L allele. Taken together, our data show that cellular phenotypes associated with p.Ser59Leu and p.Gly66Val mutations in CHCHD10 are different; loss of MICOS complex integrity and mitochondrial dysfunction, but not TDP-43 mitochondrial localization, being likely essential to develop a severe motor neuron disease.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Proteínas de Unión al ADN/genética , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Mitocondrias/genética , Mitocondrias/patología , Proteínas Mitocondriales/genética , Adulto , Proteínas de Unión al ADN/análisis , Femenino , Células HEK293 , Células HeLa , Humanos , Masculino , Proteínas de la Membrana/análisis , Proteínas de la Membrana/genética , Persona de Mediana Edad , Mitocondrias/ultraestructura , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/patología , Proteínas Mitocondriales/análisis , Mutación/genética , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/genética , Índice de Severidad de la Enfermedad
9.
Biochem Biophys Res Commun ; 475(3): 283-8, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27181353

RESUMEN

The cycle of mitochondrial division and fusion disconnect and reconnect individual mitochondria in cells to remodel this energy-producing organelle. Although dynamin-related protein 1 (Drp1) plays a major role in mitochondrial division in cells, a reduced level of mitochondrial division still persists even in the absence of Drp1. It is unknown how much Drp1-mediated mitochondrial division accounts for the connectivity of mitochondria. The role of a Parkinson's disease-associated protein-parkin, which biochemically and genetically interacts with Drp1-in mitochondrial connectivity also remains poorly understood. Here, we quantified the number and connectivity of mitochondria using mitochondria-targeted photoactivatable GFP in cells. We show that the loss of Drp1 increases the connectivity of mitochondria by 15-fold in mouse embryonic fibroblasts (MEFs). While a single loss of parkin does not affect the connectivity of mitochondria, the connectivity of mitochondria significantly decreased compared with a single loss of Drp1 when parkin was lost in the absence of Drp1. Furthermore, the loss of parkin decreased the frequency of depolarization of the mitochondrial inner membrane that is caused by increased mitochondrial connectivity in Drp1-knockout MEFs. Therefore, our data suggest that parkin negatively regulates Drp1-indendent mitochondrial division.


Asunto(s)
Dinaminas/metabolismo , Mitocondrias/metabolismo , Recambio Mitocondrial , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Señalización del Calcio , Línea Celular , Fibroblastos/citología , Fibroblastos/metabolismo , Fibroblastos/ultraestructura , Ratones , Microscopía Fluorescente , Mitocondrias/ultraestructura
10.
Biochim Biophys Acta ; 1842(8): 1179-85, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24326103

RESUMEN

Mitochondria grow, divide, and fuse in cells. Mitochondrial division is critical for the maintenance of the structure and function of mitochondria. Alterations in this process have been linked to many human diseases, including peripheral neuropathies and aging-related neurological disorders. In this review, we discuss recent progress in mitochondrial division by focusing on molecular and in vivo analyses of the evolutionarily conserved, central component of mitochondrial division, dynamin-related protein 1 (Drp1), in the yeast and mouse model organisms.


Asunto(s)
Dinaminas/metabolismo , Técnicas de Inactivación de Genes , Saccharomyces cerevisiae/genética , Animales , Humanos , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/ultraestructura
11.
Nature ; 458(7236): 357-61, 2009 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-19295610

RESUMEN

For more than 140 years, pollen tube guidance in flowering plants has been thought to be mediated by chemoattractants derived from target ovules. However, there has been no convincing evidence of any particular molecule being the true attractant that actually controls the navigation of pollen tubes towards ovules. Emerging data indicate that two synergid cells on the side of the egg cell emit a diffusible, species-specific signal to attract the pollen tube at the last step of pollen tube guidance. Here we report that secreted, cysteine-rich polypeptides (CRPs) in a subgroup of defensin-like proteins are attractants derived from the synergid cells. We isolated synergid cells of Torenia fournieri, a unique plant with a protruding embryo sac, to identify transcripts encoding secreted proteins as candidate molecules for the chemoattractant(s). We found two CRPs, abundantly and predominantly expressed in the synergid cell, which are secreted to the surface of the egg apparatus. Moreover, they showed activity in vitro to attract competent pollen tubes of their own species and were named as LUREs. Injection of morpholino antisense oligomers against the LUREs impaired pollen tube attraction, supporting the finding that LUREs are the attractants derived from the synergid cells of T. fournieri.


Asunto(s)
Factores Quimiotácticos/metabolismo , Defensinas/metabolismo , Magnoliopsida/citología , Magnoliopsida/crecimiento & desarrollo , Tubo Polínico/crecimiento & desarrollo , Secuencia de Aminoácidos , Factores Quimiotácticos/química , Factores Quimiotácticos/farmacología , Defensinas/química , Defensinas/farmacología , Etiquetas de Secuencia Expresada , Magnoliopsida/efectos de los fármacos , Magnoliopsida/genética , Datos de Secuencia Molecular , Oligonucleótidos Antisentido/genética , Tubo Polínico/efectos de los fármacos , Tubo Polínico/genética , ARN de Planta/antagonistas & inhibidores , ARN de Planta/genética , ARN de Planta/metabolismo , Transcripción Genética
12.
Elife ; 122024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38536730

RESUMEN

Despite decades of intense study, the molecular basis of asynchronous neurotransmitter release remains enigmatic. Synaptotagmin (syt) 7 and Doc2 have both been proposed as Ca2+ sensors that trigger this mode of exocytosis, but conflicting findings have led to controversy. Here, we demonstrate that at excitatory mouse hippocampal synapses, Doc2α is the major Ca2+ sensor for asynchronous release, while syt7 supports this process through activity-dependent docking of synaptic vesicles. In synapses lacking Doc2α, asynchronous release after single action potentials is strongly reduced, while deleting syt7 has no effect. However, in the absence of syt7, docked vesicles cannot be replenished on millisecond timescales. Consequently, both synchronous and asynchronous release depress from the second pulse onward during repetitive activity. By contrast, synapses lacking Doc2α have normal activity-dependent docking, but continue to exhibit decreased asynchronous release after multiple stimuli. Moreover, disruption of both Ca2+ sensors is non-additive. These findings result in a new model whereby syt7 drives activity-dependent docking, thus providing synaptic vesicles for synchronous (syt1) and asynchronous (Doc2 and other unidentified sensors) release during ongoing transmission.


Asunto(s)
Sinapsis , Vesículas Sinápticas , Sinaptotagminas , Animales , Ratones , Potenciales de Acción , Calcio/metabolismo , Exocitosis , Neurotransmisores , Sinapsis/metabolismo , Transmisión Sináptica , Vesículas Sinápticas/metabolismo , Sinaptotagmina I/metabolismo , Sinaptotagminas/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas del Tejido Nervioso/metabolismo
13.
J Biol Chem ; 287(52): 43961-71, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23124206

RESUMEN

Phosphatidylethanolamine (PE) plays important roles for the structure and function of mitochondria and other intracellular organelles. In yeast, the majority of PE is produced from phosphatidylserine (PS) by a mitochondrion-located PS decarboxylase, Psd1p. Because PS is synthesized in the endoplasmic reticulum (ER), PS is transported from the ER to mitochondria and converted to PE. After its synthesis, a portion of PE moves back to the ER. Two mitochondrial proteins located in the intermembrane space, Ups1p and Ups2p, have been shown to regulate PE metabolism by controlling the export of PE. It remains to be determined where PS is decarboxylated in mitochondria and whether decarboxylation is coupled to trafficking of PS. Here, using fluorescent PS as a substrate in an in vitro assay for Psd1p-dependent PE production in isolated mitochondria, we show that PS is transferred from the mitochondrial outer membrane to the inner membrane independently of Psd1p, Ups1p, and Ups2p and decarboxylated to PE by Psd1p in the inner membrane. Interestingly, Ups1p is required for the maintenance of Psd1p and therefore PE production. Restoration of Psd1p levels rescued PE production defects in ups1Δ mitochondria. Our data provide novel mechanistic insight into PE biogenesis in mitochondria.


Asunto(s)
Carboxiliasas/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Fosfatidiletanolaminas/biosíntesis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico Activo/fisiología , Carboxiliasas/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Fosfatidiletanolaminas/genética , Fosfatidilserinas/genética , Fosfatidilserinas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
14.
Autophagy ; 19(3): 966-983, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35921555

RESUMEN

Age-related macular degeneration (AMD), the leading cause of blindness among the elderly, is without treatment for early disease. Degenerative retinal pigment epithelial (RPE) cell heterogeneity is a well-recognized but understudied pathogenic factor. Due to the daily phagocytosis of photoreceptor outer segments, unique photo-oxidative stress, and high metabolism for maintaining vision, the RPE has robust macroautophagy/autophagy, and mitochondrial and antioxidant networks. However, the autophagy subtype, mitophagy, in the RPE and AMD is understudied. Here, we found decreased PINK1 (PTEN induced kinase 1) in perifoveal RPE of early AMD eyes. PINK1-deficient RPE have impaired mitophagy and mitochondrial function that triggers death-resistant epithelial-mesenchymal transition (EMT). This reprogramming is mediated by novel retrograde mitochondrial-nuclear signaling (RMNS) through superoxide, NFE2L2 (NFE2 like bZIP transcription factor 2), TXNRD1 (thioredoxin reductase 1), and phosphoinositide 3-kinase (PI3K)-AKT (AKT serine/threonine kinase) that induced canonical transcription factors ZEB1 (zinc finger E-box binding homeobox 1) and SNAI1 (Snail family transcriptional repressor 1) and an EMT transcriptome. NFE2L2 deficiency disrupted RMNS that paradoxically normalized morphology but decreased function and viability. Thus, RPE heterogeneity is defined by the interaction of two cytoprotective pathways that is triggered by mitophagy function. By neutralizing the consequences of impaired mitophagy, an antioxidant dendrimer tropic for the RPE and mitochondria, EMT (a recognized AMD alteration) was abrogated to offer potential therapy for early AMD, a stage without treatment.Abbreviations: ACTB: actin beta; AKT: AKT serine/threonine kinase; AMD: age-related macular degeneration; CCCP: cyanide m-chlorophenyl hydrazone; CDH1: cadherin 1; DAVID: Database for Annotation, Visualization and Integrated Discovery; DHE: dihydroethidium; D-NAC: N-acetyl-l-cysteine conjugated to a poly(amido amine) dendrimer; ECAR: extracellular acidification rate; EMT: epithelial-mesenchymal transition; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GSEA: Gene Set Enrichment Analysis; HSPD1: heat shock protein family D (Hsp60) member 1; IVT: intravitreal; KD: knockdown; LMNA, lamin A/C; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MMP: mitochondrial membrane potential; NAC: N-acetyl-l-cysteine; NQO1: NAD(P)H quinone dehydrogenase 1; NFE2L2: NFE2 like bZIP transcription factor 2; O2-: superoxide anion; OCR: oxygen consumption rate; PI3K: phosphoinositide 3-kinase; PINK1: PTEN induced kinase 1; RMNS: retrograde mitochondrial-nuclear signaling; ROS: reactive oxygen species; RPE: retinal pigment epithelium; SNAI1: snail family transcriptional repressor 1; TJP1: tight junction protein 1; TPP-D-NAC: triphenyl phosphinium and N-acetyl-l-cysteine conjugated to a poly(amido amine) dendrimer; TIMM23: translocase of inner mitochondrial membrane 23; TOMM20: translocase of outer mitochondrial membrane 20; Trig: trigonelline; TXNRD1: thioredoxin reductase 1; VIM: vimentin; WT: wild-type; ZEB1: zinc finger E-box binding homeobox 1.


Asunto(s)
Dendrímeros , Degeneración Macular , Humanos , Anciano , Mitofagia/genética , Autofagia , Tiorredoxina Reductasa 1 , Antioxidantes , Acetilcisteína , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Epitelio Pigmentado de la Retina , Fosfatidilinositol 3-Quinasa , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Aminas , Pigmentos Retinianos , Serina
15.
Nat Commun ; 14(1): 2888, 2023 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-37210439

RESUMEN

Compensatory endocytosis keeps the membrane surface area of secretory cells constant following exocytosis. At chemical synapses, clathrin-independent ultrafast endocytosis maintains such homeostasis. This endocytic pathway is temporally and spatially coupled to exocytosis; it initiates within 50 ms at the region immediately next to the active zone where vesicles fuse. However, the coupling mechanism is unknown. Here, we demonstrate that filamentous actin is organized as a ring, surrounding the active zone at mouse hippocampal synapses. Assuming the membrane area conservation is due to this actin ring, our theoretical model suggests that flattening of fused vesicles exerts lateral compression in the plasma membrane, resulting in rapid formation of endocytic pits at the border between the active zone and the surrounding actin-enriched region. Consistent with model predictions, our data show that ultrafast endocytosis requires sufficient compression by exocytosis of multiple vesicles and does not initiate when actin organization is disrupted, either pharmacologically or by ablation of the actin-binding protein Epsin1. Our work suggests that membrane mechanics underlie the rapid coupling of exocytosis to endocytosis at synapses.


Asunto(s)
Actinas , Vesículas Sinápticas , Animales , Ratones , Vesículas Sinápticas/metabolismo , Actinas/metabolismo , Sinapsis/metabolismo , Endocitosis , Membrana Celular/metabolismo , Exocitosis
16.
Cell Rep ; 42(10): 113089, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37734382

RESUMEN

Form and function are often interdependent throughout biology. Inside cells, mitochondria have particularly attracted attention since both their morphology and functionality are altered under pathophysiological conditions. However, directly assessing their causal relationship has been beyond reach due to the limitations of manipulating mitochondrial morphology in a physiologically relevant manner. By engineering a bacterial actin regulator, ActA, we developed tools termed "ActuAtor" that inducibly trigger actin polymerization at arbitrary subcellular locations. The ActuAtor-mediated actin polymerization drives striking deformation and/or movement of target organelles, including mitochondria, Golgi apparatus, and nucleus. Notably, ActuAtor operation also disperses non-membrane-bound entities such as stress granules. We then implemented ActuAtor in functional assays, uncovering the physically fragmented mitochondria being slightly more susceptible to degradation, while none of the organelle functions tested are morphology dependent. The modular and genetically encoded features of ActuAtor should enable its application in studies of the form-function interplay in various intracellular contexts.


Asunto(s)
Listeria monocytogenes , Listeria , Actinas/metabolismo , Listeria/metabolismo , Listeria monocytogenes/fisiología , Polimerizacion , Orgánulos/metabolismo , Proteínas Bacterianas/metabolismo
17.
bioRxiv ; 2023 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-37790502

RESUMEN

Dynamin 1 (Dyn1) has two major splice variants, xA and xB, with unique C-terminal extensions of 20 and 7 amino acids, respectively. Of these, only Dyn1xA is enriched at endocytic zones and accelerates vesicle fission during ultrafast endocytosis. Here, we report that the long tail variant, Dyn1xA, achieves this localization by preferentially binding to Endophilin A through a newly defined Class II binding site overlapping with its extension, at a site spanning the splice boundary. Endophilin binds this site at higher affinity than the previously reported site, and this affinity is determined by amino acids outside the binding sites acting as long distance elements within the xA tail. Their interaction is regulated by the phosphorylation state of two serine residues specific to the xA variant. Dyn1xA and Endophilin colocalize in patches near the active zone of synapses. Mutations selectively disrupting Endophilin binding to the long extension cause Dyn1xA mislocalization along axons. In these mutants, endocytic pits are stalled on the plasma membrane during ultrafast endocytosis. These data suggest that the specificity for ultrafast endocytosis is defined by the phospho-regulated interaction of Endophilin A through a newly identified site of Dyn1xA's long tail.

18.
Nat Commun ; 13(1): 4413, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35906209

RESUMEN

Organelles vitally achieve multifaceted functions to maintain cellular homeostasis. Genetic and pharmacological approaches to manipulate individual organelles are powerful in probing their physiological roles. However, many of them are either slow in action, limited to certain organelles, or rely on toxic agents. Here, we design a generalizable molecular tool utilizing phospholipase A/acyltransferases (PLAATs) for rapid defunctionalization of organelles via remodeling of the membrane phospholipids. In particular, we identify catalytically active PLAAT truncates with minimal unfavorable characteristics. Chemically-induced translocation of the optimized PLAAT to the mitochondria surface results in their rapid deformation in a phospholipase activity dependent manner, followed by loss of luminal proteins as well as dissipated membrane potential, thus invalidating the functionality. To demonstrate wide applicability, we then adapt the molecular tool in peroxisomes, and observe leakage of matrix-resident functional proteins. The technique is compatible with optogenetic control, viral delivery and operation in primary neuronal cultures. Due to such versatility, the PLAAT strategy should prove useful in studying organelle biology of diverse contexts.


Asunto(s)
Aciltransferasas , Peroxisomas , Aciltransferasas/genética , Aciltransferasas/metabolismo , Homeostasis , Mitocondrias/metabolismo , Orgánulos/metabolismo , Peroxisomas/metabolismo , Fosfolipasas/metabolismo
19.
Neuron ; 110(17): 2815-2835.e13, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-35809574

RESUMEN

Dynamin mediates fission of vesicles from the plasma membrane during endocytosis. Typically, dynamin is recruited from the cytosol to endocytic sites, requiring seconds to tens of seconds. However, ultrafast endocytosis in neurons internalizes vesicles as quickly as 50 ms during synaptic vesicle recycling. Here, we demonstrate that Dynamin 1 is pre-recruited to endocytic sites for ultrafast endocytosis. Specifically, Dynamin 1xA, a splice variant of Dynamin 1, interacts with Syndapin 1 to form molecular condensates on the plasma membrane. Single-particle tracking of Dynamin 1xA molecules confirms the liquid-like property of condensates in vivo. When Dynamin 1xA is mutated to disrupt its interaction with Syndapin 1, the condensates do not form, and consequently, ultrafast endocytosis slows down by 100-fold. Mechanistically, Syndapin 1 acts as an adaptor by binding the plasma membrane and stores Dynamin 1xA at endocytic sites. This cache bypasses the recruitment step and accelerates endocytosis at synapses.


Asunto(s)
Dinamina I , Vesículas Sinápticas , Dinamina I/genética , Dinamina I/metabolismo , Dinaminas/metabolismo , Endocitosis/fisiología , Proteínas del Tejido Nervioso/metabolismo , Vesículas Sinápticas/metabolismo
20.
Cell Metab ; 33(3): 531-546.e9, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33545050

RESUMEN

The haploinsufficiency of C9orf72 is implicated in the most common forms of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), but the full spectrum of C9orf72 functions remains to be established. Here, we report that C9orf72 is a mitochondrial inner-membrane-associated protein regulating cellular energy homeostasis via its critical role in the control of oxidative phosphorylation (OXPHOS). The translocation of C9orf72 from the cytosol to the inter-membrane space is mediated by the redox-sensitive AIFM1/CHCHD4 pathway. In mitochondria, C9orf72 specifically stabilizes translocase of inner mitochondrial membrane domain containing 1 (TIMMDC1), a crucial factor for the assembly of OXPHOS complex I. C9orf72 directly recruits the prohibitin complex to inhibit the m-AAA protease-dependent degradation of TIMMDC1. The mitochondrial complex I function is impaired in C9orf72-linked ALS/FTD patient-derived neurons. These results reveal a previously unknown function of C9orf72 in mitochondria and suggest that defective energy metabolism may underlie the pathogenesis of relevant diseases.


Asunto(s)
Proteína C9orf72/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Metabolismo Energético/fisiología , Proteasas ATP-Dependientes/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Animales , Factor Inductor de la Apoptosis/antagonistas & inhibidores , Factor Inductor de la Apoptosis/genética , Factor Inductor de la Apoptosis/metabolismo , Proteína C9orf72/antagonistas & inhibidores , Proteína C9orf72/genética , Línea Celular , Supervivencia Celular , Complejo I de Transporte de Electrón/química , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales/antagonistas & inhibidores , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Fosforilación Oxidativa , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA