Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Phys Chem A ; 128(26): 5100-5114, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38915245

RESUMEN

Blue organic light-emitting diodes (OLED) suffer from relatively short lifetimes and a comparatively low lighting efficiency. One of the approaches to improving their characteristics is the development of luminophores with the potential for thermally activated delayed fluorescence (TADF). Herein, a set of donor-spacer-acceptor compounds with potential for TADF are designed, synthesized, and computationally and spectroscopically characterized. The excited state dynamics of the most prospective dye is monitored by time-resolved fluorescence and transient absorption spectroscopy. The experimental data are obtained and processed by a newly developed method and supplemented by quantum chemical calculations. The comprehensive approach allowed rationalization of the complex cascade-type photophysical behavior. The most promising emitter is included in an OLED displaying a blue color with a maximum EQE of 4.9% and negligible efficiency roll-off at higher luminance.

2.
Molecules ; 28(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36903570

RESUMEN

In the current work, a comprehensive procedure for structural analysis of quasilinear organic molecules arranged in a polycrystalline sample generated by molecular dynamics is developed. A linear alkane, hexadecane, is used as a test case because of its interesting behavior upon cooling. Instead of a direct transition from isotropic liquid to the solid crystalline phase, this compound forms first a short-lived intermediate state known as a "rotator phase". The rotator phase and the crystalline one are distinguished by a set of structural parameters. We propose a robust methodology to evaluate the type of ordered phase obtained after a liquid-to-solid phase transition in a polycrystalline assembly. The analysis starts with the identification and separation of the individual crystallites. Then, the eigenplane of each of them is fit and the tilt angle of the molecules relative to it is computed. The average area per molecule and the distance to the nearest neighbors are estimated by a 2D Voronoi tessellation. The orientation of the molecules with respect to each other is quantified by visualization of the second molecular principal axis. The suggested procedure may be applied to different quasilinear organic compounds in the solid state and to various data compiled in a trajectory.

3.
Molecules ; 28(12)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37375231

RESUMEN

The largely uncharted complexation chemistry of the veterinary polyether ionophores, monensic and salinomycinic acids (HL) with metal ions of type M4+ and the known antiproliferative potential of antibiotics has provoked our interest in exploring the coordination processes between MonH/SalH and ions of Ce4+. (1) Methods: Novel monensinate and salinomycinate cerium(IV)-based complexes were synthesized and structurally characterized by elemental analysis, a plethora of physicochemical methods, density functional theory, molecular dynamics, and biological assays. (2) Results: The formation of coordination species of a general composition [CeL2(OH)2] and [CeL(NO3)2(OH)], depending on reaction conditions, was proven both experimentally and theoretically. The metal(IV) complexes [CeL(NO3)2(OH)] possess promising cytotoxic activity against the human tumor uterine cervix (HeLa) cell line, being highly selective (non-tumor embryo Lep-3 vs. HeLa) compared to cisplatin, oxaliplatin, and epirubicin.


Asunto(s)
Cerio , Monensina , Humanos , Monensina/farmacología , Monensina/química , Cerio/farmacología , Ionóforos/química , Iones
4.
Chemistry ; 28(16): e202104411, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35107870

RESUMEN

Computational modeling of the optical characteristics of organic molecules with potential for thermally activated delayed fluorescence (TADF) may assist markedly the development of more efficient emitting materials for organic light-emitting diodes. Recent theoretical studies in this area employ mostly methods from density functional theory (DFT). In order to obtain accurate predictions within this approach, the choice of a proper functional is crucial. In the current study, we focus on testing the performance of a set of DFT functionals for estimation of the excitation and emission energy and the excited singlet-triplet energy gap of three newly synthesized compounds with capacity for TADF. The emitters are designed specifically to enable charge transfer by π-electron conjugation, at the same time possessing high-energy excited triplet states. The functionals chosen for testing are from various groups ranging from gradient-corrected through global hybrids to range-separated ones. The results show that the monitored optical properties are especially sensitive to how the long-range part of the exchange energy is treated within the functional. The accurate functional should also be able to provide well balanced distribution of the π-electrons among the molecular fragments. Global hybrids with moderate (less than 0.4) share of exact exchange (B3LYP, PBE0) and the meta-GGA HSE06 are outlined as the best performing methods for the systems under study. They can predict all important optical parameters correctly, both qualitatively and quantitatively.

5.
Phys Chem Chem Phys ; 24(24): 14985-14992, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35687051

RESUMEN

Efficient transport of pharmaceuticals to malignant cells in the human body often requires the application of drug-delivery systems (DDSs) consisting of several building blocks, each of them bearing a specific function. While nanoparticles are promising as potential carrier moieties, biomolecules may add to the efficient delivery by binding several drug molecules simultaneously. In this contribution, we apply a combination of atomistic molecular dynamics simulations and density functional theory calculations to characterize a multi-component DDS for the transport of the anthracycline antibiotic doxorubicin (DOX), comprising a gold nanoparticle (NP) and a drug-binding peptide (DBP) grafted on the NP surface. We have shown previously that the DDS can stabilize one DOX per DBP. However, by increasing the drug load to a 2 : 1 DOX : DBP ratio the two drug molecules compete for the available adsorption sites, which may cause spontaneous dissociation of one DOX molecule. We identify the chain length of the DBP as a limiting factor for the drug-loading capacity and provide important guidelines for further optimization of multi-component functionalized DDSs.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Línea Celular Tumoral , Doxorrubicina/química , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Oro , Humanos , Nanopartículas/química , Péptidos/química
6.
Phys Chem Chem Phys ; 23(37): 20989-21000, 2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34519727

RESUMEN

This article presents a study of the excited state relaxation dynamics of N-salicylidene-o-aminophenol (SOAP) in ethanol solution. Femtosecond transient absorption (TA) spectroscopy and theoretical calculations are used in combination to establish the mechanism of the excited state relaxation and type of molecular species involved in the accompanying phototransformations. TA spectra show that upon photoexcitation two SOAP tautomers (E-enol and Z-keto) interconvert by ESIPT. The molecule can subsequently isomerize to the E-keto form of SOAP. An intriguing observation is that the TA spectra of this compound in ethanol show modulations of the signal at the stimulated emission spectral range. It is found that these modulations are due to the coherence of the excited ensemble of molecules whose evolution over time represents a moving wave packet. After Fourier transform of the modulations, two characteristic frequencies are identified. These frequencies refer to the corresponding vibrational modes of the excited state and their nature is elucidated by DFT quantum chemical calculations. The obtained experimental and theoretical data reveal the nature of the vibronic coupling between the ground and excited state and the type of molecular vibrations involved in the molecular dynamics along the potential surface of the first excited state at the initial moment right after excitation. These vibrations characterize the starting point in the excited state dynamics of the molecule toward Z-E isomerization of the keto form of SOAP. This study provides a comprehensive picture of the dynamic processes taking place upon photoexcitation of the compound, which might enable control over the various relaxation channels.

7.
Molecules ; 26(22)2021 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-34833947

RESUMEN

The saponin escin, extracted from horse chestnut seeds, forms adsorption layers with high viscoelasticity and low gas permeability. Upon deformation, escin adsorption layers often feature surface wrinkles with characteristic wavelength. In previous studies, we investigated the origin of this behavior and found that the substantial surface elasticity of escin layers may be related to a specific combination of short-, medium-, and long-range attractive forces, leading to tight molecular packing in the layers. In the current study, we performed atomistic molecular dynamics simulations of 441 escin molecules in a dense adsorption layer with an area per molecule of 0.49 nm2. We found that the surfactant molecules are less submerged in water and adopt a more upright position when compared to the characteristics determined in our previous simulations with much smaller molecular models. The number of neighbouring molecules and their local orientation, however, remain similar in the different-size models. To maintain their preferred mutual orientation, the escin molecules segregate into well-ordered domains and spontaneously form wrinkled layers. The same specific interactions (H-bonds, dipole-dipole attraction, and intermediate strong attraction) define the complex internal structure and the undulations of the layers. The analysis of the layer properties reveals a characteristic wrinkle wavelength related to the surface lateral dimensions, in qualitative agreement with the phenomenological description of thin elastic sheets.


Asunto(s)
Escina/química , Agua/química , Adsorción , Elasticidad , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Propiedades de Superficie , Tensoactivos/química , Viscosidad
8.
J Am Chem Soc ; 141(13): 5130-5134, 2019 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-30860825

RESUMEN

Four three-dimensional (3D) pyrene-fused N-heteroacenes (P1-P4) are designed and synthesized. From P1 to P4, their lengths are extended in an iterative way, where the thiadiazole unit can be reduced to diamine and the obtained diamines can be further condensed with the diketones with a thiadiazole unit. Compared to their two-dimensional counterparts, the solubility of these 3D pyrene-fused N-heteroacenes is improved by this 3D covalent linkage with two-dimensional units. The diameters of P1-P4 are 3.66, 6.06, 8.48 and 10.88 nm, respectively, and these 3D molecules are characterized by 1H, 13C and 2D NMR, MS, UV-vis, PL and CV spectra. Our strategy shows a promising way to large 3D pyrene-fused N-heteroacenes.

9.
Mol Pharm ; 16(8): 3293-3321, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31274322

RESUMEN

Optimization of the systems for active-targeting drug delivery is a pending task in view of more directed transport of the active components to neoplastic cells. One of the ways to improved performance of the drug carriers is refinement of their molecular composition, size, and specific interactions with membrane receptors. Better understanding of the latter is possible through molecular-level investigation of the process of direction of the transporters to target proteins on the surface of cells. This involves unveiling the communication between these receptors and their native ligands, which can be used as vectors for targeting the drugs. The review summarizes the current knowledge on the structure, function, and ligand binding of several most common receptors, overexpressed on various types of cancer cells, and, hence, available as potential drug delivery targets. Then, the results from molecular modeling of these proteins and ligands with atomistic equilibrium molecular dynamics simulations are recapped. The digest illustrates that the computational outcome is a valuable source of microscopic information, that accurate computational methodology is available and well mastered, and that there is much room for future developments focused on even more extensive and realistic applications in the area of targeted drug delivery.


Asunto(s)
Portadores de Fármacos/química , Ligandos , Simulación de Dinámica Molecular , Receptores de Superficie Celular/metabolismo , Humanos , Estructura Secundaria de Proteína , Receptores de Superficie Celular/química
10.
Langmuir ; 35(39): 12876-12887, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31487191

RESUMEN

Saponins are natural surfactants with high surface activity and unique surface properties. Escin is a triterpenoid saponin which has unusually high surface viscoelasticity [Golemanov et al. Soft Matter 2013, 9, 5738] and low permittivity to molecular gas diffusion of its adsorption layers. In our previous study [Tsibranska et al. Langmuir 2017, 33, 8330], we investigated the molecular origin of this unconventional behavior and found that escin molecules rapidly assemble in a compact and stable surface cluster. This behavior was explained with long-range attraction between the hydrophobic aglycones combined with intermediate dipole-dipole attraction and strong short-range hydrogen bonds between the sugar residues in the adsorbed escin molecules. In this study, we performed atomistic molecular simulations of escin molecules in dense adsorption layers with two different areas per molecule. The results show that the surfactant molecules in these systems are much less submerged in water and adopt a more upright position compared to the dilute layers studied previously. A significant number of trapped water molecules are located around the hydrophilic groups placed above the water equimolecular surface to solvate them in the dense layer. To maintain the preferred orientation of the escin molecules with respect to the interface, the most compact adsorption layer acquires a significant spontaneous curvature. The substantial elasticity of the neutral escin layers, as in our previous study, is explained with the presence of a specific interaction, which is intermediate between hydrogen bonding and dipole-dipole attraction (populated lengths in the range 0.16 to >0.35 nm), supplemented by substantial flexibility of the surfactant heads, optimal curvature of the interface, and significant normal displacement of the molecules to allow their tight surface packing. The simulations reveal long-range order within the layers, which signifies the role of the collective behavior of the saponin molecules in such dense adsorption layers.

11.
J Comput Chem ; 39(8): 387-396, 2018 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-29164634

RESUMEN

Studying transfer of bioactive compounds across cell membranes by simulations attracts growing attention. To perform such calculations accurately, it is necessary to verify the validity of computational protocols established for description of unperturbed lipid bilayers also with translocating substances present. The current work reports the results from 1 µs long atomistic molecular dynamics simulations of two types of model plasma membranes-one built of a single phospholipid (DPPC) and one constructed of four types of phospholipids-in the presence of a drug-peptide complex experimentally known to cross cell membranes. The influence of membrane composition and of applied pressure scaling algorithm on the simulations outcome is analyzed with particular focus on membrane structure and on complex-lipid interactions during the initial penetration stage. It is found that the mixed composition of the membrane is important for correct assessment of the interactions with the complex both from purely structural perspective and because of the uneven charge distribution. The structure of the mixed lipid bilayer is affected more markedly by the pressure scaling algorithm. When the pressure is isotropically scaled, lipids are distributed almost homogeneously along the membrane in liquid ordered state. On semi-isotropic scaling, the lipid tails undergo significant rearrangement and a long-range ordered state is established. This results in "freezing" of the membrane and expulsion of the complex. The statistical analysis of the MD data points to the conclusion that a mixed-lipid membrane model with isotropic pressure scaling would be more suitable for describing the process of complex translocation across neoplastic membranes. © 2017 Wiley Periodicals, Inc.

12.
Phys Chem Chem Phys ; 20(45): 28818-28831, 2018 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-30418443

RESUMEN

Folate and its synthetic analogues, called antifolates, are known to have diverse bio-applications, for example as cell proliferation stimulators or anticancer drugs. Their molecular structure is important for performing the required biological activity. Since all folate-derived ligands contain a peptide-like amide bond, its configuration is one of the key components for the functional fitness of such compounds. During the modelling of folate and three of its derivatives - methotrexate, 5-methyl tetrahydrofolate, and pteroyl ornithine, we registered significant population of the cis isomers along the amide bond. The properties of the cis and trans forms of the ligands in saline are studied in detail by classical atomistic molecular dynamics and by quantum chemical methods. The calculations predict high probability for coexistence of the cis isomers for two of the ligands. The energetic instability of the cis form is explained with a σ-character admixture into the C[double bond, length as m-dash]O(π) bond, while its magnitude is attributed to the pattern of local electron density redistribution. The cis forms of all molecules have markedly slower structural dynamics than the trans ones, which might affect their behavior in vivo.

13.
Langmuir ; 33(33): 8330-8341, 2017 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-28749143

RESUMEN

Escin belongs to a large class of natural biosurfactants, called saponins, that are present in more than 500 plant species. Saponins are applied in the pharmaceutical, cosmetics, and food and beverage industries due to their variously expressed bioactivity and surface activity. In particular, escin adsorption layers at the air-water interface exhibit an unusually high surface elastic modulus (>1100 mN/m) and a high surface viscosity (ca. 130 N·s/m). The molecular origin of these unusual surface rheological properties is still unclear. We performed classical atomistic dynamics simulations of adsorbed neutral and ionized escin molecules to clarify their orientation and interactions on the water surface. The orientation and position of the escin molecules with respect to the interface, the intermolecular interactions, and the kinetics of molecular aggregation into surface clusters are characterized in detail. Significant differences in the behavior of the neutral and the charged escin molecules are observed. The neutral escin rapidly assembles in a compact and stable surface cluster. This process is explained by the action of long-range attraction between the hydrophobic aglycones, combined with intermediate dipole-dipole attraction and short-range hydrogen bonds between the sugar residues in escin molecules. The same interactions are expected to control the viscoelastic properties of escin adsorption layers.

14.
J Phys Chem A ; 121(33): 6327-6335, 2017 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-28742353

RESUMEN

Crystallization water plays an important role in the self-organization of oligomer chains in conducting polyaniline. In order to quantify the interaction between emeraldine salt and such a water, models containing a tetramer in bipolaronic or polaronic form, chloride counterions, and an explicit water molecule are used. Different initial positions of water with respect to the oligomer chain-tangential and vertical-are considered. Various media are simulated by introducing an implicit solvent continuum of decreasing polarity. The DFT-D3/PCM computational approach is employed to examine the behavior of the systems in several aspects-the role of the explicit water position and the effect of the environment polarity on the spatial structure, energetics, charge distribution, and the frontier molecular orbital energies. The strength of hydrogen bonding and the patterns of charge redistribution invoked by the water molecule are discussed. The study establishes trend lines in the variation of the molecular characteristics upon change of milieu as a tool for control of the self-assembly process. The results show that chains interact more efficiently with tangentially placed water. The influence of the environment polarity is minor and is mainly expressed in slight shortening of the intermolecular distances and mild decrease of the group charges of the system components with reduction of polarity.

15.
Eur Biophys J ; 45(2): 99-112, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26424533

RESUMEN

Molecular dynamics (MD) was employed by means of a specific simulation protocol to investigate the equilibrium structure at 25 °C of the hexagonal inverted (HII) mesophase composed from water, 1-monoolein (GMO), and tricaprylin, with or without entrapped lysozyme. Based on robust and fast MD simulations, the study provides a comprehensive analysis and visualization of the local structure of HII mesophase containing admixtures. The most important physical insight is the possibility to observe the strong self-recovery capacity of the GMO layer, which allows the HII mesophase tubes to reorganize and host lysozyme molecules with a size bigger than the diameter of the water channel. This is a direct message to the experimenters that the HII mesophase has the potential to host molecules larger than the diameter of the water channel. Collective character of the interlipid interactions is outlined, which is not affected by the presence of the cargo and may be the reason for the efficient GMO reorganization. Another important result is the possible explanation of the role of triacylglycerols on the low-temperature stabilization of the HII mesophase. The analysis shows that despite the low amount of tricaprylin, its molecules prevent the extreme inclination of the lipid tails and thus optimize the alignment capacity of the lipid tails layer. The study also reveals that the packing frustration does not depend on the temperature and the presence of admixtures. Hence, it might be numerically defined as a universal invariant parameter of a stable HII mesophase composed of a certain lipid.


Asunto(s)
Caprilatos/química , Glicéridos/química , Simulación de Dinámica Molecular , Muramidasa/química , Triglicéridos/química , Secuencia de Aminoácidos , Datos de Secuencia Molecular
16.
J Phys Chem A ; 120(35): 6944-55, 2016 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-27529727

RESUMEN

In order to afford in a controlled fashion fine-tuning of the color and the intensity of the emitted light of potential fluorophores for organic light-emitting diodes (OLED), directed molecular design based on a donor-spacer-acceptor model is undertaken. One way of increasing emission efficiency is triplet harvesting. This can be achieved by thermally activated delayed fluorescence (TADF) when triplet and singlet excited states are quasi degenerate. Molecular building units are selected and bound in a specific pattern to allow for increase in emission performance, also due to TADF. Using time-dependent density functional theory, the relevant singlet-singlet and triplet-singlet energy gaps corresponding to absorption or emission transitions of the compounds are computed to simulate the electroluminescent spectrum. The results are analyzed in depth and relations between some spectral and structural properties are proposed. The best suited molecules are delineated as potential OLED building blocks. Guidelines for systematic improvement of the molecular characteristics are outlined.

17.
J Comput Chem ; 35(10): 776-88, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24554590

RESUMEN

Fully atomistic molecular dynamics simulations were performed on liquid n-pentane, n-hexane, and n-heptane to derive an atomistic model for middle-chain-length alkanes. All simulations were based on existing molecular-mechanical parameters for alkanes. The computational protocol was optimized, for example, in terms of thermo- and barostat, to reproduce properly the properties of the liquids. The model was validated by comparison of thermal, structural, and dynamic properties of the normal alkane liquids to experimental data. Two different combinations of temperature and pressure coupling algorithms were tested. A simple differential approach was applied to evaluate fluctuation-related properties with sufficient accuracy. Analysis of the data reveals a satisfactory representation of the hydrophobic systems behavior. Thermodynamic parameters are close to the experimental values and exhibit correct temperature dependence. The observed intramolecular geometry corresponds to extended conformations domination, whereas the intermolecular structure demonstrates all characteristics of liquid systems. Cavity size distribution function was calculated from coordinates analysis and was applied to study the solubility of gases in hexane and heptane oils. This study provides a platform for further in-depth research on hydrophobic solutions and multicomponent systems.

18.
Int J Biol Macromol ; 262(Pt 2): 129930, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38325676

RESUMEN

In the present study we report a novel interaction of human C1q, a primary activator of the Complement system, with human Galectin-3 (Gal-3). We investigated the potential recognition between C1q and Gal-3 on a solid hydrophobic surface by ELISA, by fluorescence spectroscopy, molecular docking and molecular dynamics (MD). The data showed that C1q and Gal-3 had a pronounced affinity for protein-protein interaction and supramolecular binding, locating the binding sites within the globular domains of C1q (gC1q) and on the backside of the carbohydrate recognition domain (CRD) of Gal-3. Fluorescence spectroscopy gave quantitative assessment of the recognition with KD value of 0.04 µM. MD analysis showed that when the active AAs of the two proteins interacted, electrostatic attraction, aided by a large number of hydrogen bonds, was dominant for the stabilization of the complex. When the contact of C1q and Gal-3 was not limited to active residues, the complex between them was stabilized mainly by Van der Waals interactions and smaller in number but stronger hydrogen bonds. This is the first report analyzing the interaction of Gal-3 with C1q, which could open the way to new applications of this protein-protein complex.


Asunto(s)
Complemento C1q , Galectina 3 , Humanos , Galectina 3/metabolismo , Complemento C1q/química , Complemento C1q/metabolismo , Simulación del Acoplamiento Molecular , Ligandos , Sitios de Unión , Unión Proteica
19.
J Phys Chem A ; 117(3): 670-8, 2013 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-23256643

RESUMEN

The magnetic properties of a series of manganese(II) diacetylacetonate and dihexafluoroacetylacetonate hybrid-spin complexes with neutral pyridine-based organic radicals were characterized theoretically by DFT calculations. Three stable radicals, in which a radical group is bound in either para or meta position with respect to the pyridine nitrogen atom, were considered. The correct stable structures and multiplets of the complexes were obtained by full geometry optimization starting from an ideal structure. A total of three important geometry descriptors of the complexes were monitored and related to their magnetic characteristics. These structural parameters are (i) the torsion angle governing the conjugation of the organic radical m-PyNO (anti versus gauche), (ii) the coordination geometry of the acetyl acetonate ligands around the metal ion (square versus rhombic), and (iii) the relative orientation of the organic radical with respect to the acetyl acetonate plane (parallel versus perpendicular). It was found that the magnetic properties are not sensitive to the orientation of the radicals with respect to the equatorial plane but do depend on the conformation of the organic radicals. Even a spin switch between the ferromagnetic (S = (7)/(2)) and antiferromagnetic (S = (3)/(2)) ground state was found to be feasible for one of the complexes upon variation of the organic radical geometry, namely, the dihedral angle between the organic radical moiety and the pyridine ring. The pattern of molecular orbital overlap was determined to be the key factor governing the exchange coupling in the modeled systems. Bonding π-type overlap provides antiferromagnetic coupling in all complexes of the para radicals. In the meta analogues, the spins are coupled through the σ orbitals. A low-spin ground state occurs whenever a continuous σ-overlap pathway is present in the complex. Ferromagnetic interaction requires σ-π orthogonality of the pyridine atomic orbitals and/or π-antibonding Mn-pyridine natural orbital overlap. Using an estimate of the donor-acceptor energy stabilization, the affinity of a given Mn(II) d-orbital to mix with the sp(2) orbital from pyridine can be predicted.


Asunto(s)
Manganeso/química , Compuestos Organometálicos/química , Teoría Cuántica , Campos Magnéticos , Modelos Moleculares , Estructura Molecular
20.
J Colloid Interface Sci ; 638: 743-757, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36780853

RESUMEN

HYPOTHESIS: Upon cooling, alkanes can form intermediate phases between liquid and crystal. They are called "rotator" or "plastic" phases and have long-range positional order with rotational freedom around the long molecular axis which gives them non-trivial and useful visco-plastic properties. We expect that the formation and structure of rotator phases formed in freezing alkanes can be understood much deeper by tracking the process at molecular level with atomistic molecular dynamics. SIMULATIONS: We defined an appropriate CHARMM36-based computational protocol for simulating the freezing of hexadecane, which contained a sufficiently long (500 ns) equilibrium sampling of the frozen states. We employed it to simulate successfully the freezing of bulk and interface-contacting hexadecane and to provide a pioneering clarification of the effect of surfactant on the crystallization mechanism and on the type of intermolecular ordering in the crystallites. FINDINGS: The devised computational protocol was able to reproduce the experimentally observed polycrystalline structure formed upon cooling. However, different crystallization mechanisms were established for the two types of models. Crystallites nucleate at random locations in the bulk and start growing rapidly within tens of nanoseconds. In contrast, the surfactants freeze first during the fast cooling (<1 ns), followed by rapid hexadecane freezing, with nucleation starting along the entire surfactant adsorption layer. Thereby, the hexadecane molecules form rotator phases which transition into a more stable ordered phase. This collective transition is first-time visualized directly. The developed robust computational protocol creates a foundation for future in-depth modelling and analysis of solid-state alkane-containing, incl. lipid, structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA