Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nat Methods ; 13(1): 55-8, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26569599

RESUMEN

We present parmbsc1, a force field for DNA atomistic simulation, which has been parameterized from high-level quantum mechanical data and tested for nearly 100 systems (representing a total simulation time of ∼ 140 µs) covering most of DNA structural space. Parmbsc1 provides high-quality results in diverse systems. Parameters and trajectories are available at http://mmb.irbbarcelona.org/ParmBSC1/.


Asunto(s)
ADN/química , Teoría Cuántica
2.
Nucleic Acids Res ; 45(7): 4217-4230, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28088759

RESUMEN

Last generation of force-fields are raising expectations on the quality of molecular dynamics (MD) simulations of DNA, as well as to the belief that theoretical models can substitute experimental ones in several cases. However these claims are based on limited benchmarks, where MD simulations have shown the ability to reproduce already existing 'experimental models', which in turn, have an unclear accuracy to represent DNA conformation in solution. In this work we explore the ability of different force-fields to predict the structure of two new B-DNA dodecamers, determined herein by means of 1H nuclear magnetic resonance (NMR). The study allowed us to check directly for experimental NMR observables on duplexes previously not solved, and also to assess the reliability of 'experimental structures'. We observed that technical details in the annealing procedures can induce non-negligible local changes in the final structures. We also found that while not all theoretical simulations are equally reliable, those obtained using last generation of AMBER force-fields (BSC1 and BSC0OL15) show predictive power in the multi-microsecond timescale and can be safely used to reproduce global structure of DNA duplexes and fine sequence-dependent details.


Asunto(s)
ADN Forma B/química , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Secuencia de Bases , Cristalografía por Rayos X , Conformación de Ácido Nucleico
3.
Nucleic Acids Res ; 44(9): 4354-67, 2016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-26975656

RESUMEN

Computational techniques have been used to design a novel class of RNA architecture with expected improved resistance to nuclease degradation, while showing interference RNA activity. The in silico designed structure consists of a 24-29 bp duplex RNA region linked on both ends by N-alkyl-N dimeric nucleotides (BCn dimers; n = number of carbon atoms of the alkyl chain). A series of N-alkyl-N capped dumbbell-shaped structures were efficiently synthesized by double ligation of BCn-loop hairpins. The resulting BCn-loop dumbbells displayed experimentally higher biostability than their 3'-N-alkyl-N linear version, and were active against a range of mRNA targets. We studied first the effect of the alkyl chain and stem lengths on RNAi activity in a screen involving two series of dumbbell analogues targeting Renilla and Firefly luciferase genes. The best dumbbell design (containing BC6 loops and 29 bp) was successfully used to silence GRB7 expression in HER2+ breast cancer cells for longer periods of time than natural siRNAs and known biostable dumbbells. This BC6-loop dumbbell-shaped structure displayed greater anti-proliferative activity than natural siRNAs.


Asunto(s)
Técnicas de Silenciamiento del Gen/métodos , ARN/genética , Alquilación , Secuencia de Bases , Proteína Adaptadora GRB7/biosíntesis , Proteína Adaptadora GRB7/genética , Expresión Génica , Células HeLa , Humanos , Luciferasas de Luciérnaga/biosíntesis , Luciferasas de Luciérnaga/genética , Luciferasas de Renilla/biosíntesis , Luciferasas de Renilla/genética , Células MCF-7 , Nanoestructuras , ARN/síntesis química , Interferencia de ARN , Estabilidad del ARN
4.
Nucleic Acids Res ; 44(9): 4052-66, 2016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-27084952

RESUMEN

We present a systematic study of the long-timescale dynamics of the Drew-Dickerson dodecamer (DDD: d(CGCGAATTGCGC)2) a prototypical B-DNA duplex. Using our newly parameterized PARMBSC1 force field, we describe the conformational landscape of DDD in a variety of ionic environments from minimal salt to 2 M Na(+)Cl(-) or K(+)Cl(-) The sensitivity of the simulations to the use of different solvent and ion models is analyzed in detail using multi-microsecond simulations. Finally, an extended (10 µs) simulation is used to characterize slow and infrequent conformational changes in DDD, leading to the identification of previously uncharacterized conformational states of this duplex which can explain biologically relevant conformational transitions. With a total of more than 43 µs of unrestrained molecular dynamics simulation, this study is the most extensive investigation of the dynamics of the most prototypical DNA duplex.


Asunto(s)
ADN Forma B/química , ADN Forma B/ultraestructura , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Modelos Moleculares , Cloruro de Potasio/química , Cloruro de Sodio/química
5.
Nucleic Acids Res ; 43(8): 4309-21, 2015 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-25820425

RESUMEN

The structure and dynamics of all the transversion and transition mismatches in three different DNA environments have been characterized by molecular dynamics simulations and NMR spectroscopy. We found that the presence of mismatches produced significant local structural alterations, especially in the case of purine transversions. Mismatched pairs often show promiscuous hydrogen bonding patterns, which interchange among each other in the nanosecond time scale. This therefore defines flexible base pairs, where breathing is frequent, and where distortions in helical parameters are strong, resulting in significant alterations in groove dimension. Even if the DNA structure is plastic enough to absorb the structural impact of the mismatch, local structural changes can be propagated far from the mismatch site, following the expected through-backbone and a previously unknown through-space mechanism. The structural changes related to the presence of mismatches help to understand the different susceptibility of mismatches to the action of repairing proteins.


Asunto(s)
Disparidad de Par Base , ADN/química , Modelos Moleculares , Conformación de Ácido Nucleico
6.
J Am Chem Soc ; 138(50): 16355-16363, 2016 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-27957842

RESUMEN

While DNA is mostly a primary carrier of genetic information and displays a regular duplex structure, RNA can form very complicated and conserved 3D structures displaying a large variety of functions, such as being an intermediary carrier of the genetic information, translating such information into the protein machinery of the cell, or even acting as a chemical catalyst. At the base of such functional diversity is the subtle balance between different backbone, nucleobase, and ribose conformations, finely regulated by the combination of hydrogen bonds and stacking interactions. Although an apparently simple chemical modification, the presence of the 2'OH in RNA has a profound effect in the ribonucleotide conformational balance, adding an extra layer of complexity to the interactions network in RNA. In the present work, we have combined database analysis with extensive molecular dynamics, quantum mechanics, and hybrid QM/MM simulations to provide direct evidence on the dramatic impact of the 2'OH conformation on sugar puckering. Calculations provide evidence that proteins can modulate the 2'OH conformation to drive sugar repuckering, leading then to the formation of bioactive conformations. In summary, the 2'OH group seems to be a primary molecular switch contributing to specific protein-RNA recognition.


Asunto(s)
Hidróxidos/química , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , ARN/química , Teoría Cuántica , Rotación
7.
Angew Chem Int Ed Engl ; 54(2): 467-71, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25417598

RESUMEN

By combining ion-mobility mass spectrometry experiments with sub-millisecond classical and ab initio molecular dynamics we fully characterized, for the first time, the dynamic ensemble of a model nucleic acid in the gas phase under electrospray ionization conditions. The studied oligonucleotide unfolds upon vaporization, loses memory of the solution structure, and explores true gas-phase conformational space. Contrary to our original expectations, the oligonucleotide shows very rich dynamics in three different timescales (multi-picosecond, nanosecond, and sub-millisecond). The shorter timescale dynamics has a quantum mechanical nature and leads to changes in the covalent structure, whereas the other two are of classical origin. Overall, this study suggests that a re-evaluation on our view of the physics of nucleic acids upon vaporization is needed.


Asunto(s)
Gases/síntesis química , Oligonucleótidos/química , Estructura Molecular
8.
J Chem Theory Comput ; 6(7): 2095-102, 2010 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-26615937

RESUMEN

Accurate computations of vibrational energies and vibrational spectra of molecules require inclusion of the anharmonic forces. In standard computational protocols, this leads to a large vibrational Hamiltonian matrix that needs to be diagonalized. Spectral intensities are calculated for individual transitions separately. In this work, an alternate direct generation of the spectral curves is proposed, based on a temporal propagation of a trial vibrational wave function followed by the Fourier transformation (FT). The method was applied to model water dimer and fenchone molecules. Arbitrary resolutions could be achieved by longer-time propagations, although a smaller integration time step (∼0.02 fs) was needed for accurate peak frequencies than previously found for similar time-dependent applications within the harmonic approximation. Acceptably accurate relative vibrational spectra intensities were obtained when many random vectors used in the propagations were averaged. For a model fenchone Hamiltonian, simulated Raman and Raman optical activity (ROA) spectral shapes compared well with those obtained by the classical approach. The algorithm is amendable to parallelization. The lack of the lengthy and computer-memory-demanding diagonalization thus makes the FT procedure especially convenient for spectral simulations of larger molecules.

9.
J Cell Biol ; 191(1): 75-86, 2010 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-20921136

RESUMEN

Precursor messenger RNA (pre-mRNA) splicing is catalyzed by the spliceosome, a large ribonucleoprotein (RNP) complex composed of five small nuclear RNP particles (snRNPs) and additional proteins. Using live cell imaging of GFP-tagged snRNP components expressed at endogenous levels, we examined how the spliceosome assembles in vivo. A comprehensive analysis of snRNP dynamics in the cell nucleus enabled us to determine snRNP diffusion throughout the nucleoplasm as well as the interaction rates of individual snRNPs with pre-mRNA. Core components of the spliceosome, U2 and U5 snRNPs, associated with pre-mRNA for 15-30 s, indicating that splicing is accomplished within this time period. Additionally, binding of U1 and U4/U6 snRNPs with pre-mRNA occurred within seconds, indicating that the interaction of individual snRNPs with pre-mRNA is distinct. These results are consistent with the predictions of the step-wise model of spliceosome assembly and provide an estimate on the rate of splicing in human cells.


Asunto(s)
Precursores del ARN/metabolismo , Empalme del ARN/fisiología , ARN Mensajero/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Empalmosomas/metabolismo , Línea Celular , Núcleo Celular/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo , Células HeLa , Humanos , Cinética , Ribonucleoproteínas Nucleares Pequeñas/fisiología , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA