Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38612383

RESUMEN

Polyacrylic acid (PAA), an organic chemical, has been used as an intermediate in the manufacture of pharmaceuticals and cosmetics. It has been suggested recently that PAA has a high pulmonary inflammatory and fibrotic potential. Although endoplasmic reticulum stress is induced by various external and intracellular stimuli, there have been no reports examining the relationship between PAA-induced lung injury and endoplasmic reticulum stress. F344 rats were intratracheally instilled with dispersed PAA (molecular weight: 269,000) at low (0.5 mg/mL) and high (2.5 mg/mL) doses, and they were sacrificed at 3 days, 1 week, 1 month, 3 months and 6 months after exposure. PAA caused extensive inflammation and fibrotic changes in the lungs' histopathology over a month following instillation. Compared to the control group, the mRNA levels of endoplasmic reticulum stress markers Bip and Chop in BALF were significantly increased in the exposure group. In fluorescent immunostaining, both Bip and Chop exhibited co-localization with macrophages. Intratracheal instillation of PAA induced neutrophil inflammation and fibrosis in the rat lung, suggesting that PAA with molecular weight 269,000 may lead to pulmonary disorder. Furthermore, the presence of endoplasmic reticulum stress in macrophages was suggested to be involved in PAA-induced lung injury.


Asunto(s)
Acrilatos , Lesión Pulmonar , Polímeros , Ratas , Animales , Ratas Endogámicas F344 , Estrés del Retículo Endoplásmico , Inflamación , Pulmón
2.
Bioorg Med Chem Lett ; 94: 129457, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37633619

RESUMEN

We previously demonstrated antisense oligonucleotides (AS-ODNs) delivery system based on the complex formed with poly (dA) and schizophyllan, a type of ß-1,3-glucan. This complex enables efficient intracellular delivery of AS-ODNs. In this communication, we investigated the cytoplasmic translocation of the complex itself and its mechanism of action on mRNA. As a result, we found that the complex moved into the cytoplasm while keeping its structure, and AS-ODN hybridized with the target mRNA. This result encourages pharmaceutical applications of the complex.


Asunto(s)
ADN sin Sentido , Polisacáridos , Citoplasma , Citosol , ARN Mensajero/genética , Sizofirano/farmacología
3.
Int J Mol Sci ; 24(18)2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37762202

RESUMEN

The aim of the present study was to examine the association between miRNA levels in extracellular vesicles (EVs) from serum and the severity of Major Depression (MD). Patient sera from 16 MD cases were collected at our university hospital. The miRNAs contained in EVs were extracted using a nanofiltration method, and their expression levels were analyzed using miRNA microarrays. Intergroup comparisons were performed to validate the diagnostic performance of miRNAs in EVs. Furthermore, candidate miRNAs in EVs were added to neural progenitor cells, astrocytes, and microglial cells in vitro, and the predicted target genes of the candidate miRNAs were extracted. The predicted target genes underwent enrichment analysis. The expression levels of hsa-miR-6813-3p and hsa-miR-2277-3p were significantly downregulated with increasing depression severity of MD. The pathway enrichment analysis suggests that hsa-miR-6813-3p may be involved in glucocorticoid receptor and gamma-aminobutyric acid receptor signaling. Additionally, hsa-miR-2277-3p was found to be involved in the dopaminergic neural pathway. The analysis of serum miRNAs in EVs suggests that hsa-miR-6813-3p and hsa-miR-2277-3p could serve as novel biomarkers for MD, reflecting its severity. Moreover, these miRNAs in EVs could help understand MD pathophysiology.


Asunto(s)
Trastorno Depresivo Mayor , Vesículas Extracelulares , MicroARNs , Humanos , Trastorno Depresivo Mayor/genética , Depresión , MicroARNs/genética , Biomarcadores , Vesículas Extracelulares/genética
4.
Part Fibre Toxicol ; 19(1): 8, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-35062982

RESUMEN

BACKGROUND: Some organic chemicals are known to cause allergic disorders such as bronchial asthma and hypersensitivity pneumonitis, and it has been considered that they do not cause irreversible pulmonary fibrosis. It has recently been reported, however, that cross-linked acrylic acid-based polymer, an organic chemical, might cause serious interstitial lung diseases, including pulmonary fibrosis. We investigated whether or not intratracheal instillation exposure to cross-linked polyacrylic acid (CL-PAA) can cause lung disorder in rats. METHODS: Male F344 rats were intratracheally instilled with dispersed CL-PAA at low (0.2 mg/rat) and high (1.0 mg/rat) doses, and were sacrificed at 3 days, 1 week, 1 month, 3 months and 6 months after exposure to examine inflammatory and fibrotic responses and related gene expressions in the lungs. Rat lungs exposed to crystalline silica, asbestos (chrysotile), and NiO and CeO2 nanoparticles were used as comparators. RESULTS: Persistent increases in total cell count, neutrophil count and neutrophil percentage, and in the concentration of the cytokine-induced neutrophil chemoattractant (CINC)-1, CINC-2 and C-X-C motif chemokine 5 (CXCL5), which correlated with lung tissue gene expression, were observed in bronchoalveolar lavage fluid (BALF) from 3 days until at least 1 month following CL-PAA intratracheal instillation. Persistent increases in heme oxygenase-1 (HO-1) in the lung tissue were also observed from 3 days to 6 months after exposure. Histopathological findings of the lungs demonstrated that extensive inflammation at 3 days was greater than that in exposure to silica, NiO nanoparticles and CeO2 nanoparticles, and equal to or greater than that in asbestos (chrysotile) exposure, and the inflammation continued until 1 month. Fibrotic changes also progressed after 1 month postexposure. CONCLUSION: Our results suggested that CL-PAA potentially causes strong neutrophil inflammation in the rat and human lung.


Asunto(s)
Resinas Acrílicas , Pulmón , Animales , Líquido del Lavado Bronquioalveolar , Masculino , Ratas , Ratas Endogámicas F344
5.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36142256

RESUMEN

BACKGROUND: We conducted intratracheal instillations of different molecular weights of polyacrylic acid (PAA) into rats in order to examine what kinds of physicochemical characteristics of acrylic acid-based polymer affect responses in the lung. METHODS: F344 rats were intratracheally exposed to a high molecular weight (HMW) of 598 thousand g/mol or a low molecular weight (LMW) of 30.9 thousand g/mol PAA at low and high doses. Rats were sacrificed at 3 days, 1 week, 1 month, 3 months and 6 months post exposure. RESULTS: HMW PAA caused persistent increases in neutrophil influx, cytokine-induced neutrophil chemoattractants (CINC) in the bronchoalveolar lavage fluid (BALF), and heme oxygenase-1 (HO-1) in the lung tissue from 3 days to 3 months and 6 months following instillation. On the other hand, LMW PAA caused only transient increases in neutrophil influx, CINC in BALF, and HO-1 in the lung tissue from 3 days to up to 1 week or 1 month following instillation. Histopathological findings of the lungs demonstrated that the extensive inflammation and fibrotic changes caused by the HMW PAA was greater than that in exposure to the LMW PAA during the observation period. CONCLUSION: HMW PAA induced persistence of lung disorder, suggesting that molecular weight is a physicochemical characteristic of PAA-induced lung disorder.


Asunto(s)
Hemo-Oxigenasa 1 , Pulmón , Resinas Acrílicas/farmacología , Animales , Líquido del Lavado Bronquioalveolar/química , Factores Quimiotácticos/farmacología , Citocinas/farmacología , Intubación Intratraqueal , Pulmón/patología , Peso Molecular , Ratas , Ratas Endogámicas F344
6.
Int J Mol Sci ; 23(22)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36430349

RESUMEN

We conducted intratracheal instillations of polyacrylic acid (PAA) with crosslinking and non-crosslinking into rats in order to examine what kinds of physicochemical characteristics of acrylic-acid-based polymers affect responses in the lung. F344 rats were intratracheally exposed to similar molecular weights of crosslinked PAA (CL-PAA) (degree of crosslinking: ~0.1%) and non-crosslinked PAA (Non-CL-PAA) at low and high doses. Rats were sacrificed at 3 days, 1 week, 1 month, 3 months, and 6 months post-exposure. Both PAAs caused increases in neutrophil influx, cytokine-induced neutrophil chemoattractants (CINC) in the bronchoalveolar lavage fluid (BALF), and heme oxygenase-1 (HO-1) in the lung tissue from 3 days to 6 months following instillation. The release of lactate dehydrogenase (LDH) activity in the BALF was higher in the CL-PAA-exposed groups. Histopathological findings of the lungs demonstrated that the extensive fibrotic changes caused by CL-PAA were also greater than those in exposure to the Non-CL- PAA during the observation period. CL-PAA has more fibrogenicity of the lung, suggesting that crosslinking may be one of the physicochemical characteristic factors of PAA-induced lung disorder.


Asunto(s)
Pulmón , Ratas , Animales , Ratas Endogámicas F344 , Ratas Wistar , Pulmón/patología , Líquido del Lavado Bronquioalveolar/química
7.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33924924

RESUMEN

This work studies the relationship between lung inflammation caused by nanomaterials and surfactant protein D (SP-D) kinetics and investigates whether SP-D can be a biomarker of the pulmonary toxicity of nanomaterials. Nanomaterials of nickel oxide and cerium dioxide were classified as having high toxicity, nanomaterials of two types of titanium dioxides and zinc oxide were classified as having low toxicity, and rat biological samples obtained from 3 days to 6 months after intratracheal instillation of those nanomaterials and micron-particles of crystalline silica were used. There were different tendencies of increase between the high- and low-toxicity materials in the concentration of SP-D in bronchoalveolar-lavage fluid (BALF) and serum and in the expression of the SP-D gene in the lung tissue. An analysis of the receiver operating characteristics for the toxicity of the nanomaterials by SP-D in BALF and serum showed a high accuracy of discrimination from 1 week to 3 or 6 months after exposure. These data suggest that the differences in the expression of SP-D in BALF and serum depended on the level of lung inflammation caused by the nanomaterials and that SP-D can be biomarkers for evaluating the pulmonary toxicity of nanomaterials.


Asunto(s)
Pulmón/efectos de los fármacos , Nanoestructuras/toxicidad , Proteína D Asociada a Surfactante Pulmonar/sangre , Pruebas de Toxicidad/normas , Animales , Biomarcadores/sangre , Líquido del Lavado Bronquioalveolar/química , Pulmón/metabolismo , Masculino , Nanoestructuras/administración & dosificación , Ratas Endogámicas F344 , Pruebas de Toxicidad/métodos
8.
Bioorg Med Chem ; 28(18): 115668, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32828430

RESUMEN

Antisense oligonucleotides (AS-ODNs) specifically hybridize with target mRNAs, resulting in interference with the splicing mechanism or the regulation of protein translation. In our previous reports, we demonstrated that ß-glucan schizophyllan (SPG) can form a complex with AS-ODNs attached with oligo deoxyadenosine dA40 (AS-ODN-dA40/SPG), and that this complex can be recognized by ß-glucan receptor Dectin-1 on antigen presenting cells and lung cancer cells. In many types of cancer cell, activating K-ras mutations related to malignancy are frequently observed. In this study, we first designed 78 AS-ODNs for K-ras to optimize the sequence for highly efficient gene suppression. The selected AS-ODN (K-AS07) having dA40 made a complex with SPG. The resultant complex (K-AS07-dA40/SPG) showed an effect of silencing the ras gene in the cells (PC9: human adenocarcinoma differentiated from lung tissue) expressing Dectin-1, leading to the suppression of cell growth. Furthermore, the cytotoxic effect was enhanced when used in combination with the anticancer drug gemcitabine. Gemcitabine, a derivative of cytidine, was shown to interact with dA40 in a sequence-dependent manner. This interaction did not appear to be so strong, with the gemcitabine being released from the complex after internalization into the cells. SPG and the dA40 part of K-AS07-dA40 play roles in carriers for K-AS07 and gemcitabine, respectively, resulting in a strong cytotoxic effect. This combination effect is a novel feature of the AS-ODN-dA40/SPG complexes. These results could facilitate the clinical application of these complexes for cancer treatment.


Asunto(s)
Antineoplásicos/química , Ciclo Celular/efectos de los fármacos , Desoxicitidina/análogos & derivados , Neoplasias Pulmonares/tratamiento farmacológico , Oligonucleótidos Antisentido/química , Sizofirano/química , Secuencia de Aminoácidos , Antineoplásicos/farmacología , Línea Celular Tumoral , Células Cultivadas , Desoxicitidina/química , Desoxicitidina/farmacología , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Quimioterapia Combinada , Humanos , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Oligonucleótidos Antisentido/farmacología , Sizofirano/farmacología , Gemcitabina
9.
Int J Med Sci ; 16(3): 416-423, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30911276

RESUMEN

Background: We recently reported that WNT10A plays a pivotal role in wound healing by regulating collagen expression/synthesis, as the depletion of WNT10A dramatically delays skin ulcer formation. WNT signaling also has a close correlation with the cancer microenvironment and proliferation, since tumors are actually considered to be 'unhealing' or 'overhealing' wounds. To ascertain the in vivo regulatory functions of WNT10A in tumor growth, we examined the net effects of WNT10A depletion using Wnt10a-deficient mice (Wnt10a -/-). Methods and Results: We subjected C57BL/6J wild-type (WT) or Wnt10a -/- mice to murine melanoma B16-F10 cell transplantation. Wnt10a -/- mice showed a significantly smaller volume of transplanted melanoma as well as fewer microvessels and less collagen expression and more necrosis than WT mice. Conclusions: Taken together, our observations suggest that critical in vivo roles of Wnt10a-depleted anti-stromagenesis prevent tumor growth, in contrast with true wound healing/scarring.


Asunto(s)
Colágeno/metabolismo , Melanoma Experimental/patología , Proteínas del Tejido Nervioso/genética , Neoplasias Cutáneas/patología , Proteínas Wnt/genética , Animales , Línea Celular Tumoral , Femenino , Eliminación de Gen , Masculino , Melanoma Experimental/irrigación sanguínea , Melanoma Experimental/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Microvasos/metabolismo , Microvasos/patología , Proteínas del Tejido Nervioso/metabolismo , Neoplasias Cutáneas/irrigación sanguínea , Neoplasias Cutáneas/metabolismo , Células del Estroma/patología , Proteínas Wnt/metabolismo
10.
Am J Respir Crit Care Med ; 198(2): 232-244, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29480750

RESUMEN

RATIONALE: Nitric oxide (NO), synthesized by NOSs (NO synthases), plays a role in the development of pulmonary hypertension (PH). However, the role of NO/NOSs in bone marrow (BM) cells in PH remains elusive. OBJECTIVES: To determine the role of NOSs in BM cells in PH. METHODS: Experiments were performed on 36 patients with idiopathic pulmonary fibrosis and on wild-type (WT), nNOS (neuronal NOS)-/-, iNOS (inducible NOS)-/-, eNOS (endothelial NOS)-/-, and n/i/eNOSs-/- mice. MEASUREMENTS AND MAIN RESULTS: In the patients, there was a significant correlation between higher pulmonary artery systolic pressure and lower nitrite plus nitrate levels in the BAL fluid. In the mice, hypoxia-induced PH deteriorated significantly in the n/i/eNOSs-/- genotype and, to a lesser extent, in the eNOS-/- genotype as compared with the WT genotype. In the n/i/eNOSs-/- genotype exposed to hypoxia, the number of circulating BM-derived vascular smooth muscle progenitor cells was significantly larger, and transplantation of green fluorescent protein-transgenic BM cells revealed the contribution of BM cells to pulmonary vascular remodeling. Importantly, n/i/eNOSs-/--BM transplantation significantly aggravated hypoxia-induced PH in the WT genotype, and WT-BM transplantation significantly ameliorated hypoxia-induced PH in the n/i/eNOSs-/- genotype. A total of 69 and 49 mRNAs related to immunity and inflammation, respectively, were significantly upregulated in the lungs of WT genotype mice transplanted with n/i/eNOSs-/--BM compared with those with WT-BM, suggesting the involvement of immune and inflammatory mechanisms in the exacerbation of hypoxia-induced PH caused by n/i/eNOSs-/--BM transplantation. CONCLUSIONS: These results demonstrate that myelocytic n/i/eNOSs play an important protective role in the pathogenesis of PH.


Asunto(s)
Células de la Médula Ósea/efectos de los fármacos , Células Precursoras de Granulocitos/efectos de los fármacos , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/fisiopatología , Hipoxia/tratamiento farmacológico , Hipoxia/fisiopatología , Óxido Nítrico Sintasa/uso terapéutico , Animales , Humanos , Masculino , Ratones , Modelos Animales , Sustancias Protectoras/uso terapéutico
11.
BMC Pulm Med ; 19(1): 265, 2019 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-31888585

RESUMEN

BACKGROUND: Acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF) is life-threatening. Several serum biomarkers, such as Krebs von den Lungen-6 (KL-6) and surfactant protein D (SP-D), are clinically used for evaluating AE-IPF, but these biomarkers are not adequate for establishing an early and accurate diagnosis of AE-IPF. Recently, the protective roles of the members of the peroxiredoxin (PRDX) family have been reported in IPF; however, the role of PRDX4 in AE-IPF is unclear. METHODS: Serum levels of PRDX4 protein, KL-6, SP-D and lactate dehydrogenase (LDH) in 51 patients with stable IPF (S-IPF), 38 patients with AE-IPF and 15 healthy volunteers were retrospectively assessed using enzyme-linked immunosorbent assay. Moreover, as an animal model of pulmonary fibrosis, wild-type (WT) and PRDX4-transgenic (Tg) mice were intratracheally administered with bleomycin (BLM, 2 mg/kg), and fibrotic and inflammatory changes in lungs were evaluated 3 weeks after the intratracheal administration. RESULTS: Serum levels of PRDX4 protein, KL-6, SP-D and LDH in patients with S-IPF and AE-IPF were significantly higher than those in healthy volunteers, and those in AE-IPF patients were the highest among the three groups. Using receiver operating characteristic curves, area under the curve values of serum PRDX4 protein, KL-6, SP-D, and LDH for detecting AE-IPF were 0.873, 0.698, 0.675, and 0.906, respectively. BLM-treated Tg mice demonstrated aggravated histopathological findings and poor prognosis compared with BLM-treated WT mice. Moreover, PRDX4 expression was observed in alveolar macrophages and lung epithelial cells of BLM-treated Tg mice. CONCLUSIONS: PRDX4 is associated with the aggravation of inflammatory changes and fibrosis in the pathogenesis of IPF, and serum PRDX4 may be useful in clinical practice of IPF patients.


Asunto(s)
Progresión de la Enfermedad , Fibrosis Pulmonar Idiopática/sangre , Fibrosis Pulmonar Idiopática/etiología , Peroxirredoxinas/biosíntesis , Adulto , Anciano , Animales , Biomarcadores/sangre , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Estudios Retrospectivos
12.
Part Fibre Toxicol ; 15(1): 41, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30352603

RESUMEN

BACKGROUND: In order to examine whether myeloperoxidase (MPO) can be a useful marker for evaluating the pulmonary toxicity of nanomaterials, we analyzed MPO protein in bronchoalveolar lavage fluid (BALF) samples obtained from previous examinations of a rat model. In those examinations we performed intratracheal instillation exposures (dose: 0.2-1.0 mg) and inhalation exposures (exposure concentration: 0.32-10.4 mg/m3) using 9 and 4 nanomaterials with different toxicities, respectively. Based on those previous studies, we set Nickel oxide nanoparticles (NiO), cerium dioxide nanoparticles (CeO2), multi wall carbon nanotubes with short or long length (MWCNT (S) and MWCNT (L)), and single wall carbon nanotube (SWCNT) as chemicals with high toxicity; and titanium dioxide nanoparticles (TiO2 (P90) and TiO2 (Rutile)), zinc oxide nanoparticles (ZnO), and toner with external additives including nanoparticles as chemicals with low toxicity. We measured the concentration of MPO in BALF samples from rats from 3 days to 6 months following a single intratracheal instillation, and from 3 days to 3 months after the end of inhalation exposure. RESULTS: Intratracheal instillation of high toxicity NiO, CeO2, MWCNT (S), MWCNT (L), and SWCNT persistently increased the concentration of MPO, and inhalation of NiO and CeO2 increased the MPO in BALF. By contrast, intratracheal instillation of low toxicity TiO2 (P90), TiO2 (Rutile), ZnO, and toner increased the concentration of MPO in BALF only transiently, and inhalation of TiO2 (Rutile) and ZnO induced almost no increase of the MPO. The concentration of MPO correlated with the number of total cells and neutrophils, the concentration of chemokines for neutrophils (cytokine-induced neutrophil chemoattractant (CINC)-1 and heme oxygenase (HO)-1), and the activity of released lactate dehydrogenase (LDH) in BALF. The results from the receiver operating characteristics (ROC) for the toxicity of chemicals by the concentration of MPO proteins in the intratracheal instillation and inhalation exposures showed that the largest areas under the curves (AUC) s in both examinations occurred at 1 month after exposure. CONCLUSION: These data suggest that MPO can be a useful biomarker for the ranking of the pulmonary toxicity of nanomaterials, especially at 1 month after exposure, in both intratracheal instillation and inhalation exposure.


Asunto(s)
Exposición por Inhalación/efectos adversos , Pulmón/efectos de los fármacos , Nanopartículas/toxicidad , Peroxidasa/análisis , Animales , Biomarcadores/análisis , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/citología , Quimiocinas/análisis , Pulmón/enzimología , Pulmón/patología , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/inmunología , Masculino , Nanopartículas/química , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología , Ratas Endogámicas F344
13.
Tohoku J Exp Med ; 244(1): 53-62, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29353823

RESUMEN

Critical limb ischemia (CLI) is the most severe complication of peripheral arterial disease (PAD). Understanding the molecular mechanisms underlying tissue repair after CLI is necessary for preventing PAD progression. Y-box binding protein-1 (YB-1) regulates the expression of many genes in response to environmental stresses. We aimed to determine whether YB-1 is involved in ischemic muscle regeneration. A mouse ischemic hind-limb model was generated; namely, the femoral, saphenous, and popliteal arteries in the left hind limb were ligated. The right hind limb, with skin incisions alone, served as control. Hind limbs (n = 3-5 for each time point) were examined on day 0 (before the operation) and on postoperative days 1, 2, 7, 10, and 14, and the biceps femoris, adductor, rectus femoris, and gracilis muscles were subjected to histopathological and immunohistochemical analyses. In ischemic limbs, myogenesis, triggered by an increase in myotubes, began on day 7; thereafter, regenerated muscles gradually increased in volume. RT-PCR analysis showed that YB-1 mRNA levels were increased in the limbs after ischemic injury, peaked on day 2, and subsequently decreased. On day 7, expression levels of MyoD and alpha-smooth muscle actin (αSMA) mRNAs were significantly higher in ischemic muscles than in control muscles. Immunohistochemical analysis revealed increased YB-1 immunoreactivity in myoblasts and myotubes on day 7, which was decreased by day 14. The immunoreactive αSMA and smooth muscle myosin heavy chain were transiently increased in myotubes. This is the first report showing the increased expression of YB-1 during muscle regeneration after ischemic injury.


Asunto(s)
Miembro Posterior/irrigación sanguínea , Miembro Posterior/patología , Isquemia/metabolismo , Isquemia/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Regeneración , Proteína 1 de Unión a la Caja Y/metabolismo , Actinas/genética , Actinas/metabolismo , Animales , Masculino , Ratones Endogámicos BALB C , Desarrollo de Músculos , Fibras Musculares Esqueléticas/metabolismo , Proteína MioD/genética , Proteína MioD/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Tiempo
14.
Cancer Sci ; 108(5): 1042-1048, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28192620

RESUMEN

Zinc-finger protein 143 (ZNF143) is a transcription factor that is involved in anticancer drug resistance and cancer cell survival. In the present study, we identified a novel small molecule N-(5-bromo-2-methoxyphenyl)-3-(pyridine-3-yl) propiolamide (YPC-21661) that inhibited ZNF143 promoter activity and down-regulated the expression of the ZNF143-regulated genes, RAD51, PLK1, and Survivin, by inhibiting the binding of ZNF143 to DNA. In addition, YPC-21661 was cytotoxic and induced apoptosis in the human colon cancer cell line, HCT116 and human prostate cancer cell line, PC-3. 2-(pyridine-3-ylethynyl)-5-(2-(trifluoromethoxy)phenyl)-1,3,4-oxadiazole (YPC-22026), a metabolically stable derivative of YPC-21661, induced tumor regression accompanied by the suppression of ZNF143-regulated genes in a mouse xenograft model. The present study revealed that the inhibition of ZNF143 activity by small molecules induced tumor regression in vitro and in vivo; therefore, ZNF143 is a promising target of cancer therapeutics.


Asunto(s)
Bibliotecas de Moléculas Pequeñas/farmacología , Transactivadores/antagonistas & inhibidores , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Células HCT116 , Células HT29 , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Regiones Promotoras Genéticas/efectos de los fármacos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/antagonistas & inhibidores
15.
Am J Pathol ; 186(7): 1861-1873, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27157992

RESUMEN

Blockage of hepatic autophagic degradation system occurs in obesity and is associated with the development of nonalcoholic fatty liver disease. However, the mechanism of this blockage remains unclear. We found a high-fat diet induced accumulation of autophagosomes in the mice livers. However, autophagy substrates such as p62 and ubiquitinated proteins also accumulated in the livers in this model. These findings indicate the possibility that a high-fat diet impairs autophagic flux in the liver. Then, to assess the autophagic flux in more detail, we performed analyses of autophagic flux in cultured hepatocytes exposed to monounsaturated fatty acids (FAs) or saturated FAs (SFAs). SFAs but not monounsaturated FAs suppressed degradation of contents in the autophagosomes. We analyzed each stage of the autophagy pathway (ie, autophagosome formation, autophagosome-lysosome fusion, lysosomal degradation) in cultured hepatocytes treated with monounsaturated FAs or SFAs and found that SFAs impaired autophagosome-lysosome fusion. This impairment occurred in an endoplasmic reticulum stress-dependent manner. Moreover, ubiquitin and p62-positive inclusions observed in high-fat diet-fed mice livers and SFA-treated cells were sequestered within autophagosomes. We also found that SFA-induced accumulation of Ser351-phosphorylated p62, which is indispensable for selective autophagy, further increased on administration of a lysosomal proteinase inhibitor. Although lipid-induced endoplasmic reticulum stress interferes with the autophagosome-lysosome fusion, selective autophagic sequestration of aggregated proteins is not inhibited.


Asunto(s)
Autofagosomas/patología , Autofagia/fisiología , Estrés del Retículo Endoplásmico/fisiología , Hepatocitos/patología , Lisosomas/patología , Animales , Línea Celular Tumoral , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Ácidos Grasos/toxicidad , Ácidos Grasos Monoinsaturados/toxicidad , Técnica del Anticuerpo Fluorescente , Humanos , Immunoblotting , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/fisiopatología
16.
Int J Mol Sci ; 18(12)2017 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-29257061

RESUMEN

The hazards of various types of nanoparticles with high functionality have not been fully assessed. We investigated the usefulness of biopersistence as a hazard indicator of nanoparticles by performing inhalation and intratracheal instillation studies and comparing the biopersistence of two nanoparticles with different toxicities: NiO and TiO2 nanoparticles with high and low toxicity among nanoparticles, respectively. In the 4-week inhalation studies, the average exposure concentrations were 0.32 and 1.65 mg/m³ for NiO, and 0.50 and 1.84 mg/m³ for TiO2. In the instillation studies, 0.2 and 1.0 mg of NiO nanoparticles and 0.2, 0.36, and 1.0 mg of TiO2 were dispersed in 0.4 mL water and instilled to rats. After the exposure, the lung burden in each of five rats was determined by Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-AES) from 3 days to 3 months for inhalation studies and to 6 months for instillation studies. In both the inhalation and instillation studies, NiO nanoparticles persisted for longer in the lung compared with TiO2 nanoparticles, and the calculated biological half times (BHTs) of the NiO nanoparticles was longer than that of the TiO2 nanoparticles. Biopersistence also correlated with histopathological changes, inflammatory response, and other biomarkers in bronchoalveolar lavage fluid (BALF) after the exposure to nanoparticles. These results suggested that the biopersistence is a good indicator of the hazards of nanoparticles.


Asunto(s)
Pulmón/efectos de los fármacos , Nanopartículas del Metal/efectos adversos , Tráquea/efectos de los fármacos , Animales , Inhalación , Instilación de Medicamentos , Masculino , Nanopartículas del Metal/administración & dosificación , Nanopartículas del Metal/química , Níquel/química , Ratas , Ratas Endogámicas F344 , Titanio/química
17.
J UOEH ; 39(2): 123-132, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28626123

RESUMEN

Inhalation tests are the gold standard test for the estimation of the pulmonary toxicity of respirable materials. Intratracheal instillation tests have been used widely, but they yield limited evidence of the harmful effects of respirable materials. We reviewed the effectiveness of intratracheal instillation tests for estimating the hazards of nanomaterials, mainly using research papers featuring intratracheal instillation and inhalation tests centered on a Japanese national project. Compared to inhalation tests, intratracheal instillation tests induced more acute inflammatory responses in the animal lung due to a bolus effect regardless of the toxicity of the nanomaterials. However, nanomaterials with high toxicity induced persistent inflammation in the chronic phase, and nanomaterials with low toxicity induced only transient inflammation. Therefore, in order to estimate the harmful effects of a nanomaterial, an observation period of 3 months or 6 months following intratracheal instillation is necessary. Among the endpoints of pulmonary toxicity, cell count and percentage of neutrophil, chemokines for neutrophils and macrophages, and oxidative stress markers are considered most important. These markers show persistent and transient responses in the lung from nanomaterials with high and low toxicity, respectively. If the evaluation of the pulmonary toxicity of nanomaterials is performed in not only the acute but also the chronic phase in order to avoid the bolus effect of intratracheal instillation and inflammatory-related factors that are used as endpoints of pulmonary toxicity, we speculate that intratracheal instillation tests can be useful for screening for the identification of the hazard of nanomaterials through pulmonary inflammation.


Asunto(s)
Nanoestructuras/toxicidad , Neumonía/inducido químicamente , Animales , Inyecciones Espinales , Pulmón/efectos de los fármacos , Nanoestructuras/administración & dosificación , Pruebas de Función Respiratoria
18.
Tumour Biol ; 37(1): 1357-68, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26296622

RESUMEN

The polypeptide N-acetylgalactosaminyltransferase (GalNAc-Ts) family of enzymes regulates the critical initial steps of mucin-type O-glycosylation. Among GalNAc-Ts that may significantly influence cancer biology, thus affecting cell differentiation, adhesion, invasion, and/or metastasis, GalNAc-T3 exhibits a high expression in several human cancers, closely associated with tumor progression and a poor prognosis. However, the expression pattern of GalNAc-T3 in oral squamous cell carcinoma (OSCC) remains obscure. Since postoperative recurrence of even early stage OSCC (ESOSCC) occurs at an early phase, significantly affecting their clinical course and worse outcome, the identification of clinically significant accurate biomarkers is needed. Therefore, we investigated the correlation between the immunohistochemical GalNAc-T3 expression and various clinicopathological characteristics and recurrence using 110 paraffin-embedded tumor samples obtained from patients with surgically resected ESOSCC (T1-2N0). Recurrence was recognized in 37 of 110 (33.6 %) patients. The GalNAc-T3 expression was considered to be strongly positive when 20 % or more of the cancer cells showed positive cytoplasmic staining. Consequently, a strong expression of GalNAc-T3 was observed in 40 patients (36.4 %), showing a close relationship to poor differentiation, the presence of lymphatic and vascular invasion, and recurrence. Univariate and multivariate analyses further demonstrated that the patients with a strong GalNAc-T3+ status had markedly lower disease-free survival (DFS) rates, especially within the first 2 years postoperatively. Therefore, GalNAc-T3 might play a role in the pathogenesis of ESOSCC recurrence, and its immunohistochemical detection potentially predicts a shorter DFS and may be a useful parameter for providing clinical management against ESOSCC in the early postoperative phase.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Boca/metabolismo , N-Acetilgalactosaminiltransferasas/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Escamosas/mortalidad , Adhesión Celular , Diferenciación Celular , Línea Celular Tumoral , Citoplasma/metabolismo , Progresión de la Enfermedad , Supervivencia sin Enfermedad , Femenino , Perfilación de la Expresión Génica , Glicosilación , Humanos , Inmunohistoquímica , Masculino , Microscopía Fluorescente , Persona de Mediana Edad , Neoplasias de la Boca/mortalidad , Invasividad Neoplásica , Metástasis de la Neoplasia , Proteínas de Neoplasias/metabolismo , Recurrencia Local de Neoplasia , Pronóstico , Adulto Joven , Polipéptido N-Acetilgalactosaminiltransferasa
19.
Respir Res ; 17: 39, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-27071460

RESUMEN

BACKGROUND: WNT/ß-catenin signaling plays an important role in the pathogenesis of idiopathic pulmonary fibrosis (IPF); however, the role of WNT10A via transforming growth factor (TGF)-ß signaling remains unclear. METHODS: We evaluated the expression of WNT10A and TGF-ß in bleomycin (BLM)-treated mice and the interactions between TGF-ß or BLM and WNT10A in vitro. Additionally, we investigated IPF patients who underwent video-assisted thoracoscopic surgery to determine whether the WNT10A expression is related to the survival. RESULTS: Increased WNT10A and TGF-ß expressions were noted in the BLM-treated mice. Real-time PCR and luciferase reporter assays demonstrated the levels of WNT10A and collagen in the fibroblasts cells to increase after TGF-ß administration. Conversely, WNT10A siRNA treatment inhibited the synthesis of collagen in the transfected fibroblasts cells. A Kaplan-Meier survival analysis demonstrated a tendency toward a poor survival among the IPF patients with a WNT10A-positive expression compared to those with a negative expression (Hazard ratio 5.351, 95 % CI 1.703-16.82; p = 0.0041). An overexpression of WNT10A was found to be significantly predictive of an acute exacerbation of IPF (AE-IPF) (Odds ratio 13.69, 95 % CI 1.728-108.5; p = 0.013). CONCLUSIONS: WNT10A plays an important role in the pathogenesis of IPF via TGF-ß activation and it may also be a sensitive predictor for the onset of an AE-IPF.


Asunto(s)
Fibroblastos/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Proteínas del Tejido Nervioso/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Wnt/metabolismo , Vía de Señalización Wnt , Animales , Bleomicina , Células Cultivadas , Fibroblastos/patología , Fibrosis Pulmonar Idiopática/inducido químicamente , Masculino , Ratones , Ratones Endogámicos C57BL , Tasa de Supervivencia
20.
Nucleic Acids Res ; 42(6): 3998-4007, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24413662

RESUMEN

The assembly of spliceosomal U snRNPs in metazoans requires nuclear export of U snRNA precursors. Four factors, nuclear cap-binding complex (CBC), phosphorylated adaptor for RNA export (PHAX), the export receptor CRM1 and RanGTP, gather at the m(7)G-cap-proximal region and form the U snRNA export complex. Here we show that the multifunctional RNA-binding proteins p54nrb/NonO and PSF are U snRNA export stimulatory factors. These proteins, likely as a heterodimer, accelerate the recruitment of PHAX, and subsequently CRM1 and Ran onto the RNA substrates in vitro, which mediates efficient U snRNA export in vivo. Our results reveal a new layer of regulation for U snRNA export and, hence, spliceosomal U snRNP biogenesis.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas Asociadas a Matriz Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Factores de Transcripción de Octámeros/metabolismo , ARN Nuclear Pequeño/metabolismo , Proteínas de Unión al ARN/metabolismo , Transporte Activo de Núcleo Celular , Animales , Citoplasma/metabolismo , Proteínas de Unión al ADN , Células HeLa , Humanos , Carioferinas/metabolismo , Factor de Empalme Asociado a PTB , Fosfoproteínas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Xenopus , Proteína de Unión al GTP ran/metabolismo , Proteína Exportina 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA