RESUMEN
In response to the COVID-19 pandemic, the Iranian government swiftly implemented immediate and decisive measures to control the spread of the infection. This study aims to demonstrate the impact of restriction measure on air pollution, also to highlight the potential variability in results that can arias from different methodological approach. A comprehensive dual-approach assessment was conducted to evaluate the effect of the lockdown measures on criteria air pollutants. Firstly, a traditional approach compared air quality during the pandemic period with baseline conditions from 2013 to 2019. Secondly, observed air pollution values during different periods with varying restrictions in 2020 were compared with expected values. This comprehensive analysis allows for a robust comparison and quantification of the impact of different lockdown measures in Ahvaz. The study revealed significant changes in air pollutant concentrations in Ahvaz during 2020, with variations observed across different pollutants. Notable reductions were observed in O3 levels, particularly in November (-54.44% compared to the baseline) and December (-63.58% compared to expected values). Decreases in CO levels were observed in multiple months, while substantial reductions in PM10 and PM2.5 were observed during various periods. Inconsistencies in the magnitudes and directions of changes were found when comparing baseline and forecasted values. The overall stringency index showed an inverse association with changes in O3, NO2, and CO, with international travel controls and restrictions on internal movement having significant impacts. This study provides valuable insights into the impact of COVID-19 lockdown measures on air pollution in Ahvaz, Iran, using a comprehensive dual-approach assessment. The findings highlight the effectiveness of these measures in reducing specific criteria air pollutants and emphasize the importance of implementing appropriate strategies for air quality management during similar public health emergencies.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Monitoreo del Ambiente , Material Particulado , COVID-19/prevención & control , COVID-19/epidemiología , Contaminación del Aire/estadística & datos numéricos , Irán , Contaminantes Atmosféricos/análisis , Humanos , Monitoreo del Ambiente/métodos , Material Particulado/análisis , SARS-CoV-2 , Ozono/análisisRESUMEN
At the end of December 2019, the rapid spread of the COVID-19 (SARS-CoV-2) disease and, subsequently, deaths around the world, lead to the declaration of the pandemic situation in the world. At the beginning of the epidemic, much attention is paid to person-to-person transmission, disinfection of virus-contaminated surfaces, and social distancing. However, there is much debate about the routes of disease transmission, including airborne transmission, so it is important to elucidate the exact route of transmission of the COVID-19 disease. To this end, the first systematic review study was conducted to comprehensively search all databases to collect studies on airborne transmission of SARS-CoV-2 in indoor air environments. In total, 14 relevant and eligible studies were included. Based on the findings, there is a great possibility of airborne transmission of SARS-CoV-2 in indoor air environments. Therefore, some procedures are presented such as improving ventilation, especially in hospitals and crowded places, and observing the interpersonal distance of more than 2 m so that experts in indoor air quality consider them to improve the indoor air environments. Finally, in addition to the recommendations of the centers and official authorities such as hand washing and observing social distancing, the route of air transmission should also be considered to further protect health personnel, patients in hospitals, and the public in other Public Buildings.
Asunto(s)
Contaminación del Aire Interior , COVID-19 , Humanos , Pandemias , SARS-CoV-2 , VentilaciónRESUMEN
The objectives of the current study are to investigate the concentration, biological risks, chemical speciation, and mobility of of heavy metals and also the determination of their distribution, physicochemical characteristics, and abundance of microplastics in coastal sediments and edible bivalves in the Persian Gulf, the coastal area of Hormozgan Province. Sampling points were selected considering the location of industrial, urban and Hara forest protected areas. In November 2017, a total of 18 sediment samples from coastal sediments (top 0-10 cm) and the most consumed bivalve species in the region were collected from two stations, Lengeh and Bandar Abbas Ports. The average concentration of heavy metals (except for Ni and Cd) in the sediments were lower than their average shale and the upper continental crust. Enrichment factors revealed significant enrichment of Ni, Mn, Cr, Cd and As. The fractionation of heavy metals using the Community Bureau of Reference (BCR) sequential extraction scheme indicated the high bioavailability of Zn, As, Mn, and Co. In general, the highest concentration of Mo, Cd, Pb, Zn, Cr, Cu, Mn, Hg, and Sb was detected in areas with frequent human activities including Shahid Rajaee Port, Shahid Bahonar Port, and Tavanir station. Shahid Rajaee and Shahid Bahonar Ports are the most important ports on the coast of Hormozgan province. The Risk Assessment Code calculated for the study elements indicates that As, Co, Zn, and Cu pose a moderate environmental risk a threat to the aquatic biota. Health risks of most heavy metals arising from bivalves consumption were safe, except for As which is associated with the high target cancer risk values. With reference to the type of microplastics found, they were mainly fibeours with lengths ranging between 100 and 250 µm in sediments and bivalves. Most of the microfibers found in the sediments were made of polyethylene terephthalate (PET) and polypropylene (PP), and the fibers found in the bivalves were made of PP.
Asunto(s)
Bivalvos , Metales Pesados , Contaminantes Químicos del Agua , Animales , Monitoreo del Ambiente , Sedimentos Geológicos , Humanos , Océano Índico , Metales Pesados/análisis , Microplásticos , Plásticos , Medición de Riesgo , Contaminantes Químicos del Agua/análisisRESUMEN
Environmental exposure to nonylphenol (NP) can adversely affect human and wildlife health. A systematic review was conducted to evaluate the relationship between environmental NP exposure and cancer progression risk. Literature surveys were conducted within several international databases using appropriate keywords. A comprehensive search yielded 58 eligible studies involving a wide range of adverse effects, exposure assessment methods, study designs, and experimental models. Most studies reported that NP strongly induced breast cancer progression in intended experiments. Positive associations between NP exposure and ovarian, uterine, pituitary, and testicular cancers were also reported. Although some studies reported no relation between environmental NP exposure and tumour and/or cancer progression, NP (a known endocrine disrupting chemical) induced action mechanisms in multiple experimental models and may interfere with/hyper-activate oestrogen signalling. Secretion of oestrogen and development of reproductive tissues like breasts, uteruses, and ovaries showed strong associations with possible neoplasia (i.e., uncontrolled development of tumours and/or malignant cancers). Findings of this study are important for informing policymakers to pass legislation limiting the use of environmental contaminants such as NP before all adverse effects of exposure have been determined.
Asunto(s)
Disruptores Endocrinos , Exposición a Riesgos Ambientales , Neoplasias , Fenoles , Disruptores Endocrinos/toxicidad , Estrógenos , Humanos , Neoplasias/inducido químicamente , Neoplasias/epidemiología , Fenoles/análisis , Fenoles/toxicidad , ReproducciónRESUMEN
This study aims to investigate the relationship between the number of hospitalized cardiovascular and respiratory patients and the average concentration of criteria air pollutants, including NO2, SO2, CO, O3 and PM10 in Ahvaz in the period of 10 years (2007-2017). Data on referrals and the number of hospitalized cardiovascular and respiratory patients and also on air pollutants are obtained through Hospital Information System and air quality monitoring stations including Department of Environment Protection Station, Naderi Square Station, University Square Station and the Meteorological Organization Station. The data were analyzed by SPSS version 4 and Poisson distribution regression model to evaluate the effects of each pollutant and the rate of hospitalization. In this study, confidence interval and the significance level are considered at 95% and 5%, respectively. Changes in air pollution indices and number of patients with cardiovascular diseases were evaluated using Excel, Stata and ARIMA models. Based on the results of Poisson regression analysis, there was a significant relationship between the average concentration of NO2, O3, CO and SO2 and hospitalization of patients with cardiovascular disease, with a confidence level of less than 5%. This was the case with NO2 more than other pollutants. Furthermore, there was a significant relationship between the average concentrations of NO2, CO and O3 and the hospitalization rate of patients with respiratory problems and a confidence level of 5%. The effect of NO2 was also higher here. Due to the results, NO2, CO, and O3 had a significant direct correlation with cardiovascular and respiratory rates. The effect of NO2 has been higher than other pollutants. In the study of time intervals of patients with cardiovascular, the results of time-interval analysis indicate the relationship between cardiovascular clients with the "t" time of 7 days earlier and NO2 as a pollutant. The results of this analysis also revealed the relationship between respiratory patients at the time "t" up to 7 days before and O3.
Asunto(s)
Contaminantes Atmosféricos/análisis , Enfermedades Cardiovasculares/epidemiología , Hospitalización/estadística & datos numéricos , Enfermedades Respiratorias/epidemiología , Enfermedades Cardiovasculares/inducido químicamente , Humanos , Incidencia , Irán , Enfermedades Respiratorias/inducido químicamenteRESUMEN
This study assessed the available status of waste management system in Ahvaz and its impact on the environment, as well as seven other scenarios in order to quantitatively calculate potential environmental impacts by utilizing the life cycle assessment (LCA) method. These scenarios were as follows: scenario 1: landfilling without biogas collection; scenario 2: landfilling with biogas collection; scenario 3: composting and landfilling without biogas collection; scenario 4: recycling and composting; scenario 5: composting and incineration; scenario 6: anaerobic digestion, recycling, and landfilling; scenario 7: anaerobic digestion and incineration. Emissions were calculated by the integrated waste management (IWM) model and classified into five impact categories: resource consumption, global warming, acidification potential, photochemical oxidation, and eco-toxicity. In terms of resource consumption and the depletion of non-renewable resources, the third scenario showed the worst performance due to its lack of any recycling, energy recovery, and conversion to energy. In terms of greenhouse gas emissions and the effect on global warming, scenario 1 and scenario 2 showed that disposing the whole amount of waste resulted in the most amount of greenhouse gases produced. Moreover, 50% gas and energy recovery from landfills, in comparison with the non-recovery method, reduced the index of global warming by 12%. Finally, scenarios which were based on producing energy from waste showed a reasonably positive performance in terms of greenhouse gases emissions and the influence on global warming.
Asunto(s)
Monitoreo del Ambiente/métodos , Contaminantes Ambientales/análisis , Eliminación de Residuos/métodos , Residuos Sólidos/análisis , Instalaciones de Eliminación de Residuos , Compostaje , Ecotoxicología , Gases de Efecto Invernadero/análisis , Incineración , Irán , ReciclajeRESUMEN
The aim of the present study was to assess performance of waste stabilization ponds (WSPs) on the removal of Listeria spp. in Isfahan, Iran. A total of 104 samples were taken from eight sampling locations from influent and effluent of a wastewater treatment plant (WWTP). Sewage samples were analyzed for the presence of Listeria spp. using selective enrichment protocol. Listeria isolates were also identified by biochemical and polymerase chain reaction (PCR) amplification. Listeria spp. was enumerated by a three tube most probable number (MPN) for total coliform counts (TC), fecal coliform counts (FC), total suspended solids (TSS), and total dissolved solids (TDS). In total, 54/104 (51.92%), 49/104 (47.11%), 36/104 (34.61%), and 27/104 (25.95%) samples were positive for Listeria spp., L. monocytogenes, L. innocua, and L. seeligeri, respectively. The mean MPN/100 mL enumeration of L. monocytogenes for influent, anaerobic, facultative ponds 1, 2, 3, 4 and maturation ponds 1 and 2 were 21.54, 10.61, 8, 5.77, 4, 2.54, 1.38, and 0.46, respectively. The removal percentage of Listeria spp. in the anaerobic, facultative, and maturation ponds were 44.71, 76.5, and 81.4%, respectively. Results showed that the WSPs were able to decrease the Listeria spp. levels significantly, although unable to remove them completely.
Asunto(s)
Listeria/fisiología , Estanques/microbiología , Eliminación de Residuos Líquidos , Aguas Residuales/microbiología , Microbiología del Agua , Purificación del Agua/métodos , IránRESUMEN
Human impact on the environment leads to the release of many pollutants that produce artificial compounds, which can have harmful effects on the body's endocrine system; these are known as endocrine disruptors (EDs). Nonylphenol (NP) is a chemical compound with a nonyl group that is attached to a phenol ring. NP-induced H2AX is a sensitive genotoxic biomarker for detecting possible DNA damage; it also causes male infertility and carcinogenesis. We attempt to comprehensively review all the available evidence about the different ways with descriptive mechanisms for explaining the possible DNA damage that is induced by NP. We systematically searched several databases, including PubMed, Scopus, Web of Science, and gray literature, such as Google Scholar by using medical subheading (MeSH) terms and various combinations of selected keywords from January 1970 to August 2017. The initial search identified 62,737 potentially eligible studies; of these studies, 33 were included according to the established inclusion criteria. Thirty-three selected studies, include the topics of animal model (nâ¯=â¯21), cell line (nâ¯=â¯6), human model (nâ¯=â¯4), microorganisms (nâ¯=â¯1), solid DNA (nâ¯=â¯1), infertility (nâ¯=â¯4), apoptosis (nâ¯=â¯6), and carcinogenesis (nâ¯=â¯3). This review highlighted the possible deleterious effects of NP on DNA damage through the ability to produce ROS/RNS. Finally, it is significant to observe caution at this stage with the continued use of environmental pollutants such as NP, which may induce DNA damage and apoptosis.
Asunto(s)
Daño del ADN/efectos de los fármacos , Fenoles/toxicidad , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Modelos Animales de Enfermedad , Disruptores Endocrinos/toxicidad , Contaminantes Ambientales/toxicidad , Humanos , Infertilidad Masculina/inducido químicamente , Infertilidad Masculina/diagnóstico , MasculinoRESUMEN
Oil and gas well drilling industries discharge large volumes of contaminated wastewater produced during oil and gas exploration process. In this study, the effect of different operational variables, including temperature, pH and transmembrane pressure on process performance of a commercially available nanofiltration membrane (JCM-1812-50N, USA) for removing Ba, Ni, Cr, NaCl and TDS from produced wastewater by dewatering unit of an oil and gas well drilling industry was evaluated. In optimum experimental conditions (T = 25 °C, P = 170 psi and pH = 4) resulted from Thaguchi method, 85.3, 77.4, 58.5, 79.6 and 56.3% removal efficiencies were achieved for Ba, Ni, Cr, NaCl and TDS, respectively. Also, results from a comparison of the Schuller and Wilcox diagrams revealed that the effluent of the membrane system is usable for drinking water, irrigating and agriculture purposes. Moreover, the process effluent quality showed a scaling feature, according to Langelier saturation index and illustrated that the necessary proceedings should be taken to prevent scaling for industrial application. The nanofiltration membrane process with an acceptable recovery rate of 47.17% represented a good performance in the wastewater treatment.
Asunto(s)
Metales Pesados , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos , Residuos Industriales , Yacimiento de Petróleo y Gas , Aguas ResidualesRESUMEN
Landfill sites are the main source of plastic waste. Thus, municipal solid waste (MSW) in landfills may act as a reservior of microplastics (MPs) and related pollutants such as phthalate esters (PAEs) into surrounding environment. However, there is limited information on MPs and PAEs in landfill sites. Levels of MPs and PAEs in organic solid waste disposed in a landfill of Bushehr port were investigated for the first time in this study. The mean MPs and PAEs levels in organic MSW samples were 12.3 items/g and 7.99 µg/g, respectively, and the mean PAEs concentration in MPs was 87.5 µg/g. The highest number of MPs was related to the size classes of >1000 µm and <25 µm. The highest dominant type, color, and shape of MPs in organic MSW were nylon, white/transparent, and fragments, respectively. Di (2-ethylhexyl) phthalate (DEHP) and diisobutyl phthalate (DiBP) were the dominant compounds of PAEs in organic MSW. Based on the finding of present study, MPs showed a high hazard index (HI). DEHP, dioctyl phthalate (DOP), and DiBP demonstrated high-level hazards for sensitive organisms in water. This work illustrated considerable MPs and PAEs levels from an uncontrolled landfill without adequate protection, possibly contributing to their release into the environment. The sites of landfill located near marine environments, such as Bushehr port landfill adjacent to the Persian Gulf, may indicate critical threats to marine organisms and the food chain. Continuous landfills control and monitoring, especially the ones near the coastal area, is highly recommended to prevent further environmental pollution.
Asunto(s)
Dietilhexil Ftalato , Ácidos Ftálicos , Residuos Sólidos , Dietilhexil Ftalato/análisis , Microplásticos , Plásticos , Océano Índico , Ácidos Ftálicos/análisis , Dibutil Ftalato/análisis , Instalaciones de Eliminación de Residuos , Ésteres/análisis , ChinaRESUMEN
Autism spectrum disorder (ASD) increased dramatically over the past 25 years because of genetic and environmental factors. This systematic review (SR) aimed to determine the association between maternal exposure during pregnancy to environmental pesticides and other associations with the risk of ASD progression in children. PubMed (MEDLINE), Scopus (Elsevier) and the Institute for Scientific Information (ISI) Web of Science were searched using appropriate keywords up to March 2021. Twenty-four studies met the inclusion/exclusion criteria and were selected. Most studies reported that ASD increases the risk of offspring after prenatal exposure to environmental pesticides in pregnant mother's residences, against offspring of women from the same region without this exposure. The main potential mechanisms inducing ASD progressions are ROS and prostaglandin E2 synthesis, AChE inhibition, voltage-gated sodium channel disruption, and GABA inhibition. According to the included studies, the highest rates of ASD diagnosis increased relative to organophosphates, and the application of the most common pesticides near residences might enhance the prevalence of ASD.
Asunto(s)
Trastorno del Espectro Autista , Plaguicidas , Efectos Tardíos de la Exposición Prenatal , Embarazo , Humanos , Niño , Femenino , Exposición Materna/efectos adversos , Trastorno del Espectro Autista/inducido químicamente , Trastorno del Espectro Autista/epidemiología , Plaguicidas/toxicidad , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , OrganofosfatosRESUMEN
A laboratory-scale anaerobic sequencing batch reactor was used to evaluate treatment of a synthetic substrate mixture representing petrochemical wastewater containing methyl tert-butyl ether (MTBE), ethanol and acetic acid. Influent MTBE concentrations were 5, 10 and 50 mg/l (corresponding to MTBE loading rates of 0.2, 0.4 and 2 mg/l.d) with overall organic loading rates (OLRs) of 1.51, 3.23 and 3.25 g COD/1.d, respectively. These OLRs resulted in removal efficiencies for MTBE of 78%, 98% and 88%. Removal efficiencies for chemical oxygen demand were 85% and 90% with influent MTBE concentrations of 5 and 10mg/l, but were significantly reduced to 72% with influent MTBE concentrations of 50mg/l. During all reactor runs, effluent concentrations oftert-butyl alcohol (TBA) were below the detection limit. Batch degradation of the organic substrate mixture demonstrated initial inhibitory effects when exposed to MTBE concentrations of 50 mg/l and complete inhibition with MTBE concentrations above 2000 mg/l. It is interesting to note that in batch tests using MTBE as the sole organic substrate (initial MTBE concentrations of 50, 100 and 200 mg/l), the specific methanogenic activity decreased to below detection within the first 96 hours, but following a 72-hour lag phase the methane production increased again. Based on low volatile fatty acid (VFA) concentration, disappearance of TBA peaks and no findings of any other intermediate via gas chromatography/mass spectrometry, while the MTBE concentration is still high, it can be suggested that during the batch tests the breakdown of gas production and the following lag phase were the direct effect of higher MTBE concentrations (more than 50 mg/l) and not because of the TBA or VFA accumulations.
Asunto(s)
Reactores Biológicos , Éteres Metílicos/metabolismo , Petróleo , Purificación del Agua , Alcohol terc-Butílico/metabolismo , Anaerobiosis , Ácidos Grasos Volátiles/análisis , Metano/análisisRESUMEN
In the present work, saline leachate of the Bushehr coastal city (Iran) was purified using the ultraviolet/ultrasonication wave/periodate process. The initial TDS and TOC values of the leachate studied were 7390 mg/L and 975 mg/L, respectively. During the effect of various parameters on leachate purification, the experiments were optimized at pH 3, oxidizer concentration of 4 mM, and treatment time of 120 min. The initial BOD5/COD ratio of 0.66 was reduced to 0.42 at the end of the purification time (120 min). After leachate treatment under optimal conditions, the amount of BOD5, COD, and UV254 were 451.5 mg/L, 1072 mg/L, and 12.69 cm-1, respectively. Concentrations of heavy metals in crude leachate by ICP-OES were checked. Also, the concentration of organic compounds before and after purification was determined using GC-Mass. The leachate purification kinetics followed the first-order model using the designed method. Based on the COD factor, the system energy consumption for leachate treatment was calculated to be 11.4 kWh/m3. The results showed that the system explored (UV/US/IO4-) can effectively purify high salinity waste leachate.
Asunto(s)
Rayos Ultravioleta , Contaminantes Químicos del Agua , Irán , FísicaRESUMEN
Plastic wastes are produced in a large amount everywhere, and are commonly disposed in landfills. So landfill leachate seems an obvious source of microplastics (MPs) and phthalate esters (PAEs) due to a huge usage as plastic additives and plasticizers. But this issue still lacks attention and the present study provides the first information on the levels of MPs and PAEs in the fresh landfill leachate of Bushehr port during different seasons. The mean levels of MPs and PAEs in the fresh leachate in all seasons were 79.16 items/L and 3.27 mg/L, respectively. Also, the mean levels of PAEs in MPs were 48.33 µg/g. A statistically significant difference was detected in the levels of MPs and PAEs among different seasons with the highest values in summer and fall. MPs with a size of >1000 µm had the highest abundance in all seasons. The most prominent shape, color, and type of MPs in the leachate were fibers black, and nylon, respectively. Dibutyl phthalate (DBP) and Di(2-ethylhexyl) phthalate (DEHP) were the most dominant PAEs present in the leachate samples. The results of this study revealed high hazard index (HI) and pollution load index (PLI) of MPs in all seasons. Dioctyl phthalate (DOP), DEHP, DBP, diisobutyl phthalate (DiBP), butyl benzyl phthalate (BBP), and diethyl phthalate (DEP) represented a high risk to the sensitive organisms. The results of this study showed that significant levels of MPs and PAEs may release into the surrounding environment from the landfill sites without sufficient protection. This issue is more critical when the landfill sites in particular are located near the marine environments like the Bushehr landfill that is located near the Persian Gulf, which can lead to serious environmental problems. Thus permanent control and monitor of landfills, especially in the coastal areas are highly needed to prevent further pollution.
Asunto(s)
Dietilhexil Ftalato , Ácidos Ftálicos , Contaminantes Químicos del Agua , China , Dibutil Ftalato , Ésteres , Irán , Microplásticos , Plásticos , Medición de Riesgo , Estaciones del Año , Instalaciones de Eliminación de Residuos , Contaminantes Químicos del Agua/análisisRESUMEN
In the present study, the magnetic NH2-MIL-101(Al)/chitosan nanocomposite (MIL/Cs@Fe3O4 NCs) was synthesized and used in the removal of azithromycin (AZT) from an aqueous solution for the first time. The as-synthesized MIL/Cs@Fe3O4 NCs was characterized by SEM, TEM, XRD, FTIR, BET, and VSM techniques. The effect of various key factors in the AZT adsorption process was modeled and optimized using response surface methodology based on central composite design (RSM-CCD). The low value of p-value (1.3101e-06) and RSD (1.873) parameters, along with the coefficient of determination > 0.997 implied that the developed model was well fitted with experimental data. Under the optimized conditions, including pH: 7.992, adsorbent dose: 0.279 g/L, time: 64.256 min and AZT concentration: 10.107 mg/L, removal efficiency and AZT adsorption capacity were obtained as 98.362 ± 3.24% and 238.553 mg/g, respectively. The fitting of data with the Langmuir isotherm (R2: 0.998, X2: 0.011) and Pseudo-second-order kinetics (R2: 0.999, X2: 0.013) showed that the adsorption process is monolayer and chemical in nature. ΔH° > 0, ΔS° > 0, and ∆G° < 0 indicated that AZT removal was spontaneous and endothermic in nature. The effect of Magnesium on AZT adsorption was more complicated than other background ions. Reuse of the adsorbent in 10 consecutive experiments showed that removal efficiency was reduced by about 30.24%. The performance of MIL/Cs@Fe3O4 NCs under real conditions was also tested and promising results were achieved, except in the treatment of AZT from raw wastewater.
Asunto(s)
Quitosano , Nanocompuestos , Contaminantes Químicos del Agua , Purificación del Agua , Quitosano/química , Purificación del Agua/métodos , Azitromicina , Contaminantes Químicos del Agua/análisis , Temperatura , Nanocompuestos/química , Adsorción , Cinética , Fenómenos Magnéticos , Concentración de Iones de HidrógenoRESUMEN
Recently, an outbreak of a novel human coronavirus which is referred to as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (COVID-19) by the World Health Organization (WHO) was identified in Wuhan, China. To help combat the pandemic, a systematic review (SR) was performed to collect all available studies concerning inactivation methods, environmental survival, and control and prevention strategies. A comprehensive literature survey yielded 42 eligible studies which included in the SR. The results confirmed that the WHO recommended two alcohol-based hand rub formulations (ethanol 70-95% and 2-propanol 70-100%) had an efficient virucidal activity in less than 60 s by more and equal 4 log10 (≥ 99.99) approximately and could be used for disinfection in public health and health-care facilities. The findings indicated that SARS-CoV-1 and SARS-CoV-2 can survive under different environmental conditions between 4 and 72 h approximately. The results also demonstrate that temperature and relative humidity are important factors in the survival of SARS-CoV-2. The main strategies recommended by the WHO to avoid contracting SARS-CoV-2 are hand washing several times in the day and maintaining social distancing with others. It is important to note that the more studies require addressing, the more possible airborne transmission due to the survival of SARS-CoV-2 in aerosols for 3 h approximately. We hope that the results of the present SR can help researchers, health decision-makers, policy-makers, and people for understanding and taking the proper behavior to control and prevent further spread of SARS-CoV-2.
Asunto(s)
COVID-19 , SARS-CoV-2 , China , Brotes de Enfermedades , Desinfección , HumanosRESUMEN
The current study is the intented to investigate the intensity of pollution, source characterization, oxidative potential, and human health risks of fourteen potentially toxic elements in the street dust of the Middle East oldest oil refinery zone. Thirty five street dust samples were collected from various regions in Abadan and Khorramshahr cities. The mean concentration of As, Mo, Cu, Pb, Hg, Zn, Cd, and Sb in Abadan street dust were 5.55, 3.39, 83.68, 49.82, 4493.54, 281.24, 1.15,and 1.17, while in Khorramshahr As, Mo, Cu, Pb, Hg, Zn, Cd, and Sb were.14, 2.58, 74.35, 56.50, 0.74, 214.26, 0.62, and 1.18, respectively. The concentration of these elements in both cities is higher than the local background values. Potential ecological risk index and pollution load index at all stations of both cities are greater than 1, indicating a high pollution load in the study area. Calculated enrichment factor showed high enrichment of Hg, Sb, Cd, Mo, Cu, Pb, and Zn in both areas. Of particular concern is the enrichment factor for mercury which proved to be 3370.54 ppb in the vicinity of the petrochemical unit in Abadan city (EF > 40). The results of positive matrix factorization receptor model together with geochemical maps and multivariate statistics indicated that industrial activities (especially petrochemical industries) are responsible for Hg, Cu, and Zn pollution, while exhaust emissions are responsible for Mo, Pb, Cd, and Sb, and natural sources for Al, Cr, Mn, Fe, Co, and Ni. The percentage of OPAA in the region ranged from 15.1 to 26.4 and OPGSH ranged from 9.5 to 24.4. The percentage of OPTOTAL/µg (OPAA/µg + OPGSH/µg) values varied between 0.6 and 1. The health risk evaluation models indicated that specific attention should be paid to Hg, Cd, Pb, and Zn and that the higher oxidative potential of street dust recovered from polluted locations is also a matter of concern in Abadan and Khorramshahr Cities.
Asunto(s)
Polvo , Metales Pesados , China , Ciudades , Polvo/análisis , Monitoreo del Ambiente , Humanos , Metales Pesados/análisis , Medio Oriente , Industria del Petróleo y Gas , Estrés Oxidativo , Medición de RiesgoRESUMEN
Landfill leachate, as a complex medium with a high concentration of organic and mineral materials, is a serious problem for the environment. In the current study, the saline landfill leachate of Bushehr coastal city (Iran) was treated using ultraviolet/ultrasonic waves/peroxymonosulfate system. The initial TOC and TDS of the studied leachate was 915 mg/L and 7390 mg/L, respectively. The system had the maximum efficiency at conditions of pH 3, peroxymonosulfate (PMS) of 4 mM, and reaction time of 150 min. Based on the findings, the initial ratio of BOD5/COD (0.66) was reduced to 0.38 using the developed system. After treatment of the landfill leachate at the optimal condition, the values of COD, BOD5, and UV254 were reached to 983 mg/L, 348 mg/L, and 10.16 cm-1, respectively. The concentration of all studied elements (except Pb, As, and Ca) increased after purification. According to the GC-mass spectrometry, the molecular weight and concentration of organic matter in raw leachate were higher than that of the treated one. The studied system had an energy consumption value of 86 kW·h/m3 for the treatment of landfill leachate. The results confirm the effectiveness of the ultraviolet/ultrasonic waves/PMS system for the treatment of high saline landfill leachate.
Asunto(s)
Contaminantes Químicos del Agua , Ciudades , Irán , Peróxidos , Salinidad , Contaminantes Químicos del Agua/análisisRESUMEN
While the distribution and effects of microplastics (MPs) have been extensively studied in aquatic systems, there exits little information on their occurrence in the terrestrial environment and their potential impacts on human health. In the present study, street dust and suspended dust were collected from the city and county of Asaluyeh, Iran. Samples were characterized by various microscopic techniques (fluorescence, polarized light, SEM) in order to quantify and classify MPs and microrubbers (MRs) in the urban and industrial environments that are potentially ingestible or inhalable by humans. In < 5-mm street dust retrieved from 15 sites, there were an average of 900â¯MPs and 250â¯MRs per 15â¯g of sample, with MPs exhibiting a range of colours and sizes (<100 to >1000⯵m). Most street dust samples were dominated by spherical and film-like particles and MRs largely made up of different sizes of black fragments and fibrous particulates. Airborne dust collected daily over an eight-day period at two locations revealed the ubiquity of fibrous MPs of sizes ranging from about 2⯵m to 100⯵m and an abundance of about 1 per m-3. These samples contained small MR fragments whose precise characteristics were more difficult to define. Based on the median concentrations in street dust, estimates of acute exposure through ingestion are about 5 and 15â¯MPâ¯d-1 and 2 and 7â¯MRâ¯d-1 for construction workers and young children, respectively. Quantities of inhalable particulates were more difficult to define but the potential toxicity of MPs and MRs taken in by this route was evaluated from assays performed using particulates isolated from street dusts in the presence of an artificial lung fluid. Both types of particle exhibited oxidative potential, with MPs displaying consumptions of different antioxidants that were comparable with corresponding values for a reference urban particulate dust but lower than those for London ambient particulate matter. Thus, MPs and MRs contribute towards the health impacts of urban and industrial dusts but their precise roles remain unclear and warrant further study.