Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
bioRxiv ; 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39345431

RESUMEN

Understanding the behavioral and neural dynamics of social interactions is a goal of contemporary neuroscience. Many machine learning methods have emerged in recent years to make sense of complex video and neurophysiological data that result from these experiments. Less focus has been placed on understanding how animals process acoustic information, including social vocalizations. A critical step to bridge this gap is determining the senders and receivers of acoustic information in social interactions. While sound source localization (SSL) is a classic problem in signal processing, existing approaches are limited in their ability to localize animal-generated sounds in standard laboratory environments. Advances in deep learning methods for SSL are likely to help address these limitations, however there are currently no publicly available models, datasets, or benchmarks to systematically evaluate SSL algorithms in the domain of bioacoustics. Here, we present the VCL Benchmark: the first large-scale dataset for benchmarking SSL algorithms in rodents. We acquired synchronized video and multi-channel audio recordings of 767,295 sounds with annotated ground truth sources across 9 conditions. The dataset provides benchmarks which evaluate SSL performance on real data, simulated acoustic data, and a mixture of real and simulated data. We intend for this benchmark to facilitate knowledge transfer between the neuroscience and acoustic machine learning communities, which have had limited overlap.

2.
Biol Psychiatry ; 91(10): 869-878, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-34593204

RESUMEN

The understanding of the neural control of appetite sheds light on the pathogenesis of eating disorders such as anorexia nervosa and obesity. Both diseases are a result of maladaptive eating behaviors (overeating or undereating) and are associated with life-threatening health problems. The fine regulation of appetite involves genetic, physiological, and environmental factors, which are detected and integrated in the brain by specific neuronal populations. For centuries, the hypothalamus has been the center of attention in the scientific community as a key regulator of appetite. The hypothalamus receives and sends axonal projections to several other brain regions that are important for the integration of sensory and emotional information. These connections ensure that appropriate behavioral decisions are made depending on the individual's emotional state and environment. Thus, the mechanisms by which higher-order brain regions integrate exteroceptive information to coordinate feeding is of great importance. In this review, we will focus on the functional and anatomical projections connecting the hypothalamus to the limbic system and higher-order brain centers in the cortex. We will also address the mechanisms by which specific neuronal populations located in higher-order centers regulate appetite and how maladaptive eating behaviors might arise from altered connections among cortical and subcortical areas with the hypothalamus.


Asunto(s)
Apetito , Trastornos de Alimentación y de la Ingestión de Alimentos , Encéfalo , Humanos , Hipotálamo , Obesidad
3.
Cell Metab ; 33(7): 1418-1432.e6, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-33761312

RESUMEN

Associative learning allows animals to adapt their behavior in response to environmental cues. For example, sensory cues associated with food availability can trigger overconsumption even in sated animals. However, the neural mechanisms mediating cue-driven non-homeostatic feeding are poorly understood. To study this, we recently developed a behavioral task in which contextual cues increase feeding even in sated mice. Here, we show that an insular cortex to central amygdala circuit is necessary for conditioned overconsumption, but not for homeostatic feeding. This projection is marked by a population of glutamatergic nitric oxide synthase-1 (Nos1)-expressing neurons, which are specifically active during feeding bouts. Finally, we show that activation of insular cortex Nos1 neurons suppresses satiety signals in the central amygdala. The data, thus, indicate that the insular cortex provides top-down control of homeostatic circuits to promote overconsumption in response to learned cues.


Asunto(s)
Conducta Alimentaria/fisiología , Corteza Insular/fisiología , Neuronas/fisiología , Óxido Nítrico Sintasa de Tipo I/genética , Hipernutrición/etiología , Animales , Clozapina/análogos & derivados , Clozapina/farmacología , Condicionamiento Psicológico/efectos de los fármacos , Condicionamiento Psicológico/fisiología , Señales (Psicología) , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/fisiología , Conducta Alimentaria/efectos de los fármacos , Femenino , Corteza Insular/efectos de los fármacos , Corteza Insular/metabolismo , Corteza Insular/patología , Aprendizaje/efectos de los fármacos , Aprendizaje/fisiología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Hipernutrición/genética , Hipernutrición/metabolismo , Hipernutrición/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA