Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Virol ; 92(11)2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29593031

RESUMEN

Lower respiratory tract infection with respiratory syncytial virus (RSV) produces profound inflammation. Despite an understanding of the role of adaptive immunity in RSV infection, the identity of the major sentinel cells initially triggering inflammation is controversial. Here we evaluate the role of nonciliated secretoglobin (Scgb1a1)-expressing bronchiolar epithelial cells in RSV infection. Mice expressing a tamoxifen (TMX)-inducible Cre recombinase-estrogen receptor fusion protein (CreERTM) knocked into the Scgb1a1 locus were crossed with mice that harbor a RelA conditional allele (RelAfl ), with loxP sites flanking exons 5 to 8 of the Rel homology domain. The Scgb1a1CreERTM/+ × RelAfl/fl mouse is a RelA conditional knockout (RelACKO) of a nonciliated epithelial cell population enriched in the small bronchioles. TMX-treated RelACKO mice have reduced pulmonary neutrophilic infiltration and impaired expression and secretion of NF-κB-dependent cytokines in response to RSV. In addition, RelACKO mice had reduced expression levels of interferon (IFN) regulatory factor 1/7 (IRF1/7) and retinoic acid-inducible gene I (RIG-I), components of the mucosal IFN positive-feedback loop. We demonstrate that RSV replication induces RelA to complex with bromodomain-containing protein 4 (BRD4), a cofactor required for RNA polymerase II (Pol II) phosphorylation, activating the atypical histone acetyltransferase (HAT) activity of BRD4 required for phospho-Ser2 Pol II formation, histone H3K122 acetylation, and cytokine secretion in vitro and in vivo TMX-treated RelACKO mice have less weight loss and reduced airway obstruction/hyperreactivity yet similar levels of IFN-γ production despite higher levels of virus production. These data indicate that the nonciliated Scgb1a1-expressing epithelium is a major innate sensor for restricting RSV infection by mediating neutrophilic inflammation and chemokine and mucosal IFN production via the RelA-BRD4 pathway.IMPORTANCE RSV infection is the most common cause of infant hospitalizations in the United States, resulting in 2.1 million children annually requiring medical attention. RSV primarily infects nasal epithelial cells, spreading distally to produce severe lower respiratory tract infections. Our study examines the role of a nonciliated respiratory epithelial cell population in RSV infection. We genetically engineered a mouse that can be selectively depleted of the NF-κB/RelA transcription factor in this subset of epithelial cells. These mice show an impaired activation of the bromodomain-containing protein 4 (BRD4) coactivator, resulting in reduced cytokine expression and neutrophilic inflammation. During the course of RSV infection, epithelial RelA-depleted mice have reduced disease scores and airway hyperreactivity yet increased levels of virus replication. We conclude that RelA-BRD4 signaling in nonciliated bronchiolar epithelial cells mediates neutrophilic airway inflammation and disease severity. This complex is an attractive target to reduce the severity of infection.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Interferón gamma/inmunología , Infiltración Neutrófila/inmunología , Neutrófilos/inmunología , Proteínas Nucleares/metabolismo , Infecciones por Virus Sincitial Respiratorio/inmunología , Virus Sincitial Respiratorio Humano/inmunología , Factor de Transcripción ReIA/metabolismo , Factores de Transcripción/metabolismo , Uteroglobina/metabolismo , Células Epiteliales Alveolares/virología , Animales , Bronquiolos/patología , Bronquiolos/virología , Línea Celular , Proteína 58 DEAD Box/biosíntesis , Femenino , Humanos , Inflamación/patología , Inflamación/virología , Factor 1 Regulador del Interferón/biosíntesis , Factor 7 Regulador del Interferón/biosíntesis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infiltración Neutrófila/genética , Mucosa Respiratoria/patología , Mucosa Respiratoria/virología , Infecciones por Virus Sincitial Respiratorio/patología , Infecciones por Virus Sincitial Respiratorio/virología , Infecciones del Sistema Respiratorio/inmunología , Infecciones del Sistema Respiratorio/patología , Infecciones del Sistema Respiratorio/virología , Tamoxifeno/farmacología , Factor de Transcripción ReIA/genética
2.
Pediatr Res ; 86(1): 39-46, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30986815

RESUMEN

BACKGROUND: Environmental tobacco smoke (ETS) is a known risk factor for severe respiratory syncytial virus (RSV) infections, yet the mechanisms of ETS/RSV comorbidity are largely unknown. Cystathionine γ-lyase regulates important physiological functions of the respiratory tract. METHODS: We used mice genetically deficient in the cystathionine γ-lyase enzyme (CSE), the major H2S-generating enzyme in the lung to determine the contribution of H2S to airway disease in response to side-stream tobacco smoke (TS), and to TS/RSV co-exposure. RESULTS: Following a 2-week period of exposure to TS, CSE-deficient mice (KO) showed a dramatic increase in airway hyperresponsiveness (AHR) to methacholine challenge, and greater airway cellular inflammation, compared with wild-type (WT) mice. TS-exposed CSE KO mice that were subsequently infected with RSV exhibited a more severe clinical disease, airway obstruction and AHR, enhanced viral replication, and lung inflammation, compared with TS-exposed RSV-infected WT mice. TS-exposed RSV-infected CSE KO mice had also a significant increase in the number of neutrophils in bronchoalveolar lavage fluid and increased levels of inflammatory cytokines and chemokines. CONCLUSION: This study demonstrates the critical contribution of the H2S-generating pathway to airway reactivity and disease following exposure to ETS alone or in combination with RSV infection.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/fisiopatología , Cistationina gamma-Liasa/deficiencia , Pulmón/fisiopatología , Pulmón/virología , Hipersensibilidad Respiratoria/complicaciones , Infecciones por Virus Sincitial Respiratorio/complicaciones , Contaminación por Humo de Tabaco/efectos adversos , Animales , Líquido del Lavado Bronquioalveolar , Citocinas/metabolismo , Femenino , Predisposición Genética a la Enfermedad , Sulfuro de Hidrógeno/química , Inflamación/etiología , Masculino , Cloruro de Metacolina , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/citología , Hipersensibilidad Respiratoria/virología , Virus Sincitiales Respiratorios
3.
J Immunol ; 198(8): 3345-3364, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28258195

RESUMEN

Lower respiratory tract infections from respiratory syncytial virus (RSV) are due, in part, to secreted signals from lower airway cells that modify the immune response and trigger airway remodeling. To understand this process, we applied an unbiased quantitative proteomics analysis of the RSV-induced epithelial secretory response in cells representative of the trachea versus small airway bronchiolar cells. A workflow was established using telomerase-immortalized human epithelial cells that revealed highly reproducible cell type-specific differences in secreted proteins and nanoparticles (exosomes). Approximately one third of secretome proteins are exosomal; the remainder are from lysosomal and vacuolar compartments. We applied this workflow to three independently derived primary human cultures from trachea versus bronchioles. A total of 577 differentially expressed proteins from control supernatants and 966 differentially expressed proteins from RSV-infected cell supernatants were identified at a 1% false discovery rate. Fifteen proteins unique to RSV-infected primary human cultures from trachea were regulated by epithelial-specific ets homologous factor. A total of 106 proteins unique to RSV-infected human small airway epithelial cells was regulated by the transcription factor NF-κB. In this latter group, we validated the differential expression of CCL20/macrophage-inducible protein 3α, thymic stromal lymphopoietin, and CCL3-like 1 because of their roles in Th2 polarization. CCL20/macrophage-inducible protein 3α was the most active mucin-inducing factor in the RSV-infected human small airway epithelial cell secretome and was differentially expressed in smaller airways in a mouse model of RSV infection. These studies provide insights into the complexity of innate responses and regional differences in the epithelial secretome participating in RSV lower respiratory tract infection-induced airway remodeling.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias)/inmunología , Bronquiolos/inmunología , Proteómica/métodos , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones del Sistema Respiratorio/inmunología , Bronquiolos/metabolismo , Células Cultivadas , Humanos , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/metabolismo , Infecciones por Virus Sincitial Respiratorio/metabolismo , Virus Sincitial Respiratorio Humano/inmunología , Infecciones del Sistema Respiratorio/metabolismo , Tráquea/inmunología , Tráquea/metabolismo
4.
J Virol ; 91(6)2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28077651

RESUMEN

The airway mucosa expresses protective interferon (IFN) and inflammatory cytokines in response to respiratory syncytial virus (RSV) infection. In this study, we examine the role of bromodomain containing 4 (BRD4) in mediating this innate immune response in human small airway epithelial cells. We observe that RSV induces BRD4 to complex with NF-κB/RelA. BRD4 is functionally required for expression of the NF-κB-dependent inflammatory gene regulatory network (GRN), including the IFN response factor 1 (IRF1) and IRF7, which mediate a cross talk pathway for RIG-I upregulation. Mechanistically, BRD4 is required for cyclin-dependent kinase 9 (CDK9) recruitment and phospho-Ser 2 carboxy-terminal domain (CTD) RNA polymerase (Pol) II formation on the promoters of IRF1, IRF7, and RIG-I, producing their enhanced expression by transcriptional elongation. We also find that BRD4 independently regulates CDK9/phospho-Ser 2 CTD RNA Pol II recruitment to the IRF3-dependent IFN-stimulated genes (ISGs). In vivo, poly(I·C)-induced neutrophilia and mucosal chemokine production are blocked by a small-molecule BRD4 bromodomain inhibitor. Similarly, BRD4 inhibition reduces RSV-induced neutrophilia, mucosal CXC chemokine expression, activation of the IRF7-RIG-I autoamplification loop, mucosal IFN expression, and airway obstruction. RSV infection activates BRD4 acetyltransferase activity on histone H3 Lys (K) 122, demonstrating that RSV infection activates BRD4 in vivo These data validate BRD4 as a major effector of RSV-induced inflammation and disease. BRD4 is required for coupling NF-κB to expression of inflammatory genes and the IRF-RIG-I autoamplification pathway and independently facilitates antiviral ISG expression. BRD4 inhibition may be a strategy to reduce exuberant virus-induced mucosal airway inflammation.IMPORTANCE In the United States, 2.1 million children annually require medical attention for RSV infections. A first line of defense is the expression of the innate gene network by infected epithelial cells. Expression of the innate response requires the recruitment of transcriptional elongation factors to rapidly induce innate response genes through an unknown mechanism. We discovered that RSV infection induces a complex of bromodomain containing 4 (BRD4) with NF-κB and cyclin-dependent kinase 9 (CDK9). BRD4 is required for stable CDK9 binding, phospho-Ser 2 RNA Pol II formation, and histone acetyltransferase activity. Inhibition of BRD4 blocks Toll-like receptor 3 (TLR3)-dependent neutrophilia and RSV-induced inflammation, demonstrating its importance in the mucosal innate response in vivo Our study shows that BRD4 plays a central role in inflammation and activation of the IRF7-RIG-I amplification loop vital for mucosal interferon expression. BRD4 inhibition may be a strategy for modulating exuberant mucosal airway inflammation.


Asunto(s)
Proteína 58 DEAD Box/metabolismo , Interacciones Huésped-Patógeno , Inmunidad Innata , Factores Reguladores del Interferón/metabolismo , Proteínas Nucleares/metabolismo , Virus Sincitial Respiratorio Humano/patogenicidad , Factor de Transcripción ReIA/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas de Ciclo Celular , Línea Celular , Modelos Animales de Enfermedad , Células Epiteliales/inmunología , Células Epiteliales/virología , Humanos , Ratones Endogámicos C57BL , Receptores Inmunológicos , Infecciones por Virus Sincitial Respiratorio/patología
5.
Am J Respir Cell Mol Biol ; 57(4): 403-410, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28481637

RESUMEN

Hydrogen sulfide (H2S) is a biologically relevant signaling molecule in mammals. Along with the volatile substances nitric oxide (NO) and carbon monoxide (CO), H2S is defined as a gasotransmitter. It plays a physiological role in a variety of functions, including synaptic transmission, vascular tone, angiogenesis, inflammation, and cellular signaling. The generation of H2S is catalyzed by cystathionine ß-synthase (CBS), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3-MST). The expression of CBS and CSE is tissue specific, with CBS being expressed predominantly in the brain, and CSE in peripheral tissues, including lungs. CSE expression and activity are developmentally regulated, and recent studies suggest that CSE plays an important role in lung alveolarization during fetal development. In the respiratory tract, endogenous H2S has been shown to participate in the regulation of important functions such as airway tone, pulmonary circulation, cell proliferation or apoptosis, fibrosis, oxidative stress, and inflammation. In the past few years, changes in the generation of H2S have been linked to the pathogenesis of a variety of acute and chronic inflammatory lung diseases, including asthma and chronic obstructive pulmonary disease. Recently, our laboratory made the critical discovery that cellular H2S exerts broad-spectrum antiviral activity both in vitro and in vivo, in addition to independent antiinflammatory activity. These findings have important implications for the development of novel therapeutic strategies for viral respiratory infections, as well as other inflammatory lung diseases, especially in light of recent significant efforts to generate controlled-release H2S donors for clinical therapeutic applications.


Asunto(s)
Sulfuro de Hidrógeno/metabolismo , Sistema Respiratorio , Infecciones del Sistema Respiratorio , Transducción de Señal , Virosis , Animales , Cistationina betasintasa/biosíntesis , Cistationina gamma-Liasa/biosíntesis , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Humanos , Especificidad de Órganos , Sistema Respiratorio/embriología , Sistema Respiratorio/metabolismo , Sistema Respiratorio/patología , Sistema Respiratorio/virología , Infecciones del Sistema Respiratorio/embriología , Infecciones del Sistema Respiratorio/metabolismo , Infecciones del Sistema Respiratorio/patología , Infecciones del Sistema Respiratorio/virología , Virosis/embriología , Virosis/metabolismo , Virosis/patología , Virosis/virología
6.
Am J Respir Cell Mol Biol ; 55(5): 684-696, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27314446

RESUMEN

Hydrogen sulfide (H2S) is an endogenous gaseous transmitter whose role in the pathophysiology of several lung diseases has been increasingly appreciated. Our recent studies in vitro have shown, we believe for the first time, that H2S has an important antiviral and antiinflammatory activity in respiratory syncytial virus (RSV) infection, the leading cause of bronchiolitis and viral pneumonia in children. Our objective was to evaluate the therapeutic potential of GYY4137, a novel slow-releasing H2S donor, for the prevention and treatment of RSV-induced lung disease, as well as to investigate the role of endogenous H2S in a mouse model of RSV infection. Ten- to 12-week-old BALB/c mice treated with GYY4137, or C57BL/6J mice genetically deficient in the cystathionine γ-lyase enzyme, the major H2S-generating enzyme in the lung, were infected with RSV and assessed for viral replication, clinical disease, airway hyperresponsiveness, and inflammatory responses. Our results show that intranasal delivery of GYY4137 to RSV-infected mice significantly reduced viral replication and markedly improved clinical disease parameters and pulmonary dysfunction compared with the results in vehicle-treated control mice. The protective effect of the H2S donor was associated with a significant reduction of viral-induced proinflammatory mediators and lung cellular infiltrates. Furthermore, cystathionine γ-lyase-deficient mice showed significantly enhanced RSV-induced lung disease and viral replication compared with wild-type animals. Overall, our results indicate that H2S exerts a novel antiviral and antiinflammatory activity in the context of RSV infection and represent a potential novel pharmacological approach for ameliorating virus-induced lung disease.


Asunto(s)
Antiinflamatorios/uso terapéutico , Antivirales/uso terapéutico , Gasotransmisores/uso terapéutico , Sulfuro de Hidrógeno/uso terapéutico , Pulmón/virología , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Animales , Antiinflamatorios/farmacología , Quimiocinas/metabolismo , Cistationina gamma-Liasa/deficiencia , Cistationina gamma-Liasa/metabolismo , Progresión de la Enfermedad , Femenino , Gasotransmisores/farmacología , Sulfuro de Hidrógeno/farmacología , Mediadores de Inflamación/metabolismo , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/fisiopatología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Morfolinas/farmacología , Morfolinas/uso terapéutico , Compuestos Organotiofosforados/farmacología , Compuestos Organotiofosforados/uso terapéutico , Neumonía/complicaciones , Neumonía/fisiopatología , Neumonía/virología , Pruebas de Función Respiratoria , Infecciones por Virus Sincitial Respiratorio/complicaciones , Infecciones por Virus Sincitial Respiratorio/patología , Infecciones por Virus Sincitial Respiratorio/fisiopatología , Virus Sincitiales Respiratorios/efectos de los fármacos , Virus Sincitiales Respiratorios/fisiología , Replicación Viral/efectos de los fármacos
7.
J Virol ; 89(5): 2628-42, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25520509

RESUMEN

UNLABELLED: Respiratory syncytial virus (RSV) is a primary etiological agent of childhood lower respiratory tract disease. Molecular patterns induced by active infection trigger a coordinated retinoic acid-inducible gene I (RIG-I)-Toll-like receptor (TLR) signaling response to induce inflammatory cytokines and antiviral mucosal interferons. Recently, we discovered a nuclear oxidative stress-sensitive pathway mediated by the DNA damage response protein, ataxia telangiectasia mutated (ATM), in cytokine-induced NF-κB/RelA Ser 276 phosphorylation. Here we observe that ATM silencing results in enhanced single-strand RNA (ssRNA) replication of RSVand Sendai virus, due to decreased expression and secretion of type I and III interferons (IFNs), despite maintenance of IFN regulatory factor 3 (IRF3)-dependent IFN-stimulated genes (ISGs). In addition to enhanced oxidative stress, RSV replication enhances foci of phosphorylated histone 2AX variant (γH2AX), Ser 1981 phosphorylation of ATM, and IKKγ/NEMO-dependent ATM nuclear export, indicating activation of the DNA damage response. ATM-deficient cells show defective RSV-induced mitogen and stress-activated kinase 1 (MSK-1) Ser 376 phosphorylation and reduced RelA Ser 276 phosphorylation, whose formation is required for IRF7 expression. We observe that RelA inducibly binds the native IFN regulatory factor 7 (IRF7) promoter in an ATM-dependent manner, and IRF7 inducibly binds to the endogenous retinoic acid-inducible gene I (RIG-I) promoter. Ectopic IRF7 expression restores RIG-I expression and type I/III IFN expression in ATM-silenced cells. We conclude that paramyxoviruses trigger the DNA damage response, a pathway required for MSK1 activation of phospho Ser 276 RelA formation to trigger the IRF7-RIG-I amplification loop necessary for mucosal IFN production. These data provide the molecular pathogenesis for defects in the cellular innate immunity of patients with homozygous ATM mutations. IMPORTANCE: RNA virus infections trigger cellular response pathways to limit spread to adjacent tissues. This "innate immune response" is mediated by germ line-encoded pattern recognition receptors that trigger activation of two, largely independent, intracellular NF-κB and IRF3 transcription factors. Downstream, expression of protective antiviral interferons is amplified by positive-feedback loops mediated by inducible interferon regulatory factors (IRFs) and retinoic acid inducible gene (RIG-I). Our results indicate that a nuclear oxidative stress- and DNA damage-sensing factor, ATM, is required to mediate a cross talk pathway between NF-κB and IRF7 through mediating phosphorylation of NF-κB. Our studies provide further information about the defects in cellular and innate immunity in patients with inherited ATM mutations.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , ARN Helicasas DEAD-box/metabolismo , Factor 7 Regulador del Interferón/metabolismo , Interferones/biosíntesis , FN-kappa B/metabolismo , Virus Sincitiales Respiratorios/inmunología , Virus Sendai/inmunología , Línea Celular , Proteína 58 DEAD Box , Células Epiteliales/inmunología , Células Epiteliales/virología , Silenciador del Gen , Humanos , Fosforilación , Procesamiento Proteico-Postraduccional , Receptores Inmunológicos , Virus Sincitiales Respiratorios/fisiología , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Virus Sendai/fisiología , Replicación Viral
8.
J Virol ; 89(10): 5557-68, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25740991

RESUMEN

UNLABELLED: Hydrogen sulfide (H2S) is an endogenous gaseous mediator that has gained increasing recognition as an important player in modulating acute and chronic inflammatory diseases. However, its role in virus-induced lung inflammation is currently unknown. Respiratory syncytial virus (RSV) is a major cause of upper and lower respiratory tract infections in children for which no vaccine or effective treatment is available. Using the slow-releasing H2S donor GYY4137 and propargylglycin (PAG), an inhibitor of cystathionine-γ-lyase (CSE), a key enzyme that produces intracellular H2S, we found that RSV infection led to a reduced ability to generate and maintain intracellular H2S levels in airway epithelial cells (AECs). Inhibition of CSE with PAG resulted in increased viral replication and chemokine secretion. On the other hand, treatment of AECs with the H2S donor GYY4137 reduced proinflammatory mediator production and significantly reduced viral replication, even when administered several hours after viral absorption. GYY4137 also significantly reduced replication and inflammatory chemokine production induced by human metapneumovirus (hMPV) and Nipah virus (NiV), suggesting a broad inhibitory effect of H2S on paramyxovirus infections. GYY4137 treatment had no effect on RSV genome replication or viral mRNA and protein synthesis, but it inhibited syncytium formation and virus assembly/release. GYY4137 inhibition of proinflammatory gene expression occurred by modulation of the activation of the key transcription factors nuclear factor κB (NF-κB) and interferon regulatory factor 3 (IRF-3) at a step subsequent to their nuclear translocation. H2S antiviral and immunoregulatory properties could represent a novel treatment strategy for paramyxovirus infections. IMPORTANCE: RSV is a global health concern, causing significant morbidity and economic losses as well as mortality in developing countries. After decades of intensive research, no vaccine or effective treatment, with the exception of immunoprophylaxis, is available for this infection as well as for other important respiratory mucosal viruses. This study identifies hydrogen sulfide as a novel cellular mediator that can modulate viral replication and proinflammatory gene expression, both important determinants of lung injury in respiratory viral infections, with potential for rapid translation of such findings into novel therapeutic approaches for viral bronchiolitis and pneumonia.


Asunto(s)
Sulfuro de Hidrógeno/metabolismo , Infecciones por Paramyxoviridae/metabolismo , Alquinos/farmacología , Línea Celular , Quimiocinas/biosíntesis , Quimiocinas/genética , Cistationina gamma-Liasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Glicina/análogos & derivados , Glicina/farmacología , Humanos , Mediadores de Inflamación/metabolismo , Factor 3 Regulador del Interferón/metabolismo , Morfolinas/farmacología , FN-kappa B/metabolismo , Compuestos Organotiofosforados/farmacología , Infecciones por Paramyxoviridae/tratamiento farmacológico , Infecciones por Paramyxoviridae/etiología , Regiones Promotoras Genéticas , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Infecciones por Virus Sincitial Respiratorio/metabolismo , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitiales Respiratorios/efectos de los fármacos , Virus Sincitiales Respiratorios/genética , Virus Sincitiales Respiratorios/fisiología , Transducción de Señal/efectos de los fármacos , Replicación Viral/efectos de los fármacos
9.
J Gen Virol ; 96(8): 2104-2113, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25953917

RESUMEN

Human metapneumovirus (hMPV) is a common cause of respiratory tract infection in the paediatrics population. Recently, we and others have shown that retinoic acid-inducible gene 1 (RIG-I)-like receptors (RLRs) are essential for hMPV-induced cellular antiviral signalling. However, the contribution of those receptors to host immunity against pulmonary hMPV infection is largely unexplored. In this study, mice deficient in mitochondrial antiviral-signalling protein (MAVS), an adaptor of RLRs, were used to investigate the role(s) of these receptors in pulmonary immune responses to hMPV infection. MAVS deletion significantly impaired the induction of antiviral and pro-inflammatory cytokines and the recruitment of immune cells to the bronchoalveolar lavage fluid by hMPV. Compared with WT mice, mice lacking MAVS demonstrated decreased abilities to activate pulmonary dendritic cells (DCs) and abnormal primary T-cell responses to hMPV infection. In addition, mice deficient in MAVS had a higher peak of viral load at day 5 post-infection (p.i.) than WT mice, but were able to clear hMPV by day 7 p.i. similarly to WT mice. Taken together, our data indicate a role of MAVS-mediated pathways in the pulmonary immune responses to hMPV infection and the early control of hMPV replication.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Metapneumovirus/inmunología , Infecciones por Paramyxoviridae/inmunología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Citocinas/genética , Citocinas/inmunología , Células Dendríticas/inmunología , Femenino , Humanos , Inmunidad Innata , Pulmón/inmunología , Pulmón/virología , Masculino , Metapneumovirus/genética , Ratones , Ratones Noqueados , Infecciones por Paramyxoviridae/genética , Infecciones por Paramyxoviridae/virología , Linfocitos T/inmunología
10.
Viruses ; 15(5)2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-37243277

RESUMEN

Severe respiratory syncytial virus (RSV) infections in early life have been linked to the development of chronic airway disease. RSV triggers the production of reactive oxygen species (ROS), which contributes to inflammation and enhanced clinical disease. NF-E2-related factor 2 (Nrf2) is an important redox-responsive protein that helps to protect cells and whole organisms from oxidative stress and injury. The role of Nrf2 in the context of viral-mediated chronic lung injury is not known. Herein, we show that RSV experimental infection of adult Nrf2-deficient BALB/c mice (Nrf2-/-; Nrf2 KO) is characterized by enhanced disease, increased inflammatory cell recruitment to the bronchoalveolar compartment and a more robust upregulation of innate and inflammatory genes and proteins, compared to wild-type Nrf2+/+ competent mice (WT). These events that occur at very early time points lead to increased peak RSV replication in Nrf2 KO compared to WT mice (day 5). To evaluate longitudinal changes in the lung architecture, mice were scanned weekly via high-resolution micro-computed tomography (micro-CT) imaging up to 28 days after initial viral inoculation. Based on micro-CT qualitative 2D imaging and quantitative reconstructed histogram-based analysis of lung volume and density, we found that RSV-infected Nrf2 KO mice developed significantly greater and prolonged fibrosis compared to WT mice. The results of this study underscore the critical role of Nrf2-mediated protection from oxidative injury, not only in the acute pathogenesis of RSV infection but also in the long-term consequences of chronic airway injury.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Infecciones por Virus Sincitial Respiratorio , Animales , Ratones , Microtomografía por Rayos X , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Pulmón , Inflamación/patología , Colágeno , Ratones Endogámicos BALB C
11.
bioRxiv ; 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-37645750

RESUMEN

Hypoxia-inducible-factors (HIF) are transcription factors that regulate cellular adaptation to hypoxic conditions, enabling cells to survive in low-oxygen environments. Viruses have evolved to stabilize this pathway to promote successful viral infection, therefore modulation of HIFs could represent a novel antiviral strategy. In previous in vitro studies, we found that respiratory syncytial virus (RSV), a leading cause of respiratory illness, stabilizes HIFs under normoxic conditions, with inhibition of HIF-1α resulting in reduced viral replication. Despite several HIF modulating compounds being tested/approved for use in other non-infectious models, little is known about their efficacy against respiratory viruses using relevant animal models. This study aimed to characterize the disease modulating properties and antiviral potential of anti-HIF-1α (PX478) and anti-HIF-2α (PT2385) in RSV-infected BALB/c mice. We found that inhibition of HIF-1α worsen clinical disease parameters, while simultaneously improving airway function. Additionally, anti-HIF-1α results in significantly reduced viral titer at early and peak time points of RSV replication, followed by a loss in viral clearance when given every day, but not every-other-day. In contrast, inhibition of HIF-2α was associated with improved clinical parameters, with no changes in airway function, and amelioration of interstitial pneumonia. Furthermore, anti-HIF-2α reduced early and peak lung viral replication, with no impairment of viral clearance. Analysis of lung cells found significant modification in the T cell compartment that correlated with changes in lung pathology and viral titers in response to each HIF inhibitor administration. These data underscore the complex role of HIFs in RSV infection and highlight the need for careful therapeutic consideration.

12.
Microbiol Spectr ; 11(3): e0037823, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37022178

RESUMEN

Several viruses have been shown to modulate the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2), the master regulator of redox homeostasis. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the COVID-19 pandemic, also seems to disrupt the balance between oxidants and antioxidants, which likely contributes to lung damage. Using in vitro and in vivo models of infection, we investigated how SARS-CoV-2 modulates the transcription factor NRF2 and its dependent genes, as well as the role of NRF2 during SARS-CoV-2 infection. We found that SARS-CoV-2 infection downregulates NRF2 protein levels and NRF2-dependent gene expression in human airway epithelial cells and in lungs of BALB/c mice. Reductions in cellular levels of NRF2 seem to be independent of proteasomal degradation and the interferon/promyelocytic leukemia (IFN/PML) pathway. Furthermore, lack of the Nrf2 gene in SARS-CoV-2-infected mice exacerbates clinical disease, increases lung inflammation, and is associated with a trend toward increased lung viral titers, indicating that NRF2 has a protective role during this viral infection. In summary, our results suggest that SARS-CoV-2 infection alters the cellular redox balance by downregulating NRF2 and its dependent genes, which exacerbates lung inflammation and disease, therefore, suggesting that the activation of NRF2 could be explored as therapeutic approach during SARS-CoV-2 infection. IMPORTANCE The antioxidant defense system plays a major function in protecting the organism against oxidative damage caused by free radicals. COVID-19 patients often present with biochemical characteristics of uncontrolled pro-oxidative responses in the respiratory tract. We show herein that SARS-CoV-2 variants, including Omicron, are potent inhibitors of cellular and lung nuclear factor erythroid 2-related factor 2 (NRF2), the master transcription factor that controls the expression of antioxidant and cytoprotective enzymes. Moreover, we show that mice lacking the Nrf2 gene show increased clinical signs of disease and lung pathology when infected with a mouse-adapted strain of SARS-CoV-2. Overall, this study provides a mechanistic explanation for the observed unbalanced pro-oxidative response in SARS-CoV-2 infections and suggests that therapeutic strategies for COVID-19 may consider the use of pharmacologic agents that are known to boost the expression levels of cellular NRF2.


Asunto(s)
Antioxidantes , COVID-19 , Humanos , Ratones , Animales , Antioxidantes/metabolismo , SARS-CoV-2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Modelos Animales de Enfermedad , Pandemias , COVID-19/patología , Pulmón , Células Epiteliales
13.
Front Immunol ; 13: 962925, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35958551

RESUMEN

Human metapneumovirus (hMPV) is an important pathogen responsible for acute respiratory tract infections in children, the elderly, and immunocompromised patients, with no effective treatment or vaccine currently available. Knowledge of virus- and host-specific mechanisms contributing to the pathogenesis of hMPV infection is still limited. Studies have shown that hMPV surface glycoprotein G is an important virulence factor, by inhibiting innate immune signaling in airway epithelial cells and immune cells. In this study, we investigated the role of G protein in modulating innate and adaptive immune responses in mice infected with a recombinant virus with deletion of G protein (rhMPV-ΔG). Results show that rhMPV-ΔG was strongly attenuated, as it did not induce significant clinical disease, airway obstruction and airway hyperresponsiveness (AHR), compared to infection with a control strain (rhMPV-WT). By analysis of cells in bronchoalveolar fluid and lung tissue, as well as cytokine production, we found that G protein mediates aspects of both innate and adaptive immune responses, including neutrophils, dendritic cells, natural killer cells and B cells. Lung T cells recruited in response to rhMPV-ΔG had a significantly higher activated phenotype compared to those present after rhMPV-WT infection. Despite highly attenuation characterized by low levels of replication in the lung, rhMPV-ΔG was able to induce neutralizing antibodies and to protect mice from a secondary hMPV challenge. However, challenged mice that had received rhMPV-ΔG as primary infection showed some signs of lung disease at the earliest time points, which were less evident in mice that had received the rhMPV-WT strain as primary infection. These results demonstrate some of the mechanisms by which G protein could contribute to airway disease and modulate immune response to hMPV infection.


Asunto(s)
Metapneumovirus , Infecciones por Paramyxoviridae , Anciano , Animales , Anticuerpos Neutralizantes , Niño , Glicoproteínas , Humanos , Inmunidad , Ratones
14.
Front Immunol ; 13: 886701, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36032066

RESUMEN

Respiratory syncytial virus (RSV) is a major cause of acute lower respiratory tract infections in children and elderly. No vaccine or effective treatment is currently available for RSV. Extracellular vesicles (EVs) are microvesicles known to carry biologically active molecules, including RNA, DNA and proteins (i.e. cargo). Viral infections can induce profound changes in EV cargo, and the cargo can modulate cellular responses of recipient cells. We have recently shown that EVs isolated from RSV-infected cells were able to activate innate immune response by inducing cytokine and chemokine release from human monocytes and airway epithelial cells, however, we did not investigate the potential antiviral contribution of EVs to a subsequent infection. The objective of this study was to assess the presence of innate immune mediators, including type I and III interferons (IFNs) in EVs released from airway epithelial cells infected with RSV, and their potential role in modulating viral replication in recipient cells. EV-derived from cells infected with RSV were associated with significant amounts of cytokine and chemokines, as well as IFN-ß and -λ, compared to EVs isolated from mock-infected cells. Cells treated with RSV-EVs showed significantly lower levels of viral replication compared to untreated or mock-EV-treated RSV infected cells. Cellular pretreatment with Cerdulatinib, an IFN receptor signaling inhibitor, inhibited the antiviral activity of RSV-EVs in recipient airway epithelial cells. Furthermore, treatment of A549 cells with RSV-EVs induced the expression of IFN-dependent antiviral genes, supporting the idea that RSV-EVs exerts their antiviral activity through an interferon-dependent mechanism. Finally, we determined the concentrations of soluble and EV-associated IFN-ß and IFN-λ in five nasopharyngeal secretions (NPS) of children with viral infections. There were significant levels of IFN-λ in NPS and NPS-derived EVs, while IFN-ß was not detected in either of the two types of samples. EVs released from RSV-infected cells could represent a potential therapeutic approach for modulating RSV replication in the airways.


Asunto(s)
Vesículas Extracelulares , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Citocinas , Células Epiteliales , Humanos , Interferones
15.
Antioxidants (Basel) ; 11(1)2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-35052571

RESUMEN

Respiratory syncytial virus (RSV) infection in mouse and human lung is associated with pathogenic inflammation and oxidative injury. RSV impairs antioxidant responses by increasing the degradation of transcription factor NF-E2-related factor 2 (NRF2), which controls the expression of several antioxidant enzymes (AOEs). In addition to its protective effects, type I IFNs have been increasingly recognized as important mediators of host pathogenic responses during acute respiratory viral infections. We used a mouse model of RSV infection to investigate the effect of lack of type I interferon (IFN) receptor on viral-mediated clinical disease, airway inflammation, NRF2 expression, and antioxidant defenses. In the absence of type I IFN signaling, RSV-infected mice showed significantly less body weight loss and airway obstruction, as well as a significant reduction in cytokine and chemokine secretion and airway inflammation. Lack of type I IFN receptor was associated with greatly reduced virus-induced promyelocytic leukemia lung protein expression, which we showed to be necessary for virus-induced NRF2 degradation in a cell model of infection, resulting in restoration of NRF2 levels, AOE expression, and airway antioxidant capacity. Our data support the concept that modulation of type I IFN production and/or signaling could represent an important therapeutic strategy to ameliorate severity of RSV-induced lung disease.

16.
Front Immunol ; 12: 757758, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34733289

RESUMEN

Respiratory syncytial virus (RSV) is the most common cause of lower respiratory tract infection in young children. It is also a significant contributor to upper respiratory tract infections, therefore, a major cause for visits to the pediatrician. High morbidity and mortality are associated with high-risk populations including premature infants, the elderly, and the immunocompromised. However, no effective and specific treatment is available. Recently, we discovered that an exchange protein directly activated by cyclic AMP 2 (EPAC2) can serve as a potential therapeutic target for RSV. In both lower and upper epithelial cells, EPAC2 promotes RSV replication and pro-inflammatory cytokine/chemokine induction. However, the overall role of EPAC2 in the pulmonary responses to RSV has not been investigated. Herein, we found that EPAC2-deficient mice (KO) or mice treated with an EPAC2-specific inhibitor showed a significant decrease in body weight loss, airway hyperresponsiveness, and pulmonary inflammation, compared with wild-type (WT) or vehicle-treated mice. Overall, this study demonstrates the critical contribution of the EPAC2-mediated pathway to airway diseases in experimental RSV infection, suggesting the possibility to target EPAC2 as a promising treatment modality for RSV.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/fisiología , Infecciones por Virus Sincitial Respiratorio/fisiopatología , Obstrucción de las Vías Aéreas/etiología , Animales , AMP Cíclico/fisiología , Citocinas/biosíntesis , Citocinas/genética , Factor Estimulante de Colonias de Granulocitos/biosíntesis , Factor Estimulante de Colonias de Granulocitos/genética , Factores de Intercambio de Guanina Nucleótido/antagonistas & inhibidores , Factores de Intercambio de Guanina Nucleótido/deficiencia , Inflamación , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Hipersensibilidad Respiratoria/etiología , Infecciones por Virus Sincitial Respiratorio/complicaciones , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Virus Sincitiales Respiratorios/fisiología , Organismos Libres de Patógenos Específicos , Replicación Viral , Pérdida de Peso
17.
Sci Rep ; 10(1): 3653, 2020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-32107411

RESUMEN

Respiratory syncytial virus (RSV) infection in mouse and human lung is associated with oxidative injury and pathogenic inflammation. RSV impairs antioxidant responses by increasing the degradation of transcription factor NRF2, which controls the expression of several antioxidant enzyme (AOE) genes, including catalase. Since catalase is a key enzyme for the dismutation of virus-mediated generation of hydrogen peroxide (H2O2) we developed a model of intranasal supplementation of polyethylene glycol-conjugated catalase (PG-CAT) for RSV-infected mice. The results of our study show that PG-CAT supplementation was able to increase specific enzymatic activity along with reduction in H2O2 in the airways and had a significant protective effect against RSV-induced clinical disease and airway pathology. PG-CAT treated mice showed amelioration in airway obstruction, reduction in neutrophil elastase and inflammation. Improved airway hyperresponsiveness was also observed in mice that received PG-CAT as a treatment post-viral inoculation. In addition, PG-CAT greatly reduced the concentration of inflammatory cytokines and chemokines, including IL-1, TNF-α, IL-9, CXCL1, CCL2, and CCL5 in the bronchoalveolar lavage fluid of RSV-infected mice, without increasing viral replication in the lung. In conclusion, catalase supplementation may represent a novel pharmacologic approach to be explored in human for prevention or treatment of respiratory infections caused by RSV.


Asunto(s)
Catalasa/farmacología , Pulmón/metabolismo , Polietilenglicoles/farmacología , Infecciones por Virus Sincitial Respiratorio/prevención & control , Virus Sincitiales Respiratorios/metabolismo , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Pulmón/patología , Pulmón/virología , Ratones , Ratones Endogámicos BALB C , Infecciones por Virus Sincitial Respiratorio/metabolismo , Infecciones por Virus Sincitial Respiratorio/patología
18.
Viruses ; 12(10)2020 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-33080861

RESUMEN

Respiratory syncytial virus (RSV) is the leading cause of bronchiolitis in infants and young children. Although some clinical studies have speculated that tumor necrosis factor (TNF)-α is a major contributor of RSV-mediated airway disease, experimental evidence remains unclear or conflicting. TNF-α initiates inflammation and cell death through two distinct receptors: TNF-receptor (TNFR)1 and TNFR2. Here we delineate the function of TNF-α by short-lasting blockade of either receptor in an experimental BALB/c mouse model of RSV infection. We demonstrate that antibody-mediated blockade of TNFR1, but not TNFR2, results in significantly improved clinical disease and bronchoconstriction as well as significant reductions of several inflammatory cytokines and chemokines, including IL-1α, IL-1ß, IL-6, Ccl3, Ccl4, and Ccl5. Additionally, TNFR1 blockade was found to significantly reduce neutrophil number and activation status, consistent with the concomitant reduction of pro-neutrophilic chemokines Cxcl1 and Cxcl2. Similar protective activity was also observed when a single-dose of TNFR1 blockade was administered to mice following RSV inoculation, although this treatment resulted in improved alveolar macrophage survival rather than reduced neutrophil activation. Importantly, short-lasting blockade of TNFR1 did not affect RSV peak replication in the lung. This study suggests a potential therapeutic approach for RSV bronchiolitis based on selective blockade of TNFR1.


Asunto(s)
Broncoconstricción , Receptores Tipo I de Factores de Necrosis Tumoral/antagonistas & inhibidores , Receptores Tipo I de Factores de Necrosis Tumoral/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones por Virus Sincitial Respiratorio/terapia , Animales , Anticuerpos/administración & dosificación , Quimiocinas/inmunología , Citocinas/inmunología , Femenino , Macrófagos/inmunología , Ratones , Ratones Endogámicos BALB C , Neutrófilos/inmunología , Receptores Tipo II del Factor de Necrosis Tumoral/antagonistas & inhibidores , Receptores Tipo II del Factor de Necrosis Tumoral/inmunología , Virus Sincitial Respiratorio Humano/inmunología , Factor de Necrosis Tumoral alfa/inmunología
19.
Front Immunol ; 11: 1628, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849552

RESUMEN

Rationale: Gestational cigarette smoke (CS) impairs lung angiogenesis and alveolarization, promoting transgenerational development of asthma and bronchopulmonary dysplasia (BPD). Hydrogen sulfide (H2S), a proangiogenic, pro-alveolarization, and anti-asthmatic gasotransmitter is synthesized by cystathionine-γ-lyase (CSE), cystathionine-ß-synthase (CBS), and 3-mercaptopyruvate sulfur transferase (3MST). Objective: Determine if gestational CS exposure affected the expression of H2S synthesizing enzymes in the mouse lung and human placenta. Methods: Mice were exposed throughout gestational period to secondhand CS (SS) at approximating the dose of CS received by a pregnant woman sitting in a smoking bar for 3 h/days during pregnancy. Lungs from 7-days old control and SS-exposed pups and human placenta from mothers who were either non-smokers or smokers during pregnancy were analyzed for expression of the enzymes. Measurements: Mouse lungs and human placentas were examined for the expression of CSE, CBS, and 3MST by immunohistochemical staining, qRT-PCR and/or Western blot (WB) analyses. Results: Compared to controls, mouse lung exposed gestationally to SS had significantly lower levels of CSE, CBS, and 3MST. Moreover, the SS-induced suppression of CSE and CBS in F1 lungs was transmitted to the F2 generation without significant change in the magnitude of the suppression. These changes were associated with impaired epithelial-mesenchymal transition (EMT)-a process required for normal lung angiogenesis and alveolarization. Additionally, the placentas from mothers who smoked during pregnancy, expressed significantly lower levels of CSE, CBS, and 3MST, and the effects were partially moderated by quitting smoking during the first trimester. Conclusions: Lung H2S synthesizing enzymes are downregulated by gestational CS and the effects are transmitted to F2 progeny. Smoking during pregnancy decreases H2S synthesizing enzymes is human placentas, which may correlate with the increased risk of asthma/BPD in children.


Asunto(s)
Gasotransmisores/biosíntesis , Sulfuro de Hidrógeno/metabolismo , Exposición Materna/efectos adversos , Efectos Tardíos de la Exposición Prenatal , Fumar Tabaco/efectos adversos , Animales , Modelos Animales de Enfermedad , Transición Epitelial-Mesenquimal , Femenino , Técnica del Anticuerpo Fluorescente , Regulación Enzimológica de la Expresión Génica , Humanos , Sulfuro de Hidrógeno/efectos adversos , Inmunohistoquímica , Pulmón/metabolismo , Pulmón/patología , Intercambio Materno-Fetal , Ratones , Modelos Biológicos , Placenta/metabolismo , Embarazo
20.
Mol Ther ; 16(6): 1120-8, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18443602

RESUMEN

Respiratory syncytial virus (RSV) is a major cause of lower respiratory tract infection in infants, young children, and high-risk adults. Currently, there is no vaccine to prevent RSV infection, and the available therapeutic agents are of limited utility. Peptide-conjugated phosphorodiamidate morpholino oligomers (PPMOs) are a class of antisense agents that can enter cells readily and interfere with viral protein expression through steric blocking of complementary RNA. Two antisense PPMOs, designed to target sequence that includes the 5'-terminal region and translation start-site region of RSV L mRNA, were tested for anti-RSV activity in cultures of two human-airway cell lines. Both PPMOs showed minimal cytotoxicity and one of them, (AUG-2), reduced viral titers by >2.0 log(10). Intranasal (i.n.) treatment of BALB/c mice with AUG-2 PPMO before the RSV inoculation produced a reduction in viral titer of 1.2 log(10) in lung tissue at day 5 postinfection (p.i.), and attenuated pulmonary inflammation at day 7 postinfection. These data show that the AUG-2 PPMO possesses potent anti-RSV activity and is worthy of further investigation as a candidate for potential therapeutic application.


Asunto(s)
Técnicas de Transferencia de Gen , Terapia Genética/métodos , Infecciones por Virus Sincitial Respiratorio/metabolismo , Animales , Secuencia de Bases , Línea Celular Tumoral , Células Cultivadas , Codón , Femenino , Humanos , Pulmón/metabolismo , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , ARN Complementario/metabolismo , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA