Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Genome Res ; 34(2): 217-230, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38355305

RESUMEN

Secondary structure is a principal determinant of lncRNA function, predominantly regarding scaffold formation and interfaces with target molecules. Noncanonical secondary structures that form in nucleic acids have known roles in regulating gene expression and include G-quadruplexes (G4s), intercalated motifs (iMs), and R-loops (RLs). In this paper, we used the computational tools G4-iM Grinder and QmRLFS-finder to predict the formation of each of these structures throughout the lncRNA transcriptome in comparison to protein-coding transcripts. The importance of the predicted structures in lncRNAs in biological contexts was assessed by combining our results with publicly available lncRNA tissue expression data followed by pathway analysis. The formation of predicted G4 (pG4) and iM (piM) structures in select lncRNA sequences was confirmed in vitro using biophysical experiments under near-physiological conditions. We find that the majority of the tested pG4s form highly stable G4 structures, and identify many previously unreported G4s in biologically important lncRNAs. In contrast, none of the piM sequences are able to form iM structures, consistent with the idea that RNA is unable to form stable iMs. Unexpectedly, these C-rich sequences instead form Z-RNA structures, which have not been previously observed in regions containing cytosine repeats and represent an interesting and underexplored target for protein-RNA interactions. Our results highlight the prevalence and potential structure-associated functions of noncanonical secondary structures in lncRNAs, and show G4 and Z-RNA structure formation in many lncRNA sequences for the first time, furthering the understanding of the structure-function relationship in lncRNAs.


Asunto(s)
G-Cuádruplex , ARN Largo no Codificante , ARN , ARN Largo no Codificante/genética , Proteínas/genética
2.
Mol Pharm ; 21(1): 53-61, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38029291

RESUMEN

Epithelial-mesenchymal transition (EMT) is a reversible and dynamic biological process in which epithelial cells acquire mesenchymal characteristics including enhanced stemness and migratory ability. EMT can facilitate cancer metastasis and is a known driver of cellular resistance to common chemotherapeutic drugs, such as docetaxel. Current chemotherapeutic practices such as docetaxel treatment can promote EMT and increase the chance of tumor recurrence and resistance, calling for new approaches in cancer treatment. Here we show that prolonged docetaxel treatment at a sub-IC50 concentration inhibits EMT in immortalized human mammary epithelial (HMLE) cells. Using immunofluorescence, flow cytometry, and bulk transcriptomic sequencing to assess EMT progression, we analyzed a range of cellular markers of EMT in docetaxel-treated cells and observed an upregulation of epithelial markers and downregulation of mesenchymal markers in the presence of docetaxel. This finding suggests that docetaxel may have clinical applications not only as a cytotoxic drug but also as an inhibitor of EMT-driven metastasis and multidrug resistance depending on the concentration of its use.


Asunto(s)
Antineoplásicos , Transición Epitelial-Mesenquimal , Humanos , Docetaxel/farmacología , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Células Epiteliales
3.
Anal Chem ; 95(26): 9779-9786, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37339015

RESUMEN

The study of electrochemical reactivity requires analytical techniques capable of probing the diffusion of reactants and products to and from electrified interfaces. Information on diffusion coefficients is often obtained indirectly by modeling current transients and cyclic voltammetry data, but such measurements lack spatial resolution and are accurate only if mass transport by convection is negligible. Detecting and accounting for adventitious convection in viscous and wet solvents, such as ionic liquids, is technically challenging. We have developed a direct, spatiotemporally resolved optical tracking of diffusion fronts which can detect and resolve convective disturbances to linear diffusion. By tracking the movement of an electrode-generated fluorophore, we demonstrate that parasitic gas evolving reactions lead to 10-fold overestimates of macroscopic diffusion coefficients. A hypothesis is put forward linking large barriers to inner-sphere redox reactions, such as hydrogen gas evolution, to the formation of cation-rich overscreening and crowding double layer structures in imidazolium-based ionic liquids.

4.
Nucleic Acids Res ; 49(1): 1-14, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33275144

RESUMEN

Nucleic acid therapeutics (NATs) have proven useful in promoting the degradation of specific transcripts, modifying gene expression, and regulating mRNA splicing. In each situation, efficient delivery of nucleic acids to cells, tissues and intracellular compartments is crucial-both for optimizing efficacy and reducing side effects. Despite successes in NATs, our understanding of their cellular uptake and distribution in tissues is limited. Current methods have yielded insights into distribution of NATs within cells and tissues, but the sensitivity and resolution of these approaches are limited. Here, we show that nanoscale secondary ion mass spectrometry (NanoSIMS) imaging can be used to define the distribution of 5-bromo-2'-deoxythymidine (5-BrdT) modified antisense oligonucleotides (ASO) in cells and tissues with high sensitivity and spatial resolution. This approach makes it possible to define ASO uptake and distribution in different subcellular compartments and to quantify the impact of targeting ligands designed to promote ASO uptake by cells. Our studies showed that phosphorothioate ASOs are associated with filopodia and the inner nuclear membrane in cultured cells, and also revealed substantial cellular and subcellular heterogeneity of ASO uptake in mouse tissues. NanoSIMS imaging represents a significant advance in visualizing uptake and distribution of NATs; this approach will be useful in optimizing efficacy and delivery of NATs for treating human disease.


Asunto(s)
Oligonucleótidos Antisentido/análisis , Oligonucleótidos Fosforotioatos/análisis , Espectrometría de Masa de Ion Secundario/métodos , Células 3T3-L1 , Acetilgalactosamina/administración & dosificación , Acetilgalactosamina/análisis , Animales , Receptor de Asialoglicoproteína/análisis , Cesio , Células HEK293 , Células HeLa , Humanos , Riñón/química , Riñón/ultraestructura , Hígado/química , Hígado/ultraestructura , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica , Miocardio/química , Miocardio/ultraestructura , Oligonucleótidos Antisentido/farmacocinética , Oligonucleótidos Fosforotioatos/farmacocinética , Seudópodos/química , Seudópodos/ultraestructura , ARN Largo no Codificante/antagonistas & inhibidores , ARN Largo no Codificante/biosíntesis , ARN Largo no Codificante/genética , Fracciones Subcelulares/química , Azufre/análisis , Isótopos de Azufre/análisis , Distribución Tisular
5.
J Am Chem Soc ; 144(31): 14112-14120, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35901278

RESUMEN

Non-viral delivery is an important strategy for selective and efficient gene therapy, immunization, and RNA interference, which overcomes problems of genotoxicity and inherent immunogenicity associated with viral vectors. Liposomes and polymers are compelling candidates as carriers for intracellular, non-viral delivery, but maximal efficiencies of around 1% have been reported for the most advanced non-viral carriers. Here, we develop a library of dendronized bottlebrush polymers with controlled defects, displaying a level of precision surpassed only by biological molecules like DNA, RNA, and proteins. We test concurrent and competitive delivery of DNA and show for the first time that, while intracellular communication is thought to be an exclusively biomolecular phenomenon, such communication between synthetic macromolecular complexes can also take place. Our findings challenge the assumption that delivery agents behave as bystanders that enable transfection by passive intracellular release of genetic cargo and improve upon coarse strategies in intracellular carrier design lacking control over polymer sequence, architecture, and composition, leading to a hit-or-miss outcome. Understanding the communication that takes place between macromolecules will help improve the design of non-viral delivery agents and facilitate translation of genome engineering, vaccines, and nucleic acid-based therapies.


Asunto(s)
Liposomas , Polímeros , Comunicación Celular , ADN/metabolismo , Técnicas de Transferencia de Gen , Liposomas/metabolismo , Transfección
6.
Nucleic Acids Res ; 48(10): 5766-5776, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32313953

RESUMEN

Aberrant KRAS signaling is a driver of many cancers and yet remains an elusive target for drug therapy. The nuclease hypersensitive element of the KRAS promoter has been reported to form secondary DNA structures called G-quadruplexes (G4s) which may play important roles in regulating KRAS expression, and has spurred interest in structural elucidation studies of the KRAS G-quadruplexes. Here, we report the first high-resolution crystal structure (1.6 Å) of a KRAS G-quadruplex as a 5'-head-to-head dimer with extensive poly-A π-stacking interactions observed across the dimer. Molecular dynamics simulations confirmed that the poly-A π-stacking interactions are also maintained in the G4 monomers. Docking and molecular dynamics simulations with two G4 ligands that display high stabilization of the KRAS G4 indicated the poly-A loop was a binding site for these ligands in addition to the 5'-G-tetrad. Given sequence and structural variability in the loop regions provide the opportunity for small-molecule targeting of specific G4s, we envisage this high-resolution crystal structure for the KRAS G-quadruplex will aid in the rational design of ligands to selectively target KRAS.


Asunto(s)
G-Cuádruplex , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas p21(ras)/genética , Cristalografía por Rayos X , ADN/química , Dimerización , Ligandos , Simulación de Dinámica Molecular , Mutación , Poli A/química , Agua/química
7.
J Am Chem Soc ; 143(12): 4758-4765, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33705125

RESUMEN

Intracellular protein delivery enables selective regulation of cellular metabolism, signaling, and development through introduction of defined protein quantities into the cell. Most applications require that the delivered protein has access to the cytosol, either for protein activity or as a gateway to other organelles such as the nucleus. The vast majority of delivery vehicles employ an endosomal pathway however, and efficient release of entrapped protein cargo from the endosome remains a challenge. Recent research has made significant advances toward efficient cytosolic delivery of proteins using polymers, but the influence of polymer architecture on protein delivery is yet to be investigated. Here, we developed a family of dendronized polymers that enable systematic alterations of charge density and structure. We demonstrate that while modulation of surface functionality has a significant effect on overall delivery efficiency, the endosomal release rate can be highly regulated by manipulating polymer architecture. Notably, we show that large, multivalent structures cause slower sustained release, while rigid spherical structures result in rapid burst release.


Asunto(s)
Citosol/metabolismo , Polímeros/química , Ingeniería de Proteínas , Proteínas/metabolismo , Animales , Línea Celular , Citosol/química , Humanos , Ratones , Estructura Molecular , Polímeros/metabolismo , Proteínas/química
8.
J Am Chem Soc ; 142(49): 20600-20604, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33253551

RESUMEN

Guanine- and cytosine-rich nucleic acid sequences have the potential to form secondary structures such as G-quadruplexes and i-motifs, respectively. We show that stabilization of G-quadruplexes using small molecules destabilizes the i-motifs, and vice versa, indicating these gene regulatory controllers are interdependent in human cells. This has important implications as these structures are predominately considered as isolated structural targets for therapy, but their interdependency highlights the interplay of both structures as an important gene regulatory switch.


Asunto(s)
G-Cuádruplex , Secuencia de Bases , Puntos de Control del Ciclo Celular/efectos de los fármacos , Núcleo Celular/química , Núcleo Celular/metabolismo , Cromatina/metabolismo , Elipticinas/farmacología , G-Cuádruplex/efectos de los fármacos , Sitios Genéticos , Humanos , Ligandos , Células MCF-7
9.
Langmuir ; 36(31): 9074-9080, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32672978

RESUMEN

Successful intracellular delivery of therapeutics requires interactions at several liquid-solid interfaces, including cell surface, endosomal membranes, and-depending on the therapeutic-the nuclear membrane. Understanding the dynamics of polymer kinetics at the liquid-solid interface is fundamental for the design of polymers for such biomedical delivery applications. However, the effect of polymer architecture and charge density on polymer kinetics is not readily investigated using routine techniques, and the role of such parameters in the context of gene delivery remains unknown. We adopted a synthetic strategy which enabled the systematic manipulation of charge density, flexibility, and molecular weight using a dendronized linear polymeric architecture. High-speed atomic force microscopy (HS-AFM) was used as a label-free method to directly observe the polymers' dynamic properties, such as velocity, displacement, and diffusion, in physiologically relevant conditions. Importantly, we found that the physical parameters measured by HS-AFM relate to the transfection potential of the individual polymers and may be a valuable tool in screening structural polymer variants.

10.
Nanomedicine ; 29: 102264, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32659322

RESUMEN

Therapeutic approaches for myocardial ischemia-reperfusion injury (MI) have been ineffective due to limited bioavailability and poor specificity. We have previously shown that a peptide that targets the α-interaction domain of the cardiac L-type calcium channel (AID-peptide) attenuates MI when tethered to transactivator of transcription sequence (TAT) or spherical nanoparticles. However some reservations remain regarding use of these delivery platforms due to the relationship with human immunodeficiency virus, off-target effects and toxicity. Here we investigate the use of linear dendronized polymers (denpols) to deliver AID-peptide as a potential MI therapy using in vitro, ex vivo and in vivo models. Optimized denpol-complexed AID-peptide facilitated in vitro cardiac uptake of AID-peptide, and reduced MI. Maximal in vivo cardiac uptake was achieved within the 2 h therapeutic time window for acute myocardial infarction. Importantly, optimized denpol-complexed AID-peptide was not toxic. This platform may represent an alternative therapeutic approach for the prevention of MI.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/genética , Corazón/efectos de los fármacos , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Nanopartículas/química , Animales , Bloqueadores de los Canales de Calcio/química , Canales de Calcio Tipo L/efectos de los fármacos , Modelos Animales de Enfermedad , Cobayas , Corazón/fisiopatología , Humanos , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/efectos de los fármacos , Péptidos/química , Péptidos/farmacología , Polímeros/química , Polímeros/farmacología
11.
J Neurosci ; 38(29): 6491-6504, 2018 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-29915135

RESUMEN

Loss of function following injury to the CNS is worsened by secondary degeneration of neurons and glia surrounding the injury and is initiated by oxidative damage. However, it is not yet known which cellular populations and structures are most vulnerable to oxidative damage in vivo Using Nanoscale secondary ion mass spectrometry (NanoSIMS), oxidative damage was semiquantified within cellular subpopulations and structures of optic nerve vulnerable to secondary degeneration, following a partial transection of the optic nerve in adult female PVG rats. Simultaneous assessment of cellular subpopulations and structures revealed oligodendroglia as the most vulnerable to DNA oxidation following injury. 5-Ethynyl-2'-deoxyuridine (EdU) was used to label cells that proliferated in the first 3 d after injury. Injury led to increases in DNA, protein, and lipid damage in oligodendrocyte progenitor cells and mature oligodendrocytes at 3 d, regardless of proliferative state, associated with a decline in the numbers of oligodendrocyte progenitor cells at 7 d. O4+ preoligodendrocytes also exhibited increased lipid peroxidation. Interestingly, EdU+ mature oligodendrocytes derived after injury demonstrated increased early susceptibility to DNA damage and lipid peroxidation. However, EdU- mature oligodendrocytes with high 8-hydroxyguanosine immunoreactivity were more likely to be caspase3+ By day 28, newly derived mature oligodendrocytes had significantly reduced myelin regulatory factor gene mRNA, indicating that the myelination potential of these cells may be reduced. The proportion of caspase3+ oligodendrocytes remained higher in EdU- cells. Innovative use of NanoSIMS together with traditional immunohistochemistry and in situ hybridization have enabled the first demonstration of subpopulation specific oligodendroglial vulnerability to oxidative damage, due to secondary degeneration in vivoSIGNIFICANCE STATEMENT Injury to the CNS is characterized by oxidative damage in areas adjacent to the injury. However, the cellular subpopulations and structures most vulnerable to this damage remain to be elucidated. Here we use powerful NanoSIMS techniques to show increased oxidative damage in oligodendroglia and axons and to demonstrate that cells early in the oligodendroglial lineage are the most vulnerable to DNA oxidation. Further immunohistochemical and in situ hybridization investigation reveals that mature oligodendrocytes derived after injury are more vulnerable to oxidative damage than their counterparts existing at the time of injury and have reduced myelin regulatory factor gene mRNA, yet preexisting oligodendrocytes are more likely to die.


Asunto(s)
Oligodendroglía/metabolismo , Oligodendroglía/patología , Traumatismos del Nervio Óptico/fisiopatología , Estrés Oxidativo/fisiología , Animales , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Femenino , Traumatismos del Nervio Óptico/metabolismo , Traumatismos del Nervio Óptico/patología , Ratas
12.
Langmuir ; 33(45): 12926-12933, 2017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29022719

RESUMEN

The composition of the protein corona formed on poly(ethylene glycol)-functionalized (PEGylated) poly(glycidyl methacrylate) (PGMA) nanoparticles (NPs) was qualitatively and quantitatively compared to the protein corona on non-PEGylated PGMA NPs. Despite the reputation of PEGylated NPs for stealth functionality, we demonstrate the preferential enrichment of specific serum proteins of varied biological function in the protein corona on PEGylated NPs when compared to non-PEGylated NPs. Additionally, we suggest that the base material of polymeric NPs plays a role in the preferential enrichment of select serum proteins to the hard corona.


Asunto(s)
Nanopartículas , Proteínas Sanguíneas , Polietilenglicoles , Polímeros , Corona de Proteínas
13.
Nucleic Acids Res ; 43(7): 3826-40, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25765647

RESUMEN

SFPQ, (a.k.a. PSF), is a human tumor suppressor protein that regulates many important functions in the cell nucleus including coordination of long non-coding RNA molecules into nuclear bodies. Here we describe the first crystal structures of Splicing Factor Proline and Glutamine Rich (SFPQ), revealing structural similarity to the related PSPC1/NONO heterodimer and a strikingly extended structure (over 265 Å long) formed by an unusual anti-parallel coiled-coil that results in an infinite linear polymer of SFPQ dimers within the crystals. Small-angle X-ray scattering and transmission electron microscopy experiments show that polymerization is reversible in solution and can be templated by DNA. We demonstrate that the ability to polymerize is essential for the cellular functions of SFPQ: disruptive mutation of the coiled-coil interaction motif results in SFPQ mislocalization, reduced formation of nuclear bodies, abrogated molecular interactions and deficient transcriptional regulation. The coiled-coil interaction motif thus provides a molecular explanation for the functional aggregation of SFPQ that directs its role in regulating many aspects of cellular nucleic acid metabolism.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Polímeros/química , Proteínas de Unión al ARN/química , Western Blotting , Cristalografía por Rayos X , Ensayo de Cambio de Movilidad Electroforética , Humanos , Microscopía Electrónica de Transmisión , Factor de Empalme Asociado a PTB , Conformación Proteica , Proteínas de Unión al ARN/fisiología
14.
Chem Soc Rev ; 43(5): 1387-99, 2014 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-24346239

RESUMEN

Recent advances in continuous-flow processors, which integrate sustainability metrics including scalability, have established their utility in materials and chemical processing. In this review the spinning disc processor (SDP) and the related rotating tube processor (RTP), are highlighted in the use of highly sheared and micro-mixed dynamic thin films in gaining control over such processing for a wide range of applications. Both SDP and RTP have a number of control parameters beyond traditional batch processing which are effective in (i) manipulating the size, shape, defects, agglomeration, and precipitation of nanoparticles, as well as decorating preformed nano-structures, for a variety of inorganic and organic compounds, (ii) controlling chemical reactivity and selectivity including the formation of polymers, and (iii) disassembling self organised nano-structures, as a tool for probing macromolecular structure under shear conditions.

15.
Phys Chem Chem Phys ; 16(15): 6986-9, 2014 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-24600688

RESUMEN

Chemical reactions inside carbon nanotubes can yield unusual outcomes. Molecular dynamics simulations show that within the confined space of carbon nanotubes, the 1,4-exo adduct of a Diels-Alder cycloaddition may be produced instead of the 9,10-adduct, which is favoured in bulk. The likely product is highly dependent on the nanotube radius and reactant size.


Asunto(s)
Simulación de Dinámica Molecular , Nanotubos de Carbono/química , Modelos Moleculares , Estereoisomerismo
16.
Chem Sci ; 14(28): 7681-7687, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37476710

RESUMEN

DNA G-quadruplexes (G4s) have been identified as important biological targets for transcriptional, translational, and epigenetic regulation. The stabilisation of G4s with small molecule ligands has emerged as a technique to regulate gene expression and as a potential therapeutic approach for human diseases. Here, we demonstrate that ligand stabilisation of G4s causes altered chromatin accessibility dependent on the targeting specificity of the molecule. In particular, stabilisation of a target G4 using the highly specific GTC365 ligand resulted in differential accessibility of 61 genomic regions, while the broad-targeting G4 ligand, GQC-05, stabilised many G4s and induced a global shift towards increased accessibility of gene promoter regions. Interestingly, while we observed distinct effects of each ligand on RNA expression levels and the induction of DNA double-stranded breaks, both ligands modified DNA damage response pathways. Our work represents the dual possibility of G4-stabilising ligands for specific or global chromatin modulation via unique targeting characteristics.

17.
Small ; 8(10): 1579-89, 2012 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-22411702

RESUMEN

The use of nanoparticles for targeted delivery of therapeutic agents to sites of injury or disease in the central nervous system (CNS) holds great promise. However, the biodistribution of nanoparticles following in vivo administration is often unknown, and concerns have been raised regarding potential toxicity. Using poly(glycidyl methacrylate) (PGMA) nanoparticles coated with polyethylenimine (PEI) and containing superparamagnetic iron oxide nanoparticles as a magnetic resonance imaging (MRI) contrast agent and rhodamine B as a fluorophore, whole animal MRI and fluorescence analyses are used to demonstrate that these nanoparticles (NP) remain close to the site of injection into a partial injury of the optic nerve, a CNS white matter tract. In addition, some of these NP enter axons and are transported to parent neuronal somata. NP also remain in the eye following intravitreal injection, a non-injury model. Considerable infiltration of activated microglia/macrophages occurs in both models. Using magnetic concentration and fluorescence visualization of tissue homogenates, no dissemination of the NP into peripheral tissues is observed. Histopathological analysis reveals no toxicity in organs other than at the injection sites. Multifunctional nanoparticles may be a useful mechanism to deliver therapeutic agents to the injury site and somata of injured CNS neurons and thus may be of therapeutic value following brain or spinal cord trauma.


Asunto(s)
Imagenología Tridimensional/métodos , Nanopartículas/administración & dosificación , Nervio Óptico/metabolismo , Polímeros/administración & dosificación , Animales , Femenino , Inyecciones Intravítreas , Imagen por Resonancia Magnética , Microscopía Fluorescente , Nervio Óptico/patología , Ratas , Retina/patología , Factores de Tiempo , Distribución Tisular
18.
Nat Commun ; 13(1): 5555, 2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-36138009

RESUMEN

Scarring is a lifelong consequence of skin injury, with scar stiffness and poor appearance presenting physical and psychological barriers to a return to normal life. Lysyl oxidases are a family of enzymes that play a critical role in scar formation and maintenance. Lysyl oxidases stabilize the main component of scar tissue, collagen, and drive scar stiffness and appearance. Here we describe the development and characterisation of an irreversible lysyl oxidase inhibitor, PXS-6302. PXS-6302 is ideally suited for skin treatment, readily penetrating the skin when applied as a cream and abolishing lysyl oxidase activity. In murine models of injury and fibrosis, topical application reduces collagen deposition and cross-linking. Topical application of PXS-6302 after injury also significantly improves scar appearance without reducing tissue strength in porcine injury models. PXS-6302 therefore represents a promising therapeutic to ameliorate scar formation, with potentially broader applications in other fibrotic diseases.


Asunto(s)
Cicatriz , Proteína-Lisina 6-Oxidasa , Animales , Cicatriz/tratamiento farmacológico , Colágeno , Fibrosis , Ratones , Piel , Porcinos
19.
Chemistry ; 17(33): 9188-92, 2011 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-21732440

RESUMEN

Energy production by using hydrogen gas as a feedstock is considered to be one of the keys to creating clean energy, with the proviso that the gas is generated in a sustainable way with no emissions. A simple, self-sustaining process generating hydrogen gas from methane using inexpensive stainless steel wire-mesh catalysts at elevated temperatures (800 °C) is reported. A theoretical analysis of the production of electricity by this process revealed peak chain energy efficiencies up to 21% (emission free) when using a percentage of the produced hydrogen (approximately 40% of purified yield) as the heat source. In addition, a practical method has been developed to purify the carbon byproduct, affording essentially pure highly graphitic spheroidal carbon for advanced materials applications.

20.
Analyst ; 136(7): 1502-6, 2011 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-21305062

RESUMEN

Here we describe a non-traditional method to identify cancerous human cervical epithelial cells in a culture dish based on physical adhesion between silica beads and cells. It is a simple optical fluorescence-based technique which detects the relative difference in the amount of fluorescent silica beads physically adherent to surfaces of cancerous and normal cervical cells. The method utilizes the centripetal force gradient that occurs in a rotating culture dish. Due to the variation in the balance between adhesion and centripetal forces, cancerous and normal cells demonstrate clearly distinctive distributions of the fluorescent particles adherent to the cell surface over the culture dish. The method demonstrates higher adhesion of silica particles to normal cells compared to cancerous cells. The difference in adhesion was initially observed by atomic force microscopy (AFM). The AFM data were used to design the parameters of the rotational dish experiment. The optical method that we describe is much faster and technically simpler than AFM. This work provides proof of the concept that physical interactions can be used to accurately discriminate normal and cancer cells.


Asunto(s)
Cuello del Útero/citología , Colorantes Fluorescentes/química , Microscopía de Fuerza Atómica/métodos , Dióxido de Silicio/química , Neoplasias del Cuello Uterino/diagnóstico , Adhesión Celular , Células Cultivadas , Células Epiteliales/citología , Femenino , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA