Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Radiol Med ; 128(8): 934-943, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37354309

RESUMEN

OBJECTIVES: To evaluate the impact of vaccination on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and moreover on coronavirus disease 2019 (COVID-19) pneumonia, by assessing the extent of lung disease using the CT severity score (CTSS). METHODS: Between September 2021 and February 2022, SARS-CoV-2 positive patients who underwent chest CT were retrospectively enrolled. Anamnestic and clinical data, including vaccination status, were obtained. All CT scans were evaluated by two readers using the CTSS, based on a 25-point scale. Univariate and multivariate logistic regression analyses were performed to evaluate the associations between CTSS and clinical or demographic variables. An outcome analysis was used to differentiate clinical outcome between vaccinated and unvaccinated patients. RESULTS: Of the 1040 patients (537 males, 503 females; median age 58 years), 678 (65.2%) were vaccinated and 362 (34.8%) unvaccinated. Vaccinated patients showed significantly lower CTSS compared to unvaccinated patients (p < 0.001), also when patients without lung involvement (CTSS = 0) were excluded (p < 0.001). Older age, male gender and lower number of doses administered were associated with higher CTSS, however, in the multivariate analysis, vaccination status resulted to be the variable with the strongest association with CTSS. Clinical outcomes were significantly worse in unvaccinated patients, including higher number of ICU admissions and higher mortality rates. CONCLUSIONS: Lung involvement during COVID-19 was significantly less severe in vaccinated patients compared with unvaccinated patients, who also showed worse clinical outcomes. Vaccination status was the strongest variable associated to the severity of COVID-related, more than age, gender, and number of doses administered.


Asunto(s)
COVID-19 , Femenino , Humanos , Masculino , Persona de Mediana Edad , SARS-CoV-2 , Estudios Retrospectivos , Tomografía Computarizada por Rayos X , Hospitalización
2.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36769235

RESUMEN

Down syndrome (DS), a complex disorder that is caused by the trisomy of chromosome 21 (Hsa21), is a major cause of congenital heart defects (CHD). Interestingly, only about 50% of individuals with Hsa21 trisomy manifest CHD. Here we review the genetic basis of CHD in DS, focusing on genes that regulate extracellular matrix (ECM) organization. The overexpression of Hsa21 genes likely underlies the molecular mechanisms that contribute to CHD, even though the genes responsible for CHD could only be located in a critical region of Hsa21. A role in causing CHD has been attributed not only to protein-coding Hsa21 genes, but also to genes on other chromosomes, as well as miRNAs and lncRNAs. It is likely that the contribution of more than one gene is required, and that the overexpression of Hsa21 genes acts in combination with other genetic events, such as specific mutations or polymorphisms, amplifying their effect. Moreover, a key function in determining alterations in cardiac morphogenesis might be played by ECM. A large number of genes encoding ECM proteins are overexpressed in trisomic human fetal hearts, and many of them appear to be under the control of a Hsa21 gene, the RUNX1 transcription factor.


Asunto(s)
Síndrome de Down , Cardiopatías Congénitas , MicroARNs , Humanos , Animales , Síndrome de Down/complicaciones , Síndrome de Down/genética , Trisomía , Cardiopatías Congénitas/genética , MicroARNs/genética , Matriz Extracelular/genética , Cromosomas Humanos Par 21/genética , Modelos Animales de Enfermedad
3.
Radiol Med ; 126(11): 1425-1433, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34373989

RESUMEN

PURPOSE: The assessment of Programmed death-ligand 1 (PD-L1) expression has become a game changer in the treatment of patients with advanced non-small cell lung cancer (NSCLC). We aimed to investigate the ability of Radiomics applied to computed tomography (CT) in predicting PD-L1 expression in patients with advanced NSCLC. METHODS: By applying texture analysis, we retrospectively analyzed 72 patients with advanced NSCLC. The datasets were randomly split into a training cohort (2/3) and a validation cohort (1/3). Forty radiomic features were extracted by manually drawing tumor volumes of interest (VOIs) on baseline contrast-enhanced CT. After selecting features on the training cohort, two predictive models were created using binary logistic regression, one for PD-L1 values ≥ 50% and the other for values between 1 and 49%. The two models were analyzed with ROC curves and tested in the validation cohort. RESULTS: The Radiomic Score (Rad-Score) for PD-L1 values ≥ 50%, which consisted of Skewness and Low Gray-Level Zone Emphasis (GLZLM_LGZE), presented a cut-off value of - 0.745 with an area under the curve (AUC) of 0.811 and 0.789 in the training and validation cohort, respectively. The Rad-Score for PD-L1 values between 1 and 49% consisted of Sphericity, Skewness, Conv_Q3 and Gray Level Non-Uniformity (GLZLM_GLNU), showing a cut-off value of 0.111 with AUC of 0.763 and 0.806 in the two population, respectively. CONCLUSION: Rad-Scores obtained from CT texture analysis could be useful for predicting PD-L1 expression and guiding the therapeutic choice in patients with advanced NSCLC.


Asunto(s)
Antígeno B7-H1/biosíntesis , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/metabolismo , Tomografía Computarizada por Rayos X/métodos , Anciano , Carcinoma de Pulmón de Células no Pequeñas/secundario , Femenino , Humanos , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Valor Predictivo de las Pruebas , Estudios Retrospectivos
4.
Int J Mol Sci ; 21(9)2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32365535

RESUMEN

Mitochondria are organelles that mainly control energy conversion in the cell. In addition, they also participate in many relevant activities, such as the regulation of apoptosis and calcium levels, and other metabolic tasks, all closely linked to cell viability. Functionality of mitochondria appears to depend upon their network architecture that may dynamically pass from an interconnected structure with long tubular units, to a fragmented one with short separate fragments. A decline in mitochondrial quality, which presents itself as an altered structural organization and a function of mitochondria, has been observed in Down syndrome (DS), as well as in aging and in age-related pathologies. This review provides a basic overview of mitochondrial dynamics, from fission/fusion mechanisms to mitochondrial homeostasis. Molecular mechanisms determining the disruption of the mitochondrial phenotype in DS and aging are discussed. The impaired activity of the transcriptional co-activator PGC-1α/PPARGC1A and the hyperactivation of the mammalian target of rapamycin (mTOR) kinase are emerging as molecular underlying causes of these mitochondrial alterations. It is, therefore, likely that either stimulating the PGC-1α activity or inhibiting mTOR signaling could reverse mitochondrial dysfunction. Evidence is summarized suggesting that drugs targeting either these pathways or other factors affecting the mitochondrial network may represent therapeutic approaches to improve and/or prevent the effects of altered mitochondrial function. Overall, from all these studies it emerges that the implementation of such strategies may exert protective effects in DS and age-related diseases.


Asunto(s)
Envejecimiento/metabolismo , Síndrome de Down/etiología , Síndrome de Down/metabolismo , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Dinámicas Mitocondriales , Envejecimiento/efectos de los fármacos , Envejecimiento/genética , Animales , Biomarcadores , Susceptibilidad a Enfermedades , Síndrome de Down/tratamiento farmacológico , Homeostasis , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Dinámicas Mitocondriales/efectos de los fármacos , Terapia Molecular Dirigida , Transducción de Señal/efectos de los fármacos
5.
Hum Mol Genet ; 26(6): 1056-1069, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28087733

RESUMEN

Alterations in mitochondrial activity and morphology have been demonstrated in human cells and tissues from individuals with Down syndrome (DS), as well as in DS mouse models. An impaired activity of the transcriptional coactivator PGC-1α/PPARGC1A due to the overexpression of chromosome 21 genes, such as NRIP1/RIP140, has emerged as an underlying cause of mitochondrial dysfunction in DS. We tested the hypothesis that the activation of the PGC-1α pathway might indeed reverse this mitochondrial dysfunction. To this end, we investigated the effects of metformin, a PGC-1α-activating drug, on mitochondrial morphology and function in DS foetal fibroblasts. Metformin induced both the expression of PGC-1α and an augmentation of its activity, as demonstrated by the increased expression of target genes, strongly promoting mitochondrial biogenesis. Furthermore, metformin enhanced oxygen consumption, ATP production, and overall mitochondrial activity. Most interestingly, this treatment reversed the fragmentation of mitochondria observed in DS and induced the formation of a mitochondrial network with a branched and elongated tubular morphology. Concomitantly, cristae remodelling occurred and the alterations observed by electron microscopy were significantly reduced. We finally demonstrated that the expression of genes of the fission/fusion machinery, namely OPA1 and MFN2, was reduced in trisomic cells and increased by metformin treatment. These results indicate that metformin promotes the formation of a mitochondrial network and corrects the mitochondrial dysfunction in DS cells. We speculate that alterations in the mitochondrial dynamics can be relevant in the pathogenesis of DS and that metformin can efficiently counteract these alterations, thus exerting protective effects against DS-associated pathologies.


Asunto(s)
Síndrome de Down/genética , Metformina/administración & dosificación , Mitocondrias/efectos de los fármacos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Adenosina Trifosfato/biosíntesis , Animales , Modelos Animales de Enfermedad , Síndrome de Down/tratamiento farmacológico , Síndrome de Down/patología , Fibroblastos/metabolismo , GTP Fosfohidrolasas/biosíntesis , Humanos , Ratones , Mitocondrias/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/biosíntesis
6.
Cancer Cell Int ; 19: 303, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31832016

RESUMEN

BACKGROUND: Ovarian cancer is the third most common cause of death among gynecologic malignancies worldwide. Understanding the biology and molecular pathogenesis of ovarian epithelial tumors is key to developing improved prognostic indicators and effective therapies. We aimed to determine the effects of PAX8 expression on the migrative, adhesive and survival capabilities of high-grade serous carcinoma cells. METHODS: PAX8 depleted Fallopian tube secretory cells and ovarian cancer cells were generated using short interfering siRNA. Anoikis resistance, cell migration and adhesion properties of PAX8 silenced cells were analyzed by means of specific assays. Chromatin immunoprecipitation (ChIP) was carried out using a PAX8 polyclonal antibody to demonstrate that PAX8 is able to bind to the 5'-flanking region of the ITGB3 gene positively regulating its expression. RESULTS: Here, we report that RNAi silencing of PAX8 sensitizes non-adherent cancer cells to anoikis and affects their tumorigenic properties. We show that PAX8 plays a critical role in migration and adhesion of both Fallopian tube secretory epithelial cells and ovarian cancer cells. Inhibition of PAX8 gene expression reduces the ability of ovarian cancer cells to migrate and adhere to the ECM and specifically to fibronectin and/or collagen substrates. Moreover, loss of PAX8 strongly reduces ITGB3 expression and consequently the correct expression of the αvß3 heterodimer on the plasma membrane. CONCLUSIONS: Our results demonstrate that PAX8 modulates the interaction of tumor cells with the extracellular matrix (ECM). Notably, we also highlight a novel pathway downstream this transcription factor. Overall, PAX8 could be a potential therapeutic target for high-grade serous carcinoma.

7.
Mol Med ; 24(1): 2, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30134785

RESUMEN

Trisomy of chromosome 21 (TS21) is the most common autosomal aneuploidy compatible with postnatal survival with a prevalence of 1 in 700 newborns. Its phenotype is highly complex with constant features, such as mental retardation, dysmorphic traits and hypotonia, and variable features including heart defects, susceptibility to Alzheimer's disease (AD), type 2 diabetes, obesity and immune disorders. Overexpression of genes on chromosome-21 (Hsa21) is responsible for the pathogenesis of Down syndrome (DS) phenotypic features either in a direct or in an indirect manner since many Hsa21 genes can affect the expression of other genes mapping to different chromosomes. Many of these genes are involved in mitochondrial function and energy conversion, and play a central role in the mitochondrial dysfunction and chronic oxidative stress, consistently observed in DS subjects.Recent studies highlight the deep interconnections between mitochondrial dysfunction and DS phenotype. In this short review we first provide a basic overview of mitochondrial phenotype in DS cells and tissues. We then discuss how specific Hsa21 genes may be involved in determining the disruption of mitochondrial DS phenotype and biogenesis. Finally we briefly focus on drugs that affect mitochondrial function and mitochondrial network suggesting possible therapeutic approaches to improve and/or prevent some aspects of the DS phenotype.


Asunto(s)
Síndrome de Down/metabolismo , Mitocondrias/metabolismo , Animales , Síndrome de Down/genética , Humanos
8.
J Cell Physiol ; 231(8): 1695-708, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26599499

RESUMEN

Rab7 regulates the biogenesis of late endosomes, lysosomes, and autophagosomes. It has been proposed that a functional and physical interaction exists between Rab7 and Rac1 GTPases in CDH1 endocytosis and ruffled border formation. In FRT cells over-expressing Rab7, increased expression and activity of Rac1 was observed, whereas a reduction of Rab7 expression by RNAi resulted in reduced Rac1 activity, as measured by PAK1 phosphorylation. We found that CDH1 endocytosis was extremely reduced only in Rab7 over-expressing cells but was unchanged in Rab7 silenced cells. In Rab7 under or over-expressing cells, Rab7 and LC3B-II co-localized and co-localization in large circular structures occurred only in Rab7 over-expressing cells. These large circular structures occurred in about 10% of the cell population; some of them (61%) showed co-localization of Rab7 with cortactin and f-actin and were identified as circular dorsal ruffles (CDRs), the others as mature autophagosomes. We propose that the over-expression of Rab7 is sufficient to induce CDRs. Furthermore, in FRT cells, we found that the expression of the insoluble/active form of Rab7, rather than Rab5, or Rab8, was inducible by cAMP and that cAMP-stimulated FRT cells showed increased PAK1 phosphorylation and were no longer able to endocytose CDH1. Finally, we demonstrated that Rab7 over-expressing cells are able to endocytose exogenous thyroglobulin via pinocytosis/CDRs more efficiently than control cells. We propose that the major thyroglobulin endocytosis described in thyroid autonomous adenomas due to Rab7 increased expression, occurs via CDRs. J. Cell. Physiol. 231: 1695-1708, 2016. © 2015 Wiley Periodicals, Inc.


Asunto(s)
Cadherinas/metabolismo , Extensiones de la Superficie Celular/enzimología , Endocitosis , Tiroglobulina/metabolismo , Glándula Tiroides/enzimología , Vacuolas/enzimología , Proteínas de Unión al GTP rab/metabolismo , Actinas/metabolismo , Animales , Autofagia , Línea Celular , Extensiones de la Superficie Celular/efectos de los fármacos , Cortactina/metabolismo , AMP Cíclico/metabolismo , Endocitosis/efectos de los fármacos , Proteínas Asociadas a Microtúbulos/metabolismo , Fosforilación , Pinocitosis , Interferencia de ARN , Ratas Endogámicas F344 , Sistemas de Mensajero Secundario , Glándula Tiroides/citología , Glándula Tiroides/efectos de los fármacos , Factores de Tiempo , Transfección , Vacuolas/efectos de los fármacos , Quinasas p21 Activadas/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión a GTP rab7 , Proteína de Unión al GTP rac1/metabolismo
9.
Hum Mol Genet ; 23(16): 4406-19, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24698981

RESUMEN

Mitochondrial dysfunction, which is consistently observed in Down syndrome (DS) cells and tissues, might contribute to the severity of the DS phenotype. Our recent studies on DS fetal hearts and fibroblasts have suggested that one of the possible causes of mitochondrial dysfunction is the downregulation of peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PGC-1α or PPARGC1A)--a key modulator of mitochondrial function--and of several nuclear-encoded mitochondrial genes (NEMGs). Re-analysis of publicly available expression data related to manipulation of chromosome 21 (Hsa21) genes suggested the nuclear receptor interacting protein 1 (NRIP1 or RIP140) as a good candidate Hsa21 gene for NEMG downregulation. Indeed, NRIP1 is known to affect oxidative metabolism and mitochondrial biogenesis by negatively controlling mitochondrial pathways regulated by PGC-1α. To establish whether NRIP1 overexpression in DS downregulates both PGC-1α and NEMGs, thereby causing mitochondrial dysfunction, we used siRNAs to decrease NRIP1 expression in trisomic human fetal fibroblasts. Levels of PGC-1α and NEMGs were increased and mitochondrial function was restored, as shown by reactive oxygen species decrease, adenosine 5'-triphosphate (ATP) production and mitochondrial activity increase. These findings indicate that the Hsa21 gene NRIP1 contributes to the mitochondrial dysfunction observed in DS. Furthermore, they suggest that the NRIP1-PGC-1α axe might represent a potential therapeutic target for restoring altered mitochondrial function in DS.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Cromosomas Humanos Par 21 , Síndrome de Down/metabolismo , Mitocondrias/metabolismo , Miocardio/metabolismo , Proteínas Nucleares/metabolismo , Trisomía , Feto Abortado/citología , Adenosina Trifosfato/metabolismo , Calcio/metabolismo , Células Cultivadas , Fibroblastos , Genes Mitocondriales/fisiología , Humanos , Proteína de Interacción con Receptores Nucleares 1 , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , ARN Interferente Pequeño/metabolismo , Factores de Transcripción/metabolismo
10.
Hum Mol Genet ; 22(6): 1218-32, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23257287

RESUMEN

Trisomy of chromosome 21 is associated to congenital heart defects in ∼50% of affected newborns. Transcriptome analysis of hearts from trisomic human foeti demonstrated that genes involved in mitochondrial function are globally downregulated with respect to controls, suggesting an impairment of mitochondrial function. We investigated here the properties of mitochondria in fibroblasts from trisomic foeti with and without cardiac defects. Together with the upregulation of Hsa21 genes and the downregulation of nuclear encoded mitochondrial genes, an abnormal mitochondrial cristae morphology was observed in trisomic samples. Furthermore, impairment of mitochondrial respiratory activity, specific inhibition of complex I, enhanced reactive oxygen species production and increased levels of intra-mitochondrial calcium were demonstrated. Seemingly, mitochondrial dysfunction was more severe in fibroblasts from cardiopathic trisomic foeti that presented a more pronounced pro-oxidative state. The data suggest that an altered bioenergetic background in trisomy 21 foeti might be among the factors responsible for a more severe phenotype. Since the mitochondrial functional alterations might be rescued following pharmacological treatments, these results are of interest in the light of potential therapeutic interventions.


Asunto(s)
Feto Abortado/metabolismo , Síndrome de Down/metabolismo , Fibroblastos/metabolismo , Cardiopatías Congénitas/metabolismo , Mitocondrias/metabolismo , Síndrome de Down/complicaciones , Síndrome de Down/embriología , Síndrome de Down/genética , Femenino , Cardiopatías Congénitas/complicaciones , Cardiopatías Congénitas/embriología , Cardiopatías Congénitas/genética , Humanos , Masculino , Mitocondrias/genética , Oxidación-Reducción , Estrés Oxidativo , Embarazo , Especies Reactivas de Oxígeno/metabolismo , Trisomía
11.
BMC Med Genet ; 15: 88, 2014 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-25056293

RESUMEN

BACKGROUND: Wolfram Syndrome type 2 (WFS2) is considered a phenotypic and genotypic variant of WFS, whose minimal criteria for diagnosis are diabetes mellitus and optic atrophy. The disease gene for WFS2 is CISD2. The clinical phenotype of WFS2 differs from WFS1 for the absence of diabetes insipidus and psychiatric disorders, and for the presence of bleeding upper intestinal ulcers and defective platelet aggregation. After the first report of consanguineous Jordanian patients, no further cases of WFS2 have been reported worldwide. We describe the first Caucasian patient affected by WFS2. CASE PRESENTATION: The proband was a 17 year-old girl. She presented diabetes mellitus, optic neuropathy, intestinal ulcers, sensorineural hearing loss, and defective platelet aggregation to ADP. Genetic testing showed a novel homozygous intragenic deletion of CISD2 in the proband. Her brother and parents carried the heterozygous mutation and were apparently healthy, although they showed subclinical defective platelet aggregation. Long runs of homozygosity analysis from SNP-array data did not show any degree of parental relationship, but the microsatellite analysis confirmed the hypothesis of a common ancestor. CONCLUSION: Our patient does not show optic atrophy, one of the main diagnostic criteria for WFS, but optic neuropathy. Since the "asymptomatic" optic atrophy described in Jordanian patients is not completely supported, we could suppose that the ocular pathology in Jordanian patients was probably optic neuropathy and not optic atrophy. Therefore, as optic atrophy is required as main diagnostic criteria of WFS, it might be that the so-called WFS2 could not be a subtype of WFS. In addition, we found an impaired aggregation to ADP and not to collagen as previously reported, thus it is possible that different experimental conditions or inter-patient variability can explain different results in platelet aggregation. Further clinical reports are necessary to better define the clinical spectrum of this syndrome and to re-evaluate its classification.


Asunto(s)
Envejecimiento Prematuro/genética , Pérdida Auditiva Sensorineural/genética , Proteínas de la Membrana/genética , Enfermedades Mitocondriales/genética , Atrofia Óptica/genética , Enfermedades del Nervio Óptico/genética , Agregación Plaquetaria/genética , Eliminación de Secuencia , Adolescente , Exones , Femenino , Humanos
12.
Am J Med Genet A ; 164A(3): 753-9, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24357330

RESUMEN

Langer-Giedion syndrome (LGS) is caused by a deletion of chromosome 8q23.3-q24.11. The LGS clinical spectrum includes intellectual disability (ID), short stature, microcephaly, facial dysmorphisms, exostoses. We describe a 4-year-old girl with ID, short stature, microcephaly, distinctive facial phenotype, skeletal signs (exostoses on the left fibula, coccyx agenesis, stubby and dysmorphic sphenoid bone, osteoporosis), central nervous system malformations (hypoplastic and dysmorphic corpus callosum and septum pellucidum), pituitary gland hypoplasia and hyperreninemia. Array-CGH revealed complex chromosomal rearrangements. A diagnosis of LGS was confirmed by the detection of a 8q23.3-q24.1 deletion. Associated chromosomal abnormalities were a 21q22.1 deletion and a balanced reciprocal translocation t(2;11)(p24;p15) de novo, confirmed by FISH analysis. We document the patient's atypical findings, never described in LGS patients, in order to update the genotype-phenotype correlation. We speculate that the disruption of regulatory elements mapping upstream CYP11B2 involved in the deleted region could cause hyperreninemia.


Asunto(s)
Síndrome de Langer-Giedion/diagnóstico , Síndrome de Langer-Giedion/genética , Fenotipo , Translocación Genética , Preescolar , Bandeo Cromosómico , Hibridación Genómica Comparativa , Facies , Femenino , Estudios de Asociación Genética , Humanos , Hibridación Fluorescente in Situ
13.
BJR Open ; 5(1): 20220011, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37448469

RESUMEN

Typical radiologic images of Covid-19 pneumonia consists in a wide spectrum of chest manifestations, which range from peripheral predominant ground-glass opacities to an organizing pneumonia pattern, with additional features including crazy-paving, consolidations, fibrotic streaks and linear opacities. With variants imaging profile of Covid-19 evolves, producing relatively atypical/indeterminate CT pattern of pulmonary involvement, which overlap with imaging features of a variety of other respiratory diseases, including infections, drug reaction and hypersensitivity pneumonia. Our knowledge of these radiological findings is incomplete and there is a need to strengthen the recognition of the many faces of Covid-19 pneumonia.

14.
Front Genet ; 13: 824922, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35356434

RESUMEN

Down syndrome is a neurodevelopmental disorder frequently characterized by other developmental defects, such as congenital heart disease. Analysis of gene expression profiles of hearts from trisomic fetuses have shown upregulation of extracellular matrix (ECM) genes. The aim of this work was to identify genes on chromosome 21 potentially responsible for the upregulation of ECM genes and to pinpoint any functional consequences of this upregulation. By gene set enrichment analysis of public data sets, we identified the transcription factor RUNX1, which maps to chromosome 21, as a possible candidate for regulation of ECM genes. We assessed that approximately 80% of ECM genes overexpressed in trisomic hearts have consensus sequences for RUNX1 in their promoters. We found that in human fetal fibroblasts with chromosome 21 trisomy there is increased expression of both RUNX1 and several ECM genes, whether located on chromosome 21 or not. SiRNA silencing of RUNX1 reduced the expression of 11 of the 14 ECM genes analyzed. In addition, collagen IV, an ECM protein secreted in high concentrations in the culture media of trisomic fibroblasts, was modulated by RUNX1 silencing. Attenuated expression of RUNX1 increased the migratory capacity of trisomic fibroblasts, which are characterized by a reduced migratory capacity compared to euploid controls.

15.
Front Genet ; 13: 867989, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35646085

RESUMEN

Endosomal trafficking is essential for cellular homeostasis. At the crossroads of distinct intracellular pathways, the endolysosomal system is crucial to maintain critical functions and adapt to the environment. Alterations of endosomal compartments were observed in cells from adult individuals with Down syndrome (DS), suggesting that the dysfunction of the endosomal pathway may contribute to the pathogenesis of DS. However, the nature and the degree of impairment, as well as the timing of onset, remain elusive. Here, by applying imaging and biochemical approaches, we demonstrate that the structure and dynamics of early endosomes are altered in DS cells. Furthermore, we found that recycling trafficking is markedly compromised in these cells. Remarkably, our results in 18-20 week-old human fetal fibroblasts indicate that alterations in the endolysosomal pathway are already present early in development. In addition, we show that overexpression of the polyphosphoinositide phosphatase synaptojanin 1 (Synj1) recapitulates the alterations observed in DS cells, suggesting a role for this lipid phosphatase in the pathogenesis of DS, likely already early in disease development. Overall, these data strengthen the link between the endolysosomal pathway and DS, highlighting a dangerous liaison among Synj1, endosomal trafficking and DS.

16.
Cells ; 11(3)2022 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-35159276

RESUMEN

To fight neurodegenerative diseases, several therapeutic strategies have been proposed that, to date, are either ineffective or at the early preclinical stages. Intracellular protein aggregates represent the cause of about 70% of neurodegenerative disorders, such as Alzheimer's disease. Thus, autophagy, i.e., lysosomal degradation of macromolecules, could be employed in this context as a therapeutic strategy. Searching for a compound that stimulates this process led us to the identification of a 37/67kDa laminin receptor inhibitor, NSC48478. We have analysed the effects of this small molecule on the autophagic process in mouse neuronal cells and found that NSC48478 induces the conversion of microtubule-associated protein 1A/1B-light chain 3 (LC3-I) into the LC3-phosphatidylethanolamine conjugate (LC3-II). Interestingly, upon NSC48478 treatment, the contribution of membranes to the autophagic process derived mainly from the non-canonical m-TOR-independent endocytic pathway, involving the Rab proteins that control endocytosis and vesicle recycling. Finally, qRT-PCR analysis suggests that, while the expression of key genes linked to canonical autophagy was unchanged, the main genes related to the positive regulation of endocytosis (pinocytosis and receptor mediated), along with genes regulating vesicle fusion and autolysosomal maturation, were upregulated under NSC48478 conditions. These results strongly suggest that 37/67 kDa inhibitor could be a useful tool for future studies in pathological conditions.


Asunto(s)
Autofagia , Laminina , Animales , Laminina/farmacología , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Naftoles/farmacología , Receptores de Laminina
17.
Am J Med Genet A ; 155A(7): 1697-705, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21671372

RESUMEN

The region 21q22 is considered crucial for the pathogenesis of both Down syndrome (DS) and the partial monosomy 21q syndrome. Haploinsufficiency of the RUNX-1 gene, mapping at 21q22 is responsible for a platelet disorder and causes predisposition to myelodysplastic syndrome (MDS). We describe a 3-year-old girl with mental retardation, congenital heart malformation, and subtle dysmorphic facial features. The patient developed thrombocytopenia when she was 2 years old. Bone marrow smear led to the diagnosis of myelodysplasia. Prenatal karyotyping had shown chromosome 21 pericentric inversion. Postnatally the array-CGH revealed duplication at bands 21q11.2-21q21.1 and a simultaneous deletion involving the region 21q22.13-21q22.3. RUNX-1 mRNA levels analyzed in patient's skin fibroblasts were reduced. In this child the monosomy of the region 21q22 likely had the main role in determining the phenotype. Although the RUNX-1 gene is localized outside the deleted region, we speculate that RUNX-1 reduced expression, is probably due to the deletion of regulatory factors and caused the hematologic disorder in the patient. The present report underlines also the importance of array-CGH in characterizing patients with a complex phenotype.


Asunto(s)
Cromosomas Humanos Par 21/genética , Reordenamiento Génico/genética , Cardiopatías Congénitas/genética , Discapacidad Intelectual/genética , Síndromes Mielodisplásicos/genética , Preescolar , Hibridación Genómica Comparativa , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Análisis Citogenético , Femenino , Humanos , Monosomía , Fenotipo , ARN Mensajero/genética , Trisomía
18.
Stem Cell Res ; 53: 102311, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33799276

RESUMEN

Heterozygous variants in the KCNQ3 gene cause epileptic and/or developmental disorders of varying severity. Here we describe the generation of induced pluripotent stem cells (iPSCs) from a 9-year-old girl with pharmacodependent neonatal-onset epilepsy and intellectual disability who carry a homozygous single-base duplication in exon 12 of KCNQ3 (NM_004519.3: KCNQ3 c.1599dup; KCNQ3 p.PHE534ILEfs*15), and from a non-carrier brother of the proband. For iPSC generation, non-integrating episomal plasmid vectors were used to transfect fibroblasts isolated from skin biopsies. The obtained iPSC lines had a normal karyotype, showed embryonic stem cell-like morphology, expressed pluripotency markers, and possessed trilineage differentiation potential.


Asunto(s)
Epilepsia , Células Madre Pluripotentes Inducidas , Discapacidad Intelectual , Diferenciación Celular , Niño , Epilepsia/genética , Femenino , Homocigoto , Humanos , Discapacidad Intelectual/genética , Masculino , Hermanos
19.
J Matern Fetal Neonatal Med ; 34(18): 3089-3093, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31630581

RESUMEN

X-linked Opitz G/BBB syndrome (XLOS) is a multiple congenital disorder inherited in an X-linked manner. XLOS may be suspected, in prenatal age, on the basis of sonographic findings in the second and/or third trimester of gestation. Pathogenetic variants in MID1 gene have been reported in individuals with XLOS. Prenatal genetic testing is offered for pregnancies at risk, in which the mutation in the family has been identified. To date no cases of prenatal diagnosis, based on first-trimester ultrasound data, have been reported. We present a case of a fetus at 12 gestational weeks with ultrasound multiple anomalies, including increased nuchal translucency, heart defects, cleft lip and palate, enlarged fourth ventricle absence of ductus venosus and family hystory of XLOS. The genetic prenatal test detected the c(0).1286-1G > T mutation of MID1 gene. Data about prenatal ultrasonographic findings consistent with XLOS are limited to second and third trimester. This is the first case reporting ultrasound detectable midline defects suggestive of XLOS as early as the first trimester of gestation. This case also suggests that when multiple anomalies are detected in a fetus with normal chromosomal structure, the possibility of a monogenic disorder must be considered.


Asunto(s)
Labio Leporino , Fisura del Paladar , Hipertelorismo , Esófago/anomalías , Femenino , Enfermedades Genéticas Ligadas al Cromosoma X , Humanos , Hipospadias , Embarazo , Primer Trimestre del Embarazo , Ultrasonografía Prenatal
20.
Biology (Basel) ; 10(7)2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34209429

RESUMEN

BACKGROUND: The presence of mitochondrial alterations in Down syndrome suggests that it might affect neuronal differentiation. We established a model of trisomic iPSCs, differentiating into neural precursor cells (NPCs) to monitor the occurrence of differentiation defects and mitochondrial dysfunction. METHODS: Isogenic trisomic and euploid iPSCs were differentiated into NPCs in monolayer cultures using the dual-SMAD inhibition protocol. Expression of pluripotency and neural differentiation genes was assessed by qRT-PCR and immunofluorescence. Meta-analysis of expression data was performed on iPSCs. Mitochondrial Ca2+, reactive oxygen species (ROS) and ATP production were investigated using fluorescent probes. Oxygen consumption rate (OCR) was determined by Seahorse Analyzer. RESULTS: NPCs at day 7 of induction uniformly expressed the differentiation markers PAX6, SOX2 and NESTIN but not the stemness marker OCT4. At day 21, trisomic NPCs expressed higher levels of typical glial differentiation genes. Expression profiles indicated that mitochondrial genes were dysregulated in trisomic iPSCs. Trisomic NPCs showed altered mitochondrial Ca2+, reduced OCR and ATP synthesis, and elevated ROS production. CONCLUSIONS: Human trisomic iPSCs can be rapidly and efficiently differentiated into NPC monolayers. The trisomic NPCs obtained exhibit greater glial-like differentiation potential than their euploid counterparts and manifest mitochondrial dysfunction as early as day 7 of neuronal differentiation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA