Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Cell Sci ; 126(Pt 17): 4015-25, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23788428

RESUMEN

When NF-κB activation or protein synthesis is inhibited, tumor necrosis factor alpha (TNFα) can induce apoptosis through Bax- and Bak-mediated mitochondrial outer membrane permeabilization (MOMP) leading to caspase-3 activation. Additionally, previous studies have implicated lysosomal membrane permeability (LMP) and formation of reactive oxygen species (ROS) as early steps of TNFα-induced apoptosis. However, how these two events connect to MOMP and caspase-3 activation has been largely debated. Here, we present the novel finding that LMP induced by the addition of TNFα plus cycloheximide (CHX), the release of lysosomal cathepsins and ROS formation do not occur upstream but downstream of MOMP and require the caspase-3-mediated cleavage of the p75 NDUFS1 subunit of respiratory complex I. Both a caspase non-cleavable p75 mutant and the mitochondrially localized antioxidant MitoQ prevent LMP mediated by TNFα plus CHX and partially interfere with apoptosis induction. Moreover, LMP is completely blocked in cells deficient in both Bax and Bak, Apaf-1, caspase-9 or both caspase-3 and -7. Thus, after MOMP, active caspase-3 exerts a feedback action on complex I to produce ROS. ROS then provoke LMP, cathepsin release and further caspase activation to amplify TNFα apoptosis signaling.


Asunto(s)
Caspasa 3/metabolismo , Permeabilidad de la Membrana Celular/fisiología , Complejo I de Transporte de Electrón/metabolismo , NADH Deshidrogenasa/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Apoptosis , Factor Apoptótico 1 Activador de Proteasas/deficiencia , Factor Apoptótico 1 Activador de Proteasas/metabolismo , Caspasa 3/deficiencia , Caspasa 3/genética , Caspasa 7/deficiencia , Caspasa 7/genética , Caspasa 9/deficiencia , Caspasa 9/metabolismo , Catepsina B/deficiencia , Catepsina B/genética , Catepsina L/deficiencia , Catepsina L/genética , Membrana Celular/metabolismo , Cicloheximida/farmacología , Activación Enzimática , Células HeLa , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , NADH Deshidrogenasa/biosíntesis , NADH Deshidrogenasa/genética , Compuestos Organofosforados/farmacología , Inhibidores de la Síntesis de la Proteína/farmacología , Especies Reactivas de Oxígeno , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Proteína Destructora del Antagonista Homólogo bcl-2/deficiencia , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/deficiencia , Proteína X Asociada a bcl-2/metabolismo
2.
J Biol Chem ; 285(24): 18918-27, 2010 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-20395300

RESUMEN

Granule-associated perforin and granzymes (gzms) are key effector molecules of cytotoxic T lymphocytes (Tc cells) and natural killer cells and play a critical role in the control of intracellular pathogens and cancer. Based on the notion that many gzms, including A, B, C, K, H, and M exhibit cytotoxic activity in vitro, all gzms are believed to serve a similar function in vivo. However, more recent evidence supports the concept that gzms are not unidimensional but, rather, possess non-cytotoxic potential, including stimulation of pro-inflammatory cytokines and anti-viral activities. The present study shows that isolated mouse gzmB cleaves the actin-severing mouse protein, cytoplasmic gelsolin (c-gelsolin) in vitro. However, when delivered to intact target cells by ex vivo immune Tc cells, gzmB mediates c-gelsolin proteolysis via activation of caspases 3/7. The NH(2)-terminal c-gelsolin fragment generated by either gzmB or caspase 3 in vitro constitutively severs actin filaments without destroying the target cells. The observation that gzmB secreted by Tc cells initiates a caspase cascade that disintegrates the actin cytoskeleton in target cells suggests that this intracellular process may contribute to anti-viral host defense.


Asunto(s)
Caspasa 3/metabolismo , Citoesqueleto/metabolismo , Gelsolina/química , Granzimas/metabolismo , Linfocitos T Citotóxicos/metabolismo , Animales , Apoptosis , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/virología , Fibroblastos/metabolismo , Gelsolina/metabolismo , Virus de la Coriomeningitis Linfocítica/metabolismo , Ratones , Microscopía Fluorescente/métodos , Modelos Biológicos , ARN Mensajero/metabolismo , Transcripción Genética
3.
Cell Mol Life Sci ; 67(10): 1607-18, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20169397

RESUMEN

Caspases are the most important effectors of apoptosis, the major form of programmed cell death (PCD) in multicellular organisms. This is best reflected by the appearance of serious development defects in mice deficient for caspase-8, -9, and -3. Meanwhile, caspase-independent PCD, mediated by other proteases or signaling components has been described in numerous publications. Although we do not doubt that such cell death exists, we propose that it has evolved later during evolution and is most likely not designed to execute, but to amplify and speed-up caspase-dependent cell death. This review shall provide evidence for such a concept.


Asunto(s)
Apoptosis , Caspasas/metabolismo , Animales , Humanos , Lisosomas/enzimología
4.
J Exp Med ; 211(5): 769-79, 2014 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-24752302

RESUMEN

The serine protease granzyme B (GzmB) is stored in the granules of cytotoxic T and NK cells and facilitates immune-mediated destruction of virus-infected cells. In this study, we use genetic tools to report novel roles for GzmB as an important regulator of hematopoietic stem cell (HSC) function in response to stress. HSCs lacking the GzmB gene show improved bone marrow (BM) reconstitution associated with increased HSC proliferation and mitochondrial activity. In addition, recipients deficient in GzmB support superior engraftment of wild-type HSCs compared with hosts with normal BM niches. Stimulation of mice with lipopolysaccharide strongly induced GzmB protein expression in HSCs, which was mediated by the TLR4-TRIF-p65 NF-κB pathway. This is associated with increased cell death and GzmB secretion into the BM environment, suggesting an extracellular role of GzmB in modulating HSC niches. Moreover, treatment with the chemotherapeutic agent 5-fluorouracil (5-FU) also induces GzmB production in HSCs. In this situation GzmB is not secreted, but instead causes cell-autonomous apoptosis. Accordingly, GzmB-deficient mice are more resistant to serial 5-FU treatments. Collectively, these results identify GzmB as a negative regulator of HSC function that is induced by stress and chemotherapy in both HSCs and their niches. Blockade of GzmB production may help to improve hematopoiesis in various situations of BM stress.


Asunto(s)
Regulación de la Expresión Génica/inmunología , Granzimas/metabolismo , Células Madre Hematopoyéticas/fisiología , Transducción de Señal/inmunología , Estrés Fisiológico/fisiología , Animales , Apoptosis/efectos de los fármacos , Médula Ósea/fisiología , Proliferación Celular/efectos de los fármacos , Ensayo de Unidades Formadoras de Colonias , Cartilla de ADN/genética , Quimioterapia , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Fluorouracilo/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Granzimas/deficiencia , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Inmunohistoquímica , Lipopolisacáridos/efectos adversos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis por Micromatrices , Mitocondrias/metabolismo , Mitocondrias/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa
5.
F1000 Biol Rep ; 22010 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-20948786

RESUMEN

Undoubtedly, caspases are the major driving force for apoptosis execution and mechanisms of their activation and inhibition have been largely unveiled. Recent progress has been made with regard to the exact intracellular ordering of caspases, monitoring their activities in vivo and unveiling their substrate degradomes. Moreover, non-caspase proteases seem to assist caspases in the completion of the death execution program. Here we will consider some very recent data dealing with these aspects. We will also provide novel insights into the mechanisms that dictate apoptotic variability within a cell population.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA