Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Hum Mol Genet ; 29(21): 3477-3492, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-33075805

RESUMEN

Spinal muscular atrophy (SMA) is caused by mutation or deletion of survival motor neuron 1 (SMN1) and retention of SMN2 leading to SMN protein deficiency. We developed an immortalized mouse embryonic fibroblast (iMEF) line in which full-length wild-type Smn (flwt-Smn) can be conditionally deleted using Cre recombinase. iMEFs lacking flwt-Smn are not viable. We tested the SMA patient SMN1 missense mutation alleles A2G, D44V, A111G, E134K and T274I in these cells to determine which human SMN (huSMN) mutant alleles can function in the absence of flwt-Smn. All missense mutant alleles failed to rescue survival in the conditionally deleted iMEFs. Thus, the function lost by these mutations is essential to cell survival. However, co-expression of two different huSMN missense mutants can rescue iMEF survival and small nuclear ribonucleoprotein (snRNP) assembly, demonstrating intragenic complementation of SMN alleles. In addition, we show that a Smn protein lacking exon 2B can rescue iMEF survival and snRNP assembly in the absence of flwt-Smn, indicating exon 2B is not required for the essential function of Smn. For the first time, using this novel cell line, we can assay the function of SMN alleles in the complete absence of flwt-Smn.


Asunto(s)
Atrofia Muscular Espinal/genética , Ribonucleoproteínas Nucleares Pequeñas/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Alelos , Animales , Supervivencia Celular/genética , Modelos Animales de Enfermedad , Exones/genética , Fibroblastos/metabolismo , Fibroblastos/patología , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Integrasas/genética , Ratones , Atrofia Muscular Espinal/patología , Mutación Missense/genética , Proteína 2 para la Supervivencia de la Neurona Motora/genética
2.
Hum Mol Genet ; 29(21): 3493-3503, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-33084884

RESUMEN

Spinal muscular atrophy is caused by reduced levels of SMN resulting from the loss of SMN1 and reliance on SMN2 for the production of SMN. Loss of SMN entirely is embryonic lethal in mammals. There are several SMN missense mutations found in humans. These alleles do not show partial function in the absence of wild-type SMN and cannot rescue a null Smn allele in mice. However, these human SMN missense allele transgenes can rescue a null Smn allele when SMN2 is present. We find that the N- and C-terminal regions constitute two independent domains of SMN that can be separated genetically and undergo intragenic complementation. These SMN protein heteromers restore snRNP assembly of Sm proteins onto snRNA and completely rescue both survival of Smn null mice and motor neuron electrophysiology demonstrating that the essential functional unit of SMN is the oligomer.


Asunto(s)
Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Alelos , Aminoácidos/genética , Animales , Modelos Animales de Enfermedad , Exones/genética , Predisposición Genética a la Enfermedad , Humanos , Ratones , Ratones Noqueados , Neuronas Motoras/patología , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , Mutación Missense/genética , Multimerización de Proteína/genética , Ribonucleoproteínas Nucleares Pequeñas/genética , Proteínas del Complejo SMN/genética
3.
Hum Mol Genet ; 27(19): 3404-3416, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29982416

RESUMEN

Spinal muscular atrophy (SMA) is caused by reduced levels of full-length SMN (FL-SMN). In SMA patients with one or two copies of the Survival Motor Neuron 2 (SMN2) gene there are a number of SMN missense mutations that result in milder-than-predicted SMA phenotypes. These mild SMN missense mutation alleles are often assumed to have partial function. However, it is important to consider the contribution of FL-SMN as these missense alleles never occur in the absence of SMN2. We propose that these patients contain a partially functional oligomeric SMN complex consisting of FL-SMN from SMN2 and mutant SMN protein produced from the missense allele. Here we show that mild SMN missense mutations SMND44V, SMNT74I or SMNQ282A alone do not rescue mice lacking wild-type FL-SMN. Thus, missense mutations are not functional in the absence of FL-SMN. In contrast, when the same mild SMN missense mutations are expressed in a mouse containing two SMN2 copies, functional SMN complexes are formed with the small amount of wild-type FL-SMN produced by SMN2 and the SMA phenotype is completely rescued. This contrasts with SMN missense alleles when studied in C. elegans, Drosophila and zebrafish. Here we demonstrate that the heteromeric SMN complex formed with FL-SMN is functional and sufficient to rescue small nuclear ribonucleoprotein assembly, motor neuron function and rescue the SMA mice. We conclude that mild SMN missense alleles are not partially functional but rather they are completely non-functional in the absence of wild-type SMN in mammals.


Asunto(s)
Atrofia Muscular Espinal/genética , Ribonucleoproteínas Nucleares Pequeñas/genética , Proteínas del Complejo SMN/genética , Alelos , Animales , Caenorhabditis elegans/genética , Línea Celular , Modelos Animales de Enfermedad , Drosophila melanogaster/genética , Exones/genética , Humanos , Ratones , Ratones Transgénicos , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , Mutación Missense , Ribonucleoproteínas Nucleares Pequeñas/química , Proteínas del Complejo SMN/química , Proteína 2 para la Supervivencia de la Neurona Motora/química , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Pez Cebra/genética
4.
Muscle Nerve ; 59(2): 254-262, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30370671

RESUMEN

INTRODUCTION: Electrophysiological measurements are used in longitudinal clinical studies to provide insight into the progression of amyotrophic lateral sclerosis (ALS) and the relationship between muscle weakness and motor unit (MU) degeneration. Here, we used a similar longitudinal approach in the Cu/Zn superoxide dismutase (SOD1[G93A]) mouse model of ALS. METHODS: In vivo muscle contractility and MU connectivity assays were assessed longitudinally in SOD1(G93A) and wild type mice from postnatal days 35 to 119. RESULTS: In SOD1(G93A) males, muscle contractility was reduced by day 35 and preceded MU loss. Muscle contractility and motor unit reduction were delayed in SOD1(G93A) females compared with males, but, just as with males, muscle contractility reduction preceded MU loss. DISCUSSION: The longitudinal contractility and connectivity paradigm employed here provides additional insight into the SOD1(G93A) mouse model and suggests that loss of muscle contractility is an early finding that may precede loss of MUs and motor neuron death. Muscle Nerve 59:254-262, 2019.


Asunto(s)
Neuronas Motoras/fisiología , Contracción Muscular/genética , Músculo Esquelético/fisiopatología , Enfermedades Musculares/fisiopatología , Potenciales de Acción/genética , Factores de Edad , Esclerosis Amiotrófica Lateral/complicaciones , Esclerosis Amiotrófica Lateral/genética , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Estudios Longitudinales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Contracción Muscular/fisiología , Enfermedades Musculares/etiología , Unión Neuromuscular/diagnóstico por imagen , Unión Neuromuscular/genética , Superóxido Dismutasa/genética , Torque
5.
J Neurosci ; 37(48): 11559-11571, 2017 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-29061699

RESUMEN

Motoneurons establish a critical link between the CNS and muscles. If motoneurons do not develop correctly, they cannot form the required connections, resulting in movement defects or paralysis. Compromised development can also lead to degeneration because the motoneuron is not set up to function properly. Little is known, however, regarding the mechanisms that control vertebrate motoneuron development, particularly the later stages of axon branch and dendrite formation. The motoneuron disease spinal muscular atrophy (SMA) is caused by low levels of the survival motor neuron (SMN) protein leading to defects in vertebrate motoneuron development and synapse formation. Here we show using zebrafish as a model system that SMN interacts with the RNA binding protein (RBP) HuD in motoneurons in vivo during formation of axonal branches and dendrites. To determine the function of HuD in motoneurons, we generated zebrafish HuD mutants and found that they exhibited decreased motor axon branches, dramatically fewer dendrites, and movement defects. These same phenotypes are present in animals expressing low levels of SMN, indicating that both proteins function in motoneuron development. HuD binds and transports mRNAs and one of its target mRNAs, Gap43, is involved in axonal outgrowth. We found that Gap43 was decreased in both HuD and SMN mutants. Importantly, transgenic expression of HuD in motoneurons of SMN mutants rescued the motoneuron defects, the movement defects, and Gap43 mRNA levels. These data support that the interaction between SMN and HuD is critical for motoneuron development and point to a role for RBPs in SMA.SIGNIFICANCE STATEMENT In zebrafish models of the motoneuron disease spinal muscular atrophy (SMA), motor axons fail to form the normal extent of axonal branches and dendrites leading to decreased motor function. SMA is caused by low levels of the survival motor neuron (SMN) protein. We show in motoneurons in vivo that SMN interacts with the RNA binding protein, HuD. Novel mutants reveal that HuD is also necessary for motor axonal branch and dendrite formation. Data also revealed that both SMN and HuD affect levels of an mRNA involved in axonal growth. Moreover, expressing HuD in SMN-deficient motoneurons can rescue the motoneuron development and motor defects caused by low levels of SMN. These data support that SMN:HuD complexes are essential for normal motoneuron development and indicate that mRNA handling is a critical component of SMA.


Asunto(s)
Proteína 4 Similar a ELAV/genética , Proteína 4 Similar a ELAV/metabolismo , Neuronas Motoras/fisiología , ARN Mensajero/fisiología , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Animales , Animales Modificados Genéticamente , Axones/fisiología , Dendritas/genética , Dendritas/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Pez Cebra
6.
Hum Mol Genet ; 24(21): 6160-73, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26276812

RESUMEN

Spinal Muscular Atrophy (SMA) is an autosomal recessive disorder characterized by loss of lower motor neurons. SMA is caused by deletion or mutation of the Survival Motor Neuron 1 (SMN1) gene and retention of the SMN2 gene. The loss of SMN1 results in reduced levels of the SMN protein. SMN levels appear to be particularly important in motor neurons; however SMN levels above that produced by two copies of SMN2 have been suggested to be important in muscle. Studying the spatial requirement of SMN is important in both understanding how SMN deficiency causes SMA and in the development of effective therapies. Using Myf5-Cre, a muscle-specific Cre driver, and the Cre-loxP recombination system, we deleted mouse Smn in the muscle of mice with SMN2 and SMNΔ7 transgenes in the background, thus providing low level of SMN in the muscle. As a reciprocal experiment, we restored normal levels of SMN in the muscle with low SMN levels in all other tissues. We observed that decreasing SMN in the muscle has no phenotypic effect. This was corroborated by muscle physiology studies with twitch force, tetanic and eccentric contraction all being normal. In addition, electrocardiogram and muscle fiber size distribution were also normal. Replacement of Smn in muscle did not rescue SMA mice. Thus the muscle does not appear to require high levels of SMN above what is produced by two copies of SMN2 (and SMNΔ7).


Asunto(s)
Músculos/metabolismo , Atrofia Muscular Espinal/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Marcadores Genéticos , Masculino , Ratones , Contracción Muscular , Músculos/fisiología , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/genética
7.
Hum Mol Genet ; 24(19): 5524-41, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26206889

RESUMEN

Proximal spinal muscular atrophy (SMA) is the most frequent cause of hereditary infant mortality. SMA is an autosomal recessive neuromuscular disorder that results from the loss of the Survival Motor Neuron 1 (SMN1) gene and retention of the SMN2 gene. The SMN2 gene produces an insufficient amount of full-length SMN protein that results in loss of motor neurons in the spinal cord and subsequent muscle paralysis. Previously we have shown that overexpression of human SMN in neurons in the SMA mouse ameliorates the SMA phenotype while overexpression of human SMN in skeletal muscle had no effect. Using Cre recombinase, here we show that either deletion or replacement of Smn in motor neurons (ChAT-Cre) significantly alters the functional output of the motor unit as measured with compound muscle action potential and motor unit number estimation. However ChAT-Cre alone did not alter the survival of SMA mice by replacement and did not appreciably affect survival when used to deplete SMN. However replacement of Smn in both neurons and glia in addition to the motor neuron (Nestin-Cre and ChAT-Cre) resulted in the greatest improvement in survival of the mouse and in some instances complete rescue was achieved. These findings demonstrate that high expression of SMN in the motor neuron is both necessary and sufficient for proper function of the motor unit. Furthermore, in the mouse high expression of SMN in neurons and glia, in addition to motor neurons, has a major impact on survival.


Asunto(s)
Neuronas Motoras/fisiología , Músculo Esquelético/fisiología , Atrofia Muscular Espinal/fisiopatología , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Potenciales de Acción , Animales , Modelos Animales de Enfermedad , Fenómenos Electrofisiológicos , Humanos , Ratones , Ratones Transgénicos , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Eliminación de Secuencia
8.
Hum Mol Genet ; 24(13): 3847-60, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25859009

RESUMEN

The 2007 Consensus Statement for Standard of Care in Spinal Muscular Atrophy (SMA) notes that patients suffer from gastroesophageal reflux, constipation and delayed gastric emptying. We used two mouse models of SMA to determine whether functional GI complications are a direct consequence of or are secondary to survival motor neuron (Smn) deficiency. Our results show that despite normal activity levels and food and water intake, Smn deficiency caused constipation, delayed gastric emptying, slow intestinal transit and reduced colonic motility without gross anatomical or histopathological abnormalities. These changes indicate alterations to the intrinsic neural control of gut functions mediated by the enteric nervous system (ENS). Indeed, Smn deficiency led to disrupted ENS signaling to the smooth muscle of the colon but did not cause enteric neuron loss. High-frequency electrical field stimulation (EFS) of distal colon segments produced up to a 10-fold greater contractile response in Smn deficient tissues. EFS responses were not corrected by the addition of a neuronal nitric oxide synthase inhibitor indicating that the increased contractility was due to hyperexcitability and not disinhibition of the circuitry. The GI symptoms observed in mice are similar to those reported in SMA patients. Together these data suggest that ENS cells are susceptible to Smn deficiency and may underlie the patient GI symptoms.


Asunto(s)
Sistema Nervioso Entérico/fisiopatología , Enfermedades Gastrointestinales/metabolismo , Tracto Gastrointestinal/inervación , Atrofia Muscular Espinal/complicaciones , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Proteína 2 para la Supervivencia de la Neurona Motora/química , Proteína 2 para la Supervivencia de la Neurona Motora/deficiencia , Animales , Modelos Animales de Enfermedad , Femenino , Vaciamiento Gástrico , Enfermedades Gastrointestinales/etiología , Enfermedades Gastrointestinales/genética , Enfermedades Gastrointestinales/fisiopatología , Tracto Gastrointestinal/fisiopatología , Humanos , Masculino , Ratones , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/genética
10.
Nat Commun ; 13(1): 168, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013323

RESUMEN

Skeletal muscle serves fundamental roles in organismal health. Gene expression fluctuations are critical for muscle homeostasis and the response to environmental insults. Yet, little is known about post-transcriptional mechanisms regulating such fluctuations while impacting muscle proteome. Here we report genome-wide analysis of mRNA methyladenosine (m6A) dynamics of skeletal muscle hypertrophic growth following overload-induced stress. We show that increases in METTL3 (the m6A enzyme), and concomitantly m6A, control skeletal muscle size during hypertrophy; exogenous delivery of METTL3 induces skeletal muscle growth, even without external triggers. We also show that METTL3 represses activin type 2 A receptors (ACVR2A) synthesis, blunting activation of anti-hypertrophic signaling. Notably, myofiber-specific conditional genetic deletion of METTL3 caused spontaneous muscle wasting over time and abrogated overload-induced hypertrophy; a phenotype reverted by co-administration of a myostatin inhibitor. These studies identify a previously unrecognized post-transcriptional mechanism promoting the hypertrophic response of skeletal muscle via control of myostatin signaling.


Asunto(s)
Receptores de Activinas Tipo II/genética , Hipertrofia/genética , Metiltransferasas/genética , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Miostatina/genética , Receptores de Activinas Tipo II/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Animales , Dependovirus/genética , Dependovirus/metabolismo , Regulación del Desarrollo de la Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Estudio de Asociación del Genoma Completo , Hipertrofia/metabolismo , Hipertrofia/patología , Hipertrofia/prevención & control , Masculino , Metiltransferasas/deficiencia , Ratones , Desarrollo de Músculos/genética , Músculo Esquelético/patología , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Miostatina/metabolismo , Transducción de Señal
11.
Neurobiol Aging ; 104: 32-41, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33964607

RESUMEN

Sarcopenia, or age-related loss of muscle mass and strength, is an important contributor to loss of physical function in older adults. The pathogenesis of sarcopenia is likely multifactorial, but recently the role of neurological degeneration, such as motor unit loss, has received increased attention. Here, we investigated the longitudinal effects of muscle hypertrophy (via overexpression of human follistatin, a myostatin antagonist) on neuromuscular integrity in C57BL/6J mice between the ages of 24 and 27 months. Following follistatin overexpression (delivered via self-complementary adeno-associated virus subtype 9 injection), muscle weight and torque production were significantly improved. Follistatin treatment resulted in improvements of neuromuscular junction innervation and transmission but had no impact on age-related losses of motor units. These studies demonstrate that follistatin overexpression-induced muscle hypertrophy not only increased muscle weight and torque production but also countered age-related degeneration at the neuromuscular junction in mice.


Asunto(s)
Envejecimiento/patología , Envejecimiento/fisiología , Folistatina/farmacología , Músculo Esquelético/patología , Unión Neuromuscular/efectos de los fármacos , Unión Neuromuscular/fisiología , Animales , Femenino , Folistatina/genética , Folistatina/metabolismo , Expresión Génica , Hipertrofia/genética , Masculino , Ratones Endogámicos C57BL , Tamaño de los Órganos/efectos de los fármacos , Tamaño de los Órganos/genética , Sarcopenia/genética , Sarcopenia/prevención & control , Transmisión Sináptica/efectos de los fármacos
12.
Neurobiol Aging ; 101: 285-296, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33678425

RESUMEN

Sarcopenia, or pathological loss of muscle mass and strength during aging, is an important contributor to loss of physical function in older adults. Sarcopenia is a multifactorial syndrome associated with intrinsic muscle and upstream neurological dysfunction. Exercise is well-established as an effective intervention for sarcopenia, but less is known about the long-term neurobiological impact of exercise. The goals of this study were to investigate the effects of exercise, alone or in combination with follistatin (FST) overexpression (antagonist of myostatin), on neuromuscular junction transmission and motor unit numbers in mice between the age of 22 and 27 months, ages at which prior studies have demonstrated that some motor unit loss is already evident. C57BL/6J mice underwent baseline assessment and were randomized to housing with or without voluntary running wheels and injection with adeno-associated virus to overexpress FST or vehicle. Groups for comparison included sedentary and running with and without FST. Longitudinal assessments showed significantly increased muscle mass and contractility in the 'running plus FST' group, but running, with and without FST, showed no effect on motor unit degeneration. In contrast, running, with and without FST, demonstrated marked improvement of neuromuscular junction transmission stability.


Asunto(s)
Envejecimiento/genética , Envejecimiento/patología , Folistatina/fisiología , Expresión Génica/genética , Expresión Génica/fisiología , Neuronas Motoras/patología , Unión Neuromuscular/fisiología , Carrera/fisiología , Sarcopenia/etiología , Transmisión Sináptica/genética , Envejecimiento/fisiología , Animales , Femenino , Folistatina/genética , Folistatina/metabolismo , Masculino , Ratones Endogámicos C57BL , Sarcopenia/genética , Sarcopenia/fisiopatología
13.
Neurobiol Aging ; 86: 182-190, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31866157

RESUMEN

Neurodegeneration has increasingly been considered an important factor in the pathogenesis of sarcopenia or age-related loss of muscle mass and strength. Experiments were designed to investigate the fidelity of neuromuscular junction (NMJ) transmission across the lifespan in hindlimb muscles of male and female C57BL/6J mice (at 12, 20, 24, 27, and 29 months of age). Single-fiber electromyography recordings demonstrated abrupt onset of NMJ transmission failure at 27 months of age. Failed NMJ transmission was a later onset phenotype as compared with other assessments of motor unit numbers, muscle contractility, and frailty which showed alterations at 20 months of age. Ex vivo NMJ recordings demonstrated no reduction of endplate current amplitude in support of reduced muscle fiber excitability as the cause of failed NMJ transmission in aged mice. Improved understanding of age-related neurodegeneration will likely have important implications in designing novel therapeutic interventions specific for different stages of sarcopenia. Our findings suggest reduced muscle excitability may be a potential therapeutic target for improvement of physical function in older adults.


Asunto(s)
Envejecimiento/fisiología , Unión Neuromuscular/fisiopatología , Fenotipo , Animales , Femenino , Masculino , Ratones Endogámicos C57BL , Contracción Muscular , Músculo Esquelético/fisiopatología , Sarcopenia/fisiopatología , Sarcopenia/terapia
14.
Aging Cell ; 18(5): e12992, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31290578

RESUMEN

Histone acetyltransferase 1 (Hat1) is responsible for the acetylation of newly synthesized histone H4 on lysines 5 and 12 during the process of chromatin assembly. To understand the broader biological role of Hat1, we have generated a conditional mouse knockout model of this enzyme. We previously reported that Hat1 is required for viability and important for mammalian development and genome stability. In this study, we show that haploinsufficiency of Hat1 results in a significant decrease in lifespan. Defects observed in Hat1+/- mice are consistent with an early-onset aging phenotype. These include lordokyphosis (hunchback), muscle atrophy, minor growth retardation, reduced subcutaneous fat, cancer, and paralysis. In addition, the expression of Hat1 is linked to the normal aging process as Hat1 mRNA and protein becomes undetectable in many tissues in old mice. At the cellular level, fibroblasts from Hat1 haploinsufficient embryos undergo early senescence and accumulate high levels of p21. Hat1+/- mouse embryonic fibroblasts (MEFs) display modest increases in endogenous DNA damage but have significantly higher levels of reactive oxygen species (ROS). Consistently, further studies show that Hat1-/- MEFs exhibit mitochondrial defects suggesting a critical role for Hat1 in mitochondrial function. Taken together, these data show that loss of Hat1 induces multiple hallmarks of early-onset aging.


Asunto(s)
Envejecimiento/metabolismo , Histona Acetiltransferasas/deficiencia , Histona Acetiltransferasas/metabolismo , Mitocondrias/enzimología , Mitocondrias/patología , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
15.
Neurobiol Aging ; 67: 128-136, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29656012

RESUMEN

In older adults, the loss of muscle strength (dynapenia) and the loss of muscle mass (sarcopenia) are important contributors to the loss of physical function. We sought to investigate dynapenia, sarcopenia, and the loss of motor unit function in aging mice. C57BL/6J mice were analyzed with cross-sectional (males: 3 vs. 27 months; males and females: 8 vs. 12 vs. 20 months) and longitudinal studies (males: 10-25 months) using in vivo electrophysiological measures of motor unit connectivity (triceps surae compound muscle action potential and motor unit number estimation), in vivo measures of plantar flexion torque, magnetic resonance imaging of hind limb muscle volume, and grip strength. Compound muscle action potential amplitude, motor unit number estimation, and plantar flexion torque were decreased at 20 months. In contrast, grip strength was reduced at 24 months. Motor unit number estimates correlated with muscle torque and hind limb muscle volume. Our results demonstrate that the loss of motor unit connectivity is an early finding in aging male and female mice and that muscle size and contractility are both associated with motor unit number.


Asunto(s)
Envejecimiento/fisiología , Neuronas Motoras/fisiología , Fuerza Muscular/fisiología , Músculo Esquelético/inervación , Músculo Esquelético/fisiología , Potenciales de Acción , Envejecimiento/patología , Animales , Estudios Transversales , Fenómenos Electrofisiológicos , Femenino , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Ratones Endogámicos C57BL , Contracción Muscular , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/patología , Tamaño de los Órganos
16.
PLoS One ; 11(12): e0167077, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27907033

RESUMEN

INTRODUCTION AND OBJECTIVE: Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disorder. SMA is caused by homozygous loss of the SMN1 gene and retention of the SMN2 gene resulting in reduced levels of full length SMN protein that are insufficient for motor neuron function. Various treatments that restore levels of SMN are currently in clinical trials and biomarkers are needed to determine the response to treatment. Here, we sought to investigate in SMA mice a set of plasma analytes, previously identified in patients with SMA to correlate with motor function. The goal was to determine whether levels of plasma markers were altered in the SMNΔ7 mouse model of SMA and whether postnatal SMN restoration resulted in normalization of the biomarkers. METHODS: SMNΔ7 and control mice were treated with antisense oligonucleotides (ASO) targeting ISS-N1 to increase SMN protein from SMN2 or scramble ASO (sham treatment) via intracerebroventricular injection on postnatal day 1 (P1). Brain, spinal cord, quadriceps muscle, and liver were analyzed for SMN protein levels at P12 and P90. Ten plasma biomarkers (a subset of biomarkers in the SMA-MAP panel available for analysis in mice) were analyzed in plasma obtained at P12, P30, and P90. RESULTS: Of the eight plasma biomarkers assessed, 5 were significantly changed in sham treated SMNΔ7 mice compared to control mice and were normalized in SMNΔ7 mice treated with ASO. CONCLUSION: This study defines a subset of the SMA-MAP plasma biomarker panel that is abnormal in the most commonly used mouse model of SMA. Furthermore, some of these markers are responsive to postnatal SMN restoration. These findings support continued clinical development of these potential prognostic and pharmacodynamic biomarkers.


Asunto(s)
Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/genética , Oligonucleótidos Antisentido/genética , Médula Espinal/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Animales , Animales Recién Nacidos , Biomarcadores/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Ensayos Clínicos como Asunto , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Prueba de Complementación Genética , Humanos , Inyecciones Intraventriculares , Hígado/metabolismo , Hígado/patología , Ratones , Ratones Transgénicos , Neuronas Motoras/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , Oligonucleótidos Antisentido/metabolismo , Médula Espinal/patología , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo
17.
Neuromuscul Disord ; 24(5): 436-44, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24656734

RESUMEN

Spinal muscular atrophy (SMA) is an autosomal recessive disease causing degeneration of lower motor neurons and muscle atrophy. One therapeutic avenue for SMA is targeting signaling pathways in muscle to ameliorate atrophy. Muscle Atrophy F-box, MAFbx, and Muscle RING Finger 1, MuRF1, are muscle-specific ubiquitin ligases upregulated in skeletal and cardiac muscle during atrophy. Homozygous knock-out of MAFbx or MuRF1 causes muscle sparing in adult mice subjected to atrophy by denervation. We wished to determine whether blockage of the major muscle atrophy pathways by deletion of MAFbx or MuRF1 in a mouse model of SMA would improve the phenotype. Deletion of MAFbx in the Δ7 SMA mouse model had no effect on the weight and the survival of the mice while deletion of MuRF1 was deleterious. MAFbx(-/-)-SMA mice showed a significant alteration in fiber size distribution tending towards larger fibers. In skeletal and cardiac tissue MAFbx and MuRF1 transcripts were upregulated whereas MuRF2 and MuRF3 levels were unchanged in Δ7 SMA mice. We conclude that deletion of the muscle ubiquitin ligases does not improve the phenotype of a Δ7 SMA mouse. Furthermore, it seems unlikely that the beneficial effect of HDAC inhibitors is mediated through inhibition of MAFbx and MuRF1.


Asunto(s)
Proteínas Musculares/deficiencia , Atrofia Muscular Espinal/patología , Atrofia Muscular/patología , Proteínas Ligasas SKP Cullina F-box/deficiencia , Ubiquitina-Proteína Ligasas/deficiencia , Animales , Peso Corporal , Modelos Animales de Enfermedad , Ratones Transgénicos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Miocardio/metabolismo , Miocardio/patología , Fenotipo , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Análisis de Supervivencia , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
18.
Ann Clin Transl Neurol ; 1(1): 34-44, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24511555

RESUMEN

OBJECTIVE: Preclinical therapies that restore survival motor neuron (SMN) protein levels can dramatically extend survival in spinal muscular atrophy (SMA) mouse models. Biomarkers are needed to effectively translate these promising therapies to clinical trials. Our objective was to investigate electrophysiological biomarkers of compound muscle action potential (CMAP), motor unit number estimation (MUNE) and electromyography (EMG) using an SMA mouse model. METHODS: Sciatic CMAP, MUNE, and EMG were obtained in SMNΔ7 mice at ages 3-13 days and at 21 days in mice with SMN selectively reduced in motor neurons (ChATCre ). To investigate these measures as biomarkers of treatment response, measurements were obtained in SMNΔ7 mice treated with antisense oligonucleotide (ASO) or gene therapy. RESULTS: CMAP was significantly reduced in SMNΔ7 mice at days 6-13 (p<0.01), and MUNE was reduced at days 7-13 (p<0.01). Fibrillations were present on EMG in SMNΔ7 mice but not controls (p=0.02). Similar findings were seen at 21 days in ChATCre mice. MUNE in ASO-treated SMNΔ7 mice were similar to controls at day 12 and 30. CMAP reduction persisted in ASO-treated SMNΔ7 mice at day 12 but was corrected at day 30. Similarly, CMAP and MUNE responses were corrected with gene therapy to restore SMN. INTERPRETATION: These studies confirm features of preserved neuromuscular function in the early postnatal period and subsequent motor unit loss in SMNΔ7 mice. SMN restoring therapies result in preserved MUNE and gradual repair of CMAP responses. This provides preclinical evidence for the utilization of CMAP and MUNE as biomarkers in future SMA clinical trials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA