Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microbiol Spectr ; 11(3): e0501822, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37039649

RESUMEN

Enveloped RNA viruses are rare among plant viruses. Fimoviridae is a newly founded family of plant viruses within the Bunyavirales order that inflicts diverse crop losses worldwide. The fig mosaic virus (FMV), the representative member of the Fimoviridae family, was shown to be a causative agent for the fig mosaic disease. Like all bunyaviruses, FMV has a segmented, negative-sense, single-stranded RNA (ssRNA) genome that is encapsulated by the viral nucleoprotein (N). Here, we present high-resolution crystal structures of FMV N in its RNA-free and RNA-bound forms, revealing a "paper fortune teller" structural transition between the two states. The tightly packed tetramer of FNV N is similar to the structures of other N proteins of different members of the Bunyavirales order. In its RNA-bound form, the tetramer reorganizes to adopt a more open state that allows the accommodation of the RNA. Despite the low sequence similarity to N proteins of animal-infecting bunyaviruses, there is a striking structural resemblance between FMV N and nucleoproteins from members of the Peribunyaviridae, an animal-infecting family of viruses. This structural homology implies that enveloped plant viruses and animal-infecting viruses might have a common ancestor from which they diverged. IMPORTANCE Most insect-born viruses circulate within the Animalia kingdom, whereas plant-infecting RNA viruses are cross-kingdom pathogens. Many plant-infecting viruses cause devastating crop damage that leads to food security endangerment. The evolutionary crossroads of interkingdom circulation and infection are poorly understood. Thus, we took the structural approach to understand the similarities and differences between interkingdom-infecting viruses and viruses that circulate within one kingdom of life. Using our structures of FMV N in its free form and in complex with a single-stranded RNA (ssRNA), we dissected the mechanism by which FMV N binds to the RNA and revealed the conformational changes associated with the binding. The resemblance of our structure to N proteins from members of the Peribunyaviridae family and their recently published ribonucleoprotein (RNP) pseudoatomic resolution assembly model suggests that the FMV genome is similarly encapsulated. Thus, our finding unveils yet another bridge by which plant- and animal-infecting viruses are interconnected.


Asunto(s)
Virus ARN , ARN , Animales , Nucleoproteínas/genética , Virus ARN/genética , Evolución Biológica , Plantas/genética
2.
Front Pediatr ; 10: 859034, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35656379

RESUMEN

Cleft lip and/or cleft palate are a common group of birth defects that further classify into syndromic and non-syndromic forms. The syndromic forms are usually accompanied by additional physical or cognitive abnormalities. Isolated cleft palate syndromes are less common; however, they are associated with a variety of congenital malformations and generally have an underlying genetic etiology. A single report in 2019 described a novel syndrome in three individuals, characterized by cleft palate, developmental delay and proliferative retinopathy due to a homozygous non-sense mutation in the LRRC32 gene encoding glycoprotein A repetitions predominant (GARP), a cell surface polypeptide crucial for the processing and maturation of transforming growth factor ß (TGF-ß). We describe a patient who presented with cleft palate, prenatal and postnatal severe growth retardation, global developmental delay, dysmorphic facial features and progressive vitreoretinopathy. Whole exome sequencing (WES) revealed a very rare homozygous missense variant in the LRRC32 gene, which resulted in substitution of a highly conserved isoleucine to threonine. Protein modeling suggested this variant may negatively affect GARP function on latent TGF-ß activation. In summary, our report further expands the clinical features of cleft palate, proliferative retinopathy and developmental delay syndrome and emphasizes the association of LRRC32 pathogenic variants with this new syndrome.

3.
Microbiol Spectr ; 10(6): e0115022, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36314945

RESUMEN

Recent studies suggest the enhancement of liver injury in COVID-19 patients infected with Hepatitis C virus (HCV). Hepatocytes express low levels of angiotensin-converting enzyme 2 (ACE2), the SARS-CoV-2 entry receptor, raising the possibility of HCV-SARS-CoV-2 coinfection in the liver. This work aimed to explore whether HCV and SARS-CoV-2 coinfect hepatocytes and the interplay between these viruses. We demonstrate that SARS-CoV-2 coinfects HCV-infected Huh7.5 (Huh7.5HCV) cells. Both viruses replicated efficiently in the coinfected cells, with HCV replication enhanced in coinfected compared to HCV-mono-infected cells. Strikingly, Huh7.5HCV cells were eight fold more susceptible to SARS-CoV-2 pseudoviruses than naive Huh7.5 cells, suggesting enhanced SARS-CoV-2 entry into HCV-preinfected hepatocytes. In addition, we observed increased binding of spike receptor-binding domain (RBD) protein to Huh7.5HCV cells, as well as enhanced cell-to-cell fusion of Huh7.5HCV cells with spike-expressing Huh7.5 cells. We explored the mechanism of enhanced SARS-CoV-2 entry and identified an increased ACE2 mRNA and protein levels in Huh7.5HCV cells, primary hepatocytes, and in data from infected liver biopsies obtained from database. Importantly, higher expression of ACE2 increased HCV infection by enhancing its binding to the host cell, underscoring its role in the HCV life cycle as well. Transcriptome analysis revealed that shared host signaling pathways were induced in HCV-SARS-CoV-2 coinfection. This study revealed complex interactions between HCV and SARS-CoV-2 infections in hepatocytes, which may lead to the increased liver damage recently reported in HCV-positive COVID-19 patients. IMPORTANCE Here, we provide the first experimental evidence for the coexistence of SARS-CoV-2 infection with HCV, and the interplay between them. The study revealed a complex relationship of enhancement between the two viruses, where HCV infection increased the expression of the SARS-CoV-2 entry receptor ACE2, thus facilitating SARS-CoV-2 entry, and potentially, also HCV entry. Thereafter, SARS-CoV-2 infection enhanced HCV replication in hepatocytes. This study may explain the aggravation of liver damage that was recently reported in COVID-19 patients with HCV coinfection and suggests preinfection with HCV as a risk factor for severe COVID-19. Moreover, it highlights the possible importance of HCV treatment for coinfected patients. In a broader view, these findings emphasize the importance of identifying coinfecting pathogens that increase the risk of SARS-CoV-2 infection and that may accelerate COVID-19-related co-morbidities.


Asunto(s)
COVID-19 , Coinfección , Hepatitis C , Humanos , SARS-CoV-2/metabolismo , Hepacivirus , Enzima Convertidora de Angiotensina 2/metabolismo , Receptores Virales/genética , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/metabolismo , Hepatitis C/complicaciones , Hepatocitos , Unión Proteica
4.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 12): 604-608, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33263572

RESUMEN

A fragment of the Trypanosoma brucei ZC3H41 protein encompassing the ATP-dependent RNA helicase domain was successfully subcloned for expression in a bacterial system (Escherichia coli). Following expression, the protein was purified and crystallized using the vapor-diffusion method. The protein crystals were optimized at a 1:1 protein:reservoir solution ratio using PPGBA 2000. The optimized crystals diffracted to a dmin of 3.15 Å. The collected data revealed preliminary structural information regarding this newly discovered protein.


Asunto(s)
Proteínas Protozoarias/química , Trypanosoma brucei brucei/química , Adenosina Trifosfato/metabolismo , Cristalización , Cristalografía por Rayos X , Dominios Proteicos , Proteínas Protozoarias/aislamiento & purificación , Proteínas Protozoarias/metabolismo , ARN Helicasas/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA