Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Pharmacol Res ; 192: 106757, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37023992

RESUMEN

The liver is a major organ that is involved in essential biological functions such as digestion, nutrient storage, and detoxification. Furthermore, it is one of the most metabolically active organs with active roles in regulating carbohydrate, protein, and lipid metabolism. Hepatocellular carcinoma is a cancer of the liver that is associated in settings of chronic inflammation such as viral hepatitis, repeated toxin exposure, and fatty liver disease. Furthermore, liver cancer is the most common cause of death associated with cirrhosis and is the 3rd leading cause of global cancer deaths. LKB1 signaling has been demonstrated to play a role in regulating cellular metabolism under normal and nutrient deficient conditions. Furthermore, LKB1 signaling has been found to be involved in many cancers with most reports identifying LKB1 to have a tumor suppressive role. In this review, we use the KMPlotter database to correlate RNA levels of LKB1 signaling genes and hepatocellular carcinoma patient survival outcomes with the hopes of identifying potential biomarkers clinical usage. Based on our results STRADß, CAB39L, AMPKα, MARK2, SIK1, SIK2, BRSK1, BRSK2, and SNRK expression has a statistically significant impact on patient survival.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo
2.
J Immunol ; 204(7): 1998-2005, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32144163

RESUMEN

Mice have been used as accepted tools for investigating complex human diseases and new drug therapies because of their shared genetics and anatomical characteristics with humans. However, the tissues in mice are different from humans in that human cells have a natural mutation in the α1,3 galactosyltransferase (α1,3GT) gene and lack α-Gal epitopes on glycosylated proteins, whereas mice and other nonprimate mammals express this epitope. The lack of α-Gal epitopes in humans results in the loss of immune tolerance to this epitope and production of abundant natural anti-Gal Abs. These natural anti-Gal Abs can be used as an adjuvant to enhance processing of vaccine epitopes to APCs. However, wild-type mice and all existing humanized mouse models cannot be used to test the efficacy of vaccines expressing α-Gal epitopes because they express α-Gal epitopes and lack anti-Gal Abs. Therefore, in an effort to bridge the gap between the mouse models and humans, we developed a new humanized mouse model that mimics humans in that it lacks α-Gal epitopes and secretes human anti-Gal Abs. The new humanized mouse model (Hu-NSG/α-Galnull) is designed to be used for preclinical evaluations of viral and tumor vaccines based on α-Gal epitopes, human-specific immune responses, xenotransplantation studies, and in vivo biomaterials evaluation. To our knowledge, our new Hu-NSG/α-Galnull is the first available humanized mouse model with such features.


Asunto(s)
Anticuerpos/inmunología , Epítopos/inmunología , Galactosiltransferasas/inmunología , alfa-Galactosidasa/inmunología , Animales , Vacunas contra el Cáncer/inmunología , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Endogámicos C57BL , Trasplante Heterólogo/métodos
3.
J Cell Physiol ; 234(12): 22242-22259, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31074012

RESUMEN

Sustained inflammation and matrix metalloproteinase (MMP) activation contribute to vascular occlusive/proliferative disorders. Interleukin-17 (IL-17) is a proinflammatory cytokine that signals mainly via TRAF3 Interacting Protein 2 (TRAF3IP2), an upstream regulator of various critical transcription factors, including AP-1 and NF-κB. Reversion inducing cysteine rich protein with kazal motifs (RECK) is a membrane-anchored MMP inhibitor. Here we investigated whether IL-17A/TRAF3IP2 signaling promotes MMP-13-dependent human aortic smooth muscle cell (SMC) proliferation and migration, and determined whether RECK overexpression blunts these responses. Indeed, IL-17A treatment induced (a) JNK, p38 MAPK, AP-1, NF-κB, and CREB activation, (b) miR-21 induction, (c) miR-27b and miR-320 inhibition, (d) MMP-13 expression and activation, (e) RECK suppression, and (f) SMC migration and proliferation, all in a TRAF3IP2-dependent manner. In fact, gain of TRAG3IP2 function, by itself, induced MMP-13 expression and activation, and RECK suppression. Furthermore, treatment with recombinant MMP-13 stimulated SMC migration in part via ERK activation. Importantly, RECK gain-of-function attenuated MMP-13 activity without affecting its mRNA or protein levels, and inhibited IL-17A- and MMP-13-induced SMC migration. These results indicate that increased MMP-13 and decreased RECK contribute to IL-17A-induced TRAF3IP2-dependent SMC migration and proliferation, and suggest that TRAF3IP2 inhibitors or RECK inducers have the potential to block the progression of neointimal thickening in hyperplastic vascular diseases.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Aorta/citología , Movimiento Celular , Proteínas Ligadas a GPI/metabolismo , Interleucina-17/metabolismo , Metaloproteinasa 13 de la Matriz/metabolismo , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Proliferación Celular , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Modelos Biológicos , Proteínas Recombinantes/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Transducción de Señal , Enfermedades Vasculares/metabolismo , Enfermedades Vasculares/patología
4.
J Mol Cell Cardiol ; 121: 107-123, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29981796

RESUMEN

Persistent inflammation promotes development and progression of heart failure (HF). TWEAK (TNF-Related WEAK Inducer Of Apoptosis), a NF-κB- and/or AP-1-responsive proinflammatory cytokine that signals via TWEAK receptor (TWEAKR), is expressed at high levels in human and preclinical models of HF. Since the adapter molecule TRAF3IP2 (TRAF3 Interacting Protein 2) is an upstream regulator of various proinflammatory pathways, including those activated by NF-κB and AP-1, we hypothesized that targeting TRAF3IP2 inhibits TWEAK-induced proinflammatory and pro-fibrotic responses in vitro and in vivo. Consistent with the hypothesis, forced expression of TRAF3IP2 upregulated TWEAK and its receptor expression in cultured adult mouse cardiac fibroblasts (CF). Further, exogenous TWEAK upregulated TRAF3IP2 expression in a time- and dose-dependent manner, suggesting a positive-feedback regulation of TRAF3IP2 and TWEAK. TWEAK also promoted TRAF3IP2 nuclear translocation. Confirming its critical role in TWEAK signaling, silencing TRAF3IP2 inhibited TWEAK autoregulation, TWEAKR upregulation, p38 MAPK, NF-κB and AP-1 activation, inflammatory cytokine expression, MMP and TIMP1 activation, collagen expression and secretion, and importantly, proliferation and migration. Recapitulating these in vitro results, continuous infusion of TWEAK for 7 days increased systolic blood pressure (SBP), upregulated TRAF3IP2 expression, activated p38 MAPK, NF-κB and AP-1, induced the expression of multiple proinflammatory and pro-fibrotic mediators, and interstitial fibrosis in hearts of wild type mice. These proinflammatory and pro-fibrotic changes occurred in conjunction with myocardial hypertrophy and contractile dysfunction. Importantly, genetic ablation of TRAF3IP2 inhibited these TWEAK-induced adverse cardiac changes independent of increases in SBP, indicating that TRAF3IP2 plays a causal role, and thus a therapeutic target, in chronic inflammatory and fibro-proliferative diseases.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Citocina TWEAK/genética , Insuficiencia Cardíaca/genética , Inflamación/genética , Receptor de TWEAK/genética , Animales , Presión Sanguínea/genética , Movimiento Celular/genética , Proliferación Celular/genética , Fibroblastos/patología , Regulación de la Expresión Génica/genética , Corazón/fisiopatología , Insuficiencia Cardíaca/fisiopatología , Humanos , Inflamación/fisiopatología , Ratones , FN-kappa B/genética , Transducción de Señal/genética , Factor de Transcripción AP-1/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética
5.
Cell Biol Int ; 42(1): 34-44, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28833843

RESUMEN

BRCA1 plays a central role in DNA repair. Although N-terminal RING and C-terminal BRCT domains are studied well, the functions of the central region of BRCA1 are poorly characterized. Here, we report a structural and functional analysis of BRCA1 alleles and functional human BRCA1 in chicken B-lymphocyte cell line DT40. The combination of "homologous recombineering" and "RT-cassette" enables modifications of chicken BRCA1 gene in Escherichia coli. Mutant BRCA1 knock-in DT40 cell lines were generated using BRCA1 mutation constructs by homologous recombination with a targeting efficiency of up to 100%. Our study demonstrated that deletion of motifs 2-9 BRCA1Δ/Δ181-1415 (Caenorhabditis elegans BRCA1 mimic) or deletion of motif 1 BRCA1Δ/Δ126-136 decreased cell viability following cisplatin treatment. Furthermore, deletion of motifs 5 and 6 BRCA1Δ/Δ525-881 within DNA-binding region, even the conserved 7-amino acid deletion BRCA1Δ/Δ872-878 within motif 6, caused a decreased cell viability upon cisplatin treatment. Surprisingly, human BRCA1 is functional in DT40 cells as indicated by DNA damage-induced Rad 51 foci formation in human BRCA1 knock-in DT40 cells. These results demonstrate that those conserved motifs within the central region are essential for DNA repair functions of BRCA1. These findings provide a valuable tool for the development of new therapeutic modalities of breast cancer linked to BRCA1.


Asunto(s)
Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Alelos , Animales , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Pollos , Cisplatino/farmacología , Daño del ADN/genética , Reparación del ADN , Femenino , Humanos , Linfoma de Células B , Mutación , Proteínas Nucleares/metabolismo , Dominios Proteicos , Relación Estructura-Actividad
6.
Am J Physiol Cell Physiol ; 309(8): C522-31, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26224580

RESUMEN

Statins reduce atherosclerotic events and cardiovascular mortality. Their side effects include memory loss, myopathy, cataract formation, and increased risk of diabetes. As cardiovascular mortality relates to plaque instability, which depends on the integrity of the fibrous cap, we hypothesize that the inhibition of the potential of mesenchymal stem cells (MSCs) to differentiate into macrophages would help to explain the long known, but less understood "non-lipid-associated" or pleiotropic benefit of statins on cardiovascular mortality. In the present investigation, MSCs were treated with atorvastatin or pravastatin at clinically relevant concentrations and their proliferation, differentiation potential, and gene expression profile were assessed. Both types of statins reduced the overall growth rate of MSCs. Especially, statins reduced the potential of MSCs to differentiate into macrophages while they exhibited no direct effect on macrophage function. These findings suggest that the limited capacity of MSCs to differentiate into macrophages could possibly result in decreased macrophage density within the arterial plaque, reduced inflammation, and subsequently enhance plaque stability. This would explain the non-lipid-associated reduction in cardiovascular events. On a negative side, statins impaired the osteogenic and chondrogenic differentiation potential of MSCs and increased cell senescence and apoptosis, as indicated by upregulation of p16, p53 and Caspase 3, 8, and 9. Statins also impaired the expression of DNA repair genes, including XRCC4, XRCC6, and Apex1. While the effect on macrophage differentiation explains the beneficial side of statins, their impact on other biologic properties of stem cells provides a novel explanation for their adverse clinical effects.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/fisiología , Tejido Adiposo/citología , Adulto , Anciano , Envejecimiento , Ciclo Celular , Células Cultivadas , Humanos , Inflamación , Persona de Mediana Edad , Adulto Joven
7.
Am J Physiol Heart Circ Physiol ; 307(8): H1187-95, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25320332

RESUMEN

The effect of intratracheal administration of cyclooxygenase-1 (COX-1)-modified adipose stem cells (ASCs) on monocrotaline-induced pulmonary hypertension (MCT-PH) was investigated in the rat. The COX-1 gene was cloned from rat intestinal cells, fused with a hemagglutanin (HA) tag, and cloned into a lentiviral vector. The COX-1 lentiviral vector was shown to enhance COX-1 protein expression and inhibit proliferation of vascular smooth muscle cells without increasing apoptosis. Human ASCs transfected with the COX-1 lentiviral vector (ASCCOX-1) display enhanced COX-1 activity while exhibiting similar differentiation potential compared with untransduced (native) ASCs. PH was induced in rats with MCT, and the rats were subsequently treated with intratracheal injection of ASCCOX-1 or untransduced ASCs. The intratracheal administration of ASCCOX-1 3 × 10(6) cells on day 14 after MCT treatment significantly attenuated MCT-induced PH when hemodynamic values were measured on day 35 after MCT treatment whereas administration of untransduced ASCs had no significant effect. These results indicate that intratracheally administered ASCCOX-1 persisted for at least 21 days in the lung and attenuate MCT-induced PH and right ventricular hypertrophy. In addition, vasodilator responses to the nitric oxide donor sodium nitroprusside were not altered by the presence of ASCCOX-1 in the lung. These data emphasize the effectiveness of ASCCOX-1 in the treatment of experimentally induced PH.


Asunto(s)
Tejido Adiposo/citología , Células Madre Adultas/metabolismo , Ciclooxigenasa 1/metabolismo , Hipertensión Pulmonar/terapia , Trasplante de Células Madre , Células Madre Adultas/citología , Células Madre Adultas/trasplante , Animales , Diferenciación Celular , Ciclooxigenasa 1/genética , Vectores Genéticos/genética , Humanos , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/metabolismo , Lentivirus/genética , Monocrotalina/toxicidad , Ratas , Ratas Sprague-Dawley
8.
BMC Cancer ; 14: 44, 2014 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-24468161

RESUMEN

BACKGROUND: Membrane vesicles released by neoplastic cells into extracellular medium contain potential of carrying arrays of oncogenic molecules including proteins and microRNAs (miRNA). Extracellular (exosome-like) vesicles play a major role in cell-to-cell communication. Thus, the characterization of proteins and miRNAs of exosome-like vesicles is imperative in clarifying intercellular signaling as well as identifying disease markers. METHODS: Exosome-like vesicles were isolated using gradient centrifugation from MCF-7 and MDA-MB 231 cultures. Proteomic profiling of vesicles using liquid chromatography-mass spectrometry (LC-MS/MS) revealed different protein profiles of exosome-like vesicles derived from MCF-7 cells (MCF-Exo) than those from MDA-MB 231 cells (MDA-Exo). RESULTS: The protein database search has identified 88 proteins in MDA-Exo and 59 proteins from MCF-Exo. Analysis showed that among all, 27 proteins were common between the two exosome-like vesicle types. Additionally, MDA-Exo contains a higher amount of matrix-metalloproteinases, which might be linked to the enhanced metastatic property of MDA-MB 231 cells. In addition, microarray analysis identified several oncogenic miRNA between the two types vesicles. CONCLUSIONS: Identification of the oncogenic factors in exosome-like vesicles is important since such vesicles could convey signals to non-malignant cells and could have an implication in tumor progression and metastasis.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Exosomas/genética , Exosomas/metabolismo , Perfilación de la Expresión Génica/métodos , Proteómica/métodos , Neoplasias de la Mama/patología , Línea Celular Tumoral , Cromatografía Liquida/métodos , Exosomas/patología , Femenino , Humanos , Células MCF-7 , Espectrometría de Masas/métodos
9.
Plast Reconstr Surg Glob Open ; 12(7): e6009, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39081811

RESUMEN

Despite the critical roles of nondominant perforators, choke vessels, and direct and indirect linking vessels in flap vascularity, current models of flap perfusion focus on a primary large caliber perforators. The delay phenomenon, microvascularization, neovascularization, and vascular evolution, which depend on smaller caliber vessels, remain unaccounted for. We propose that the "circulasome" consists of the sum of the entire vascular components of a given region, such that the region is supplied by a primary supplying vessel. The circulasome represents one of the indices of flap supply and is proportional to the angiogenic potential of the region and the vascular substrate capable of promoting growth of vascular networks. By accounting for both the primary flap supplying vessel and secondary vascular structures, the circulasome provides a unifying explanation for neovascularization, delay phenomenon, angiosome and perforasome theories, and vascular evolution in flaps.

10.
Plast Reconstr Surg Glob Open ; 12(4): e5711, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38600970

RESUMEN

Background: Type 2 muscle flaps are characterized by major and minor pedicles, such that the minor pedicle is unreliable, and the major pedicle is a requirement for the success of the flap. The role of the minor pedicle, beyond the decreased caliber and decreased vascular territory in comparison to the major pedicle, is poorly understood. We sought to model the fluid dynamics of a model flap containing a major and minor pedicle to understand differences between the pedicles and the implications on perfusion. Methods: We first generated a computer-assisted design model of a type 2 flap with a major and minor pedicle. We then performed computational fluid dynamics to analyze velocities and flow within the pedicles and flap. Results: In our investigation, we found that the flow velocity within the major pedicle was higher than the minor pedicle, indicative of decreased resistance to flow. Concomitantly, we found decreased pressures within the major pedicle, reflecting decreasing resistance to flow. Interestingly, we found increased kinematic viscosity in flap areas supplied by the minor pedicle, suggesting decreased flow rates and increased resistance. Conclusions: We identified that the major pedicle has increased flow velocity, decreased resistance, and decreased kinematic viscosity, suggesting its dominance in maintaining flap perfusion. Our study also identifies computational fluid dynamics as a powerful tool in studying flap perfusion dynamics.

11.
Plast Reconstr Surg Glob Open ; 12(4): e5770, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38660335

RESUMEN

Low volumetric retention limits the utility of fat grafting. Although inclusion of stem cells and platelet-rich plasma have been proposed to enhance graft retention, accumulating evidence has failed to show a clear benefit. Here, we propose a strategy to pharmacologically enhance stemness of stem and progenitor cell populations in fat grafts to promote increased volume retention and tissue health. We also propose how to integrate stemness-promoting and differentiation-promoting therapies such as platelet-rich plasma, and viability promoting therapies within the common fat grafting workflow to achieve optimal fat grafting results.

12.
Plast Reconstr Surg Glob Open ; 12(6): e5918, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38911578

RESUMEN

Background: Topical nitrates have demonstrated efficacy in improving flap perfusion. However, evidence for nontopical nitrates in modulation of flap perfusion dynamics has yet to be consolidated. Here, we review evidence regarding the use of intravascular, sublingual, and oral nitrates in modulating flap perfusion. Methods: We performed a review of the literature for evidence linking nontopical nitrates and flap perfusion, and included clinical studies, animal studies, and in vitro studies. Results: Evidence suggests that intravascular, sublingual, and oral nitrates exert vasodilatory properties, which may be harnessed for identification of perforators and improved flap perfusion. We also found evidence suggesting nitrates may facilitate ischemic preconditioning while reducing ischemia-reperfusion injury. Conclusions: Nitrates delivered intravascularly, sublingually, or orally may increase flap perfusion and serve as a method for ischemic preconditioning, particularly in the intraoperative setting.

13.
Breast Cancer Res Treat ; 137(1): 69-79, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23143214

RESUMEN

Breast cancer tissue is a heterogeneous cellular milieu comprising cancer and host cells. The interaction between breast malignant and non-malignant cells takes place in breast tumor microenvironment (TM), and has a crucial role in breast cancer progression. In addition to cellular component of TM, it mainly consists of cytokines released by tumor cells. The tumor-tropic capacity of mesenchymal stem cells (MSCs) and their interaction with breast TM is an active area of investigation. In the present communication, the interplay between the breast resident adipose tissue-derived MSCs (B-ASCs) and breast TM was studied. It was found that a distinct subset of B-ASCs display a strong affinity for conditioned media (CM) from two breast cancer cell lines, MDA-MB 231 (MDA-CM) and MCF-7 (MCF-CM). The expressions of several cytokines including angiogenin, GM-CSF, IL-6, GRO-α and IL-8 in MDA-CM and MCF-CM have been identified. Upon functional analysis a crucial role for GRO-α and IL-8 in B-ASCs migration was detected. The B-ASC migration was found to be via negative regulation of RECK and enhanced expression of MMPs. Furthermore, transcriptome analysis showed that migratory subpopulation express both pro- and anti-tumorigenic genes and microRNAs (miRNA). Importantly, we observed that the migratory cells exhibit similar gene and miRNA attributes as those seen in B-ASCs of breast cancer patients. These findings are novel and suggest that in breast cancer, B-ASCs migrate to the proximity of tumor foci. Characterization of the molecular mechanisms involved in the interplay between B-ASCs and breast TM will help in understanding the probable role of B-ASCs in breast cancer development, and could pave way for anticancer therapies.


Asunto(s)
Neoplasias de la Mama/patología , Células Madre Mesenquimatosas/fisiología , Microambiente Tumoral , Tejido Adiposo/patología , Animales , Quimiocina CXCL1/metabolismo , Quimiocina CXCL1/fisiología , Quimiotaxis , Medios de Cultivo Condicionados , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Interleucina-8/metabolismo , Interleucina-8/fisiología , Células MCF-7 , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Trasplante de Neoplasias , Transcriptoma
14.
Biopolymers ; 100(5): 471-9, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23897405

RESUMEN

Human immunodeficiency virus type-1 (HIV-1), the etiologic agent of acquired immune deficiency syndrome (AIDS), is a global pandemic causing millions of deaths annually. Highly active antiretroviral therapy (HAART) greatly enhances lifespan but eventually causes debilitating side effects, in part, due to their chronic administration required to suppress HIV-1 replication. If treatment is discontinued, viral suppression is lost and dormant replication-competent monocytic cell reservoirs become reactivated, leading to viral recrudescence and progression to AIDS. Therefore, novel strategies to circumvent obstacles to HIV-1 therapy are critically needed. We evaluated the potentially therapeutic effects of cycloviolacin O2 (CyO2) on cell viability (MTT assay), membrane disruption (SYTOX Green uptake), p24 production [enzyme-linked immunosorbent assays (ELISA)], and proviral integration (PCR amplification) in U1 cells; a monocytic cell model of HIV-1 latency and reactivation. We demonstrate, for the first time, that CyO2 (0.5-5.0 µM) kills productively infected cells. Sub-toxic concentrations (<0.5 µM) of CyO2 disrupted plasma membranes in both latently-infected and productively-infected U1 cells and enhanced the antiviral efficacy of nelfinavir, a HIV-1 protease inhibitor (HPI). Interestingly, CyO2 also decreased virus production by activated U1 cells; however, this effect was not due to suppression of integrated provirus in U1 cells. This suggested that, in addition to the known pore-forming ability of cyclotides, a novel mode of antiviral activity may exist for CyO2. Our data indicate that CyO2 may be a promising candidate for the targeting HIV-1 reservoirs in monocytes, and their inclusion in adjuvant therapy approaches may augment the efficacy of HPIs and ultimately facilitate virus elimination.


Asunto(s)
VIH-1 , Nelfinavir , Antivirales , Línea Celular , Infecciones por VIH/tratamiento farmacológico , Humanos , Monocitos
15.
Biochim Biophys Acta Rev Cancer ; 1878(2): 188839, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36414127

RESUMEN

Cellular stress, arising from accumulation of unfolded proteins, occurs frequently in rapidly proliferating cancer cells. This cellular stress, in turn, activates the unfolded protein response (UPR), an interconnected set of signal transduction pathways that alleviate the proteostatic stress. The UPR is implicated in cancer cell survival and proliferation through upregulation of pro-tumorigenic pathways that ultimately promote malignant metabolism and neoangiogenesis. Here, we reviewed mechanisms of signaling crosstalk between the UPR and angiogenesis pathways, as well as transmissible ER stress and the role in tumor growth and development. To characterize differences in UPR and UPR-mediated angiogenesis in malignancy, we employed a data mining approach using patient tumor data from The Cancer Genome Atlas (TCGA). The analysis of TCGA revealed differences in UPR between malignant samples versus their non-malignant counterparts.


Asunto(s)
Neoplasias , Respuesta de Proteína Desplegada , Humanos , Transducción de Señal/genética , Activación Transcripcional , Neovascularización Patológica
16.
Front Oncol ; 12: 893820, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36046049

RESUMEN

Increased vascularization, also known as neoangiogenesis, plays a major role in many cancers, including glioblastoma multiforme (GBM), by contributing to their aggressive growth and metastasis. Although anti-angiogenic therapies provide some clinical improvement, they fail to significantly improve the overall survival of GBM patients. Since various pro-angiogenic mediators drive GBM, we hypothesized that identifying targetable genes that broadly inhibit multiple pro-angiogenic mediators will significantly promote favorable outcomes. Here, we identified TRAF3IP2 (TRAF3-interacting protein 2) as a critical regulator of angiogenesis in GBM. We demonstrated that knockdown of TRAF3IP2 in an intracranial model of GBM significantly reduces vascularization. Targeting TRAF3IP2 significantly downregulated VEGF, IL6, ANGPT2, IL8, FZGF2, PGF, IL1ß, EGF, PDGFRB, and VEGFR2 expression in residual tumors. Our data also indicate that exogenous addition of VEGF partially restores angiogenesis by TRAF3IP2-silenced cells, suggesting that TRAF3IP2 promotes angiogenesis through VEGF- and non-VEGF-dependent mechanisms. These results indicate the anti-angiogenic and anti-tumorigenic potential of targeting TRAF3IP2 in GBM, a deadly cancer with limited treatment options.

17.
Front Immunol ; 13: 821190, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35386712

RESUMEN

Transplanting HIV-1 positive patients with hematopoietic stem cells homozygous for a 32 bp deletion in the chemokine receptor type 5 (CCR5) gene resulted in a loss of detectable HIV-1, suggesting genetically disrupting CCR5 is a promising approach for HIV-1 cure. Targeting the CCR5-locus with CRISPR-Cas9 was shown to decrease the amount of CCR5 expression and HIV-1 susceptibility in vitro as well as in vivo. Still, only the individuals homozygous for the CCR5-Δ32 frameshift mutation confer complete resistance to HIV-1 infection. In this study we introduce a mechanism to target CCR5 and efficiently select for cells with biallelic frameshift insertion, using CRISPR-Cas9 mediated homology directed repair (HDR). We hypothesized that cells harboring two different selectable markers (double positive), each in one allele of the CCR5 locus, would carry a frameshift mutation in both alleles, lack CCR5 expression and resist HIV-1 infection. Inducing double-stranded breaks (DSB) via CRISPR-Cas9 leads to HDR and integration of a donor plasmid. Double-positive cells were selected via fluorescence-activated cell sorting (FACS), and CCR5 was analyzed genetically, phenotypically, and functionally. Targeted and selected populations showed a very high frequency of mutations and a drastic reduction in CCR5 surface expression. Most importantly, double-positive cells displayed potent inhibition to HIV-1 infection. Taken together, we show that targeting cells via CRISPR-Cas9 mediated HDR enables efficient selection of mutant cells that are deficient for CCR5 and highly resistant to HIV-1 infection.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Alelos , Sistemas CRISPR-Cas , Infecciones por VIH/genética , Seropositividad para VIH/genética , VIH-1/genética , Humanos , Receptores CCR5/genética , Replicación Viral
18.
Retrovirology ; 8(1): 3, 2011 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-21226936

RESUMEN

BACKGROUND: Tissue resident mesenchymal stem cells (MSCs) are multipotent, self-renewing cells known for their differentiation potential into cells of mesenchymal lineage. The ability of single cell clones isolated from adipose tissue resident MSCs (ASCs) to differentiate into cells of hematopoietic lineage has been previously demonstrated. In the present study, we investigated if the hematopoietic differentiated (HD) cells derived from ASCs could productively be infected with HIV-1. RESULTS: HD cells were generated by differentiating clonally expanded cultures of adherent subsets of ASCs (CD90+, CD105+, CD45-, and CD34-). Transcriptome analysis revealed that HD cells acquire a number of elements that increase their susceptibility for HIV-1 infection, including HIV-1 receptor/co-receptor and other key cellular cofactors. HIV-1 infected HD cells (HD-HIV) showed elevated p24 protein and gag and tat gene expression, implying a high and productive infection. HD-HIV cells showed decreased CD4, but significant increase in the expression of CCR5, CXCR4, Nef-associated factor HCK, and Vpu-associated factor BTRC. HIV-1 restricting factors like APOBEC3F and TRIM5 also showed up regulation. HIV-1 infection increased apoptosis and cell cycle regulatory genes in HD cells. Although undifferentiated ASCs failed to show productive infection, HIV-1 exposure increased the expression of several hematopoietic lineage associated genes such as c-Kit, MMD2, and IL-10. CONCLUSIONS: Considering the presence of profuse amounts of ASCs in different tissues, these findings suggest the possible role that could be played by HD cells derived from ASCs in HIV-1 infection. The undifferentiated ASCs were non-permissive to HIV-1 infection; however, HIV-1 exposure increased the expression of some hematopoietic lineage related genes. The findings relate the importance of ASCs in HIV-1 research and facilitate the understanding of the disease process and management strategies.


Asunto(s)
Tejido Adiposo/citología , VIH-1/fisiología , Células Madre Hematopoyéticas/virología , Células Madre Mesenquimatosas/virología , Proteínas Reguladoras de la Apoptosis/biosíntesis , Proteínas Reguladoras de la Apoptosis/genética , Antígenos CD4/biosíntesis , Antígenos CD4/genética , Diferenciación Celular , Células Cultivadas , Perfilación de la Expresión Génica , Genes cdc , Proteína p24 del Núcleo del VIH/biosíntesis , Proteína p24 del Núcleo del VIH/genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Interacciones Huésped-Patógeno , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Receptores CCR4/biosíntesis , Receptores CCR4/genética , Receptores CCR5/biosíntesis , Receptores CCR5/genética , Regulación hacia Arriba
19.
CRISPR J ; 4(1): 92-103, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33616448

RESUMEN

CCR5 is a coreceptor of human immunodeficiency virus type 1 (HIV-1). Transplantation of hematopoietic stem cells homozygous for a 32-bp deletion in CCR5 resulted in a loss of detectable HIV-1 in two patients, suggesting that genetic strategies to knockout CCR5 expression would be a promising gene therapy approach for HIV-1-infected patients. In this study, we targeted CCR5 by CRISPR-Cas9 with a single-guide (sgRNA) and observed 35% indel frequency. When we expressed hCas9 and two gRNAs, the Surveyor assay showed that Cas9-mediated cleavage was increased by 10% with two sgRNAs. Genotype analysis on individual clones showed 11 of 13 carried biallelic mutations, where 4 clones had frameshift (FS) mutations. Taken together, these results indicate that the efficiency of biallelic FS mutations and the knockout of the CCR5 necessary to prevent viral replication were significantly increased with two sgRNAs. These studies demonstrate the knockout of CCR5 and the potential for translational development.


Asunto(s)
Sistemas CRISPR-Cas , Infecciones por VIH/terapia , Mutación , ARN Guía de Kinetoplastida/genética , Receptores CCR5/genética , Secuencia de Bases , Proteína 9 Asociada a CRISPR/genética , Línea Celular , Edición Génica , Células HEK293 , Infecciones por VIH/virología , VIH-1/genética , Células Madre Hematopoyéticas , Humanos , Lentivirus , Análisis de Secuencia de ADN , Replicación Viral
20.
Comb Chem High Throughput Screen ; 24(10): 1714-1726, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33208063

RESUMEN

BACKGROUND: The use of nanoparticles has markedly increased in biomedical sciences. The silver nanoparticles (AgNPs) have been investigated for their applicability to deliver chemotherapeutic/antibacterial agents to treat cancer or infections disease. However, the existing chemical and physical methods of synthesizing AgNPs are considered inefficient, expensive and toxic. METHODS: Natural products have emerged as viable candidates for nanoparticle production, including the use of Terfezia boudieri (T. boudieri), a member of the edible truffle family. Accordingly, our goal was to synthesize AgNPs using an aqueous extract of T. boudieri (green synthesized AgNPs). Since certain infectious agents are linked to cancer, we investigated their potential as anti-cancer and antibacterial agents. RESULTS: The synthesis of AgNPs was confirmed by the presence of an absorption peak at 450nm by spectroscopy. The physico-chemical properties of green synthesized AgNPs were analyzed by UV-Vis, FT-IR, XRD, SEM, and TEM. In addition, their potential to inhibit cancer cell (proliferation and the growth of infectious bacteria were investigated. CONCLUSION: The size of nanoparticles ranged between 20-30nm. They exerted significant cytotoxicity and bactericidal effects in a concentration and time-dependent manner compared to T. boudieri extract alone. Interestingly, the synthesis of smaller AgNPs was correlated with longer synthesis time and enhanced cytotoxic and bactericidal properties.


Asunto(s)
Antibacterianos/farmacología , Antineoplásicos Fitogénicos/farmacología , Ascomicetos/química , Nanopartículas del Metal/química , Extractos Vegetales/farmacología , Plata/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Antineoplásicos Fitogénicos/síntesis química , Antineoplásicos Fitogénicos/química , Antioxidantes , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Escherichia coli/efectos de los fármacos , Tecnología Química Verde , Humanos , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/síntesis química , Extractos Vegetales/química , Pseudomonas aeruginosa/efectos de los fármacos , Plata/química , Staphylococcus aureus/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA