Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
J Org Chem ; 89(6): 4210-4214, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38447076

RESUMEN

Few synthetic methodologies that yield tris-functionalized C3v-symmetrical calix[6]arenes have been reported. In this work, three allyl protecting groups are selectively placed in 1,3,5 alternate positions of three pristine calix[6]arenes, each differing by their substituent on the large rim, resulting in three new C3v-symmetrical molecular platforms. Removal of the protecting allylic groups gives access to sophisticated calix[6]arenes that can be further modified. The potential of these new C3v-symmetrical molecular platforms is notably exemplified through the development of a new family of calix[6]arene-based N ligands.

2.
J Org Chem ; 89(15): 10903-10911, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39034591

RESUMEN

We report here on the development of a fluorescent cone homooxacalix[3]arene-based receptor with a pyrene unit on the wide rim of the macrocycle (Ox3F) for the selective detection of primary ammonium ions, including those of biological importance. Ox3F was synthesized efficiently via an innovative strategy that enables the regio- and iteroselective wide rim functionalization of the readily available p-tBu-substituted homooxacalix[3]arene precursor. Nuclear magnetic resonance studies and in silico methods highlighted the endo-complexation of primary ammonium ions, including the protonated form of biogenic dopamine, tryptamine, serotonin, mexamine, and 3-iodothyronamine. The binding mode is similar for all guests with the ion deeply inserted into the polyaromatic cavity, enabling the NH3+ head to establish three hydrogen bonds with the ethereal oxygens of the macrocycle. Fluorescence quenching of the pyrene unit was observed following the π-π interaction between the pyrene moiety and the aromatic groups of serotonin, mexamine, and 3-iodothyronamine. No quenching was observed upon complexation of the smaller aromatic neurotransmitter dopamine as well as aliphatic amines and polyamines. This study presents a novel approach for biologically relevant ammonium ion chemosensing with ongoing efforts focused on translating these systems for aqueous environment applications.

3.
Chemistry ; 29(5): e202202934, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36321640

RESUMEN

In the biomimetic context, many studies have evidenced the importance of the 1st and 2nd coordination sphere of a metal ion for controlling its properties. Here, we propose to evaluate a yet poorly explored aspect, which is the nature of the cavity that surrounds the metal labile site. Three calix[6]arene-based aza-ligands are compared, that differ only by the nature of cavity walls, anisole, phenol or quinone (LOMe , LOH and LQ ). Monitoring ligand exchange of their ZnII complexes evidenced important differences in the metal ion relative affinities for nitriles, halides or carboxylates. It also showed a possible sharp kinetic control on both, metal ion binding and ligand exchange. Hence, this study supports the observations reported on biological systems, highlighting that the substitution of an amino-acid residue of the enzyme active site, at remote distance of the metal ion, can have strong impacts on metal ion lability, substrate/product exchange or selectivity.


Asunto(s)
Calixarenos , Fenol , Ligandos , Biomimética , Metales , Fenoles/química , Calixarenos/química , Quinonas
4.
Chemistry ; 29(64): e202301212, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37582678

RESUMEN

Earth-abundant photosensitizers are highly sought after for light-mediated applications, such as photoredox catalysis, depollution and energy conversion schemes. Homoleptic and heteroleptic copper(I) complexes are promising candidates in this field, as copper is abundant and the corresponding complexes are easily obtained in smooth conditions. However, some heteroleptic copper(I) complexes suffer from low (photo)stability that leads to the gradual formation of the corresponding homoleptic complex. Such degradation pathways are detrimental, especially when recyclability is desired. This study reports a novel approach for the heterogenization of homoleptic and heteroleptic Cu complexes on silica nanoparticles. In both cases, the photophysical properties upon surface immobilization were only slightly affected. Excited-state quenching with aryl diazonium derivatives occurred efficiently (108 -1010  M-1 s-1 ) with heterogeneous and homogeneous photosensitizers. Moderate but almost identical yields were obtained for the α-arylation of enol acetate using the homoleptic complex in homogeneous or heterogeneous conditions. Importantly, the silica-supported photocatalysts were recycled with moderate loss in photoactivity over multiple experiments. Transient absorption spectroscopy confirmed that excited-state electron transfer occurred from the homogeneous and heterogeneous homoleptic copper(I) complexes to aryl diazonium derivatives, generating the corresponding copper(II) center that persisted for several hundreds of microseconds, compatible with photoredox catalysis applications.

5.
Org Biomol Chem ; 21(33): 6730-6737, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37547927

RESUMEN

Due to their significant role in industry and biological systems, the interest in selectively recognizing and detecting small dicarboxylates has grown in recent years. In this study, we report on the binding properties of a family of tubular-shaped heterotritopic receptors based on bis-calix[6]arenes, which contain three (thio)urea bridges (C3U and C3TU) or six urea bridges (C6U), toward dicarboxylates. While poor binding properties were observed by NMR for the newly synthesized C6U, receptors C3U and C3TU exhibited a unique ability to cooperatively complex a dicarboxylate anion sandwiched between two ammonium ions. The three ions are complexed in contact and aligned within the tubular shape of the receptor, forming cascade complexes that are stable even in a competitive environment. The different binding properties between the receptors were rationalized in terms of size, flexibility, H-bond donor ability, and intramolecular H-bonding within the anion binding pocket between the calixarene cavities. With C3U, a rare selectivity for oxalate over other small dicarboxylates and various bicharged anions was observed. Molecular modeling of the cascade complex indicated that the oxalate anion is stabilized by an array of hydrogen bonds with the urea bridges of the receptor and both propylammonium cations nested within the calixarene cavities.

6.
Org Biomol Chem ; 21(6): 1172-1180, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36504236

RESUMEN

A novel ZnII funnel complex that presents three phenol functions within a calix[6]arene macrocycle is described. Host-guest studies, monitored by 1H NMR spectroscopy, evaluate the impact of the replacement of three anisole moieties present in a previously described system with phenols. It is now shown that the dicationic complex is responsive to anions, whereas deprotonation of one phenol unit completely inhibits any hosting response. These properties, combined with those of the corresponding protonated ligand, allow us to obtain different molecular switches, and one of them shows guest embedment changes between four different host states, thus giving rise to a rare case of a triple molecular switch.

7.
Artículo en Inglés | MEDLINE | ID: mdl-36779205

RESUMEN

Hypothesis: Citrate capped gold nanoparticles (AuNPs-citrate) are the starting material for most of the academic and industrial applications using gold nanoparticles. AuNPs-citrate must usually be functionalized with organic (bio)molecules, through a ligand exchange process, to become suitable for the envisaged application. The evaluation of the efficiency of the ligand-exchange process with a simple and convenient procedure is challenging. Experiments: Fluoride was used to evaluate the efficiency of a ligand exchange process from AuNPs-citrate with five standard types of ligands. The relationship between the aggregation level of the AuNPs exposed to fluoride and the amount of residual citrate ligands at the surface of the AuNPs was studied. The fluoride-induced aggregation process was characterized with various techniques such as TEM, UV-Vis, ATR-FTIR or MANTA and then used to quickly identify the optimal conditions for the functionalization of AuNPs-citrate with a new ligand, i.e. a PEGylated calixarene-tetradiazonium salt (X4-(PEG)4). Findings: It was observed that the fluoride-induced aggregation of AuNPs is proportional to the efficiency of the ligands exchange. We believe that these results could benefit to everyone engineering AuNPs for advanced applications, as the fluoride-aggregation of AuNPs can be used as a general and versatile quality test to verify the coating density of organic (bio)molecules on AuNPs.

8.
Anal Chem ; 94(20): 7383-7390, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35561247

RESUMEN

Dipstick assays using silver nanoparticles (AgNPs) stabilized by a thin calix[4]arene-based coating were developed and used for the detection of Anti-SARS-CoV-2 IgG in clinical samples. The calixarene-based coating enabled the covalent bioconjugation of the SARS-CoV-2 Spike Protein via the classical EDC/sulfo-NHS procedure. It further conferred remarkable stability to the resulting bioconjugated AgNPs, as no degradation was observed over several months. In comparison with lateral-flow immunoassays (LFIAs) based on classical gold nanoparticles, our AgNP-based system constitutes a clear step forward, as the limit of detection for Anti-SARS-CoV-2 IgG was reduced by 1 order of magnitude and similar signals were observed with 10 times fewer particles. In real clinical samples, the AgNP-based dipstick assays showed impressive results: 100% specificity was observed for negative samples, while a sensitivity of 73% was determined for positive samples. These values match the typical sensitivities obtained for reported LFIAs based on gold nanoparticles. These results (i) represent one of the first examples of the use of AgNP-based dipstick assays in the case of real clinical samples, (ii) demonstrate that ultrastable calixarene-coated AgNPs could advantageously replace AuNPs in LFIAs, and thus (iii) open new perspectives in the field of rapid diagnostic tests.


Asunto(s)
COVID-19 , Calixarenos , Nanopartículas del Metal , Anticuerpos Antivirales , COVID-19/diagnóstico , Oro , Humanos , Inmunoensayo/métodos , Inmunoglobulina G , SARS-CoV-2 , Sensibilidad y Especificidad , Plata , Glicoproteína de la Espiga del Coronavirus
9.
Langmuir ; 38(30): 9301-9309, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35866876

RESUMEN

Gold nanoparticles (AuNPs) are currently intensively exploited in the biomedical field as they possess interesting chemical and optical properties. Although their synthesis is well-known, their controlled surface modification with defined densities of ligands such as peptides, DNA, or antibodies remains challenging and has generally to be optimized case by case. This is particularly true for applications like in vivo drug delivery that require AuNPs with multiple ligands, for example a targeting ligand and a drug in well-defined proportions. In this context, we aimed to develop a calixarene-modification strategy that would allow the controlled orthogonal conjugation of AuNPs, respectively, via amide bond formation and copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC). To do this, we synthesized a calix[4]arene-tetradiazonium salt bearing four PEG chains ended by an alkyne group (C1) and, after optimization of its grafting on 20 nm AuNPs, we demonstrated that CuAAC can be used to conjugate an azide containing dye (N3-cya7.5). It was observed that AuNPs coated with C1 (AuNPs-C1) can be conjugated to approximately 600 N3-cya7.5 that is much higher than the value obtained for AuNPs decorated with traditional thiolated PEG ligands terminated by an alkyne group. The control over the number of molecules conjugated via CuAAC was even possible by incorporating a non-functional calixarene (C2) into the coating layer. We then combined C1 with a calix[4]arene-tetradiazonium salt bearing four carboxyl groups (C3) that allows conjugation of an amine (NH2-cya7.5) containing dye. The conjugation potential of these bifunctional AuNPs-C1/C3 was quantified by UV-vis spectroscopy: AuNPs decorated with equal amount of C1 and C3 could be conjugated to approximately 350 NH2-dyes and 300 N3-dyes using successively amide bond formation and CuAAC, demonstrating the control over the orthogonal conjugation. Such nanoconstructs could benefit to anyone in the need of a controlled modification of AuNPs with two different molecules via two different chemistries.


Asunto(s)
Calixarenos , Nanopartículas del Metal , Alquinos/química , Amidas , Azidas/química , Colorantes , Oro/química , Ligandos , Nanopartículas del Metal/química , Fenoles , Polietilenglicoles/química
10.
J Org Chem ; 87(19): 12749-12758, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36149399

RESUMEN

The development of artificial receptors for efficient recognition of analytes in water is a challenging task. Homooxacalix[3]arene-based receptor 1, which is selective toward primary ammoniums in organic solvents, was transferred into water following two different strategies: direct solubilization and micellar incorporation. Extensive 1H NMR studies showed that recognition of ammoniums is only observed in the case of micellar incorporation, highlighting the beneficial effect of the microenvironment of the micellar core. The selectivity of the system for primary ammoniums over secondary and tertiary ones was also maintained. The hydrophobic effect plays an important role in the recognition properties, which are counterion-dependent due to the energy penalty for the dissociation of certain ammonium salts in the apolar micellar core. This study shows that the straightforward self-assembly process used for the encapsulation of artificial receptors in micelles is an efficient strategy for developing water-soluble nanosized supramolecular recognition systems.


Asunto(s)
Compuestos de Amonio , Receptores Artificiales , Micelas , Sales (Química) , Solventes/química , Agua/química
11.
Bioconjug Chem ; 32(2): 290-300, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33439626

RESUMEN

Many in vivo and in vitro applications using gold nanoparticles (AuNPs) require (i) their PEGylation, as it increases their stability and prevents nonspecific protein adsorption, and (ii) their conjugation to biomolecules, that provides them with specific recognition properties. Currently, the functionalization of AuNPs is based on thiol chemistry that suffers from two major drawbacks: (i) the Au-S bond is labile and confers limited chemical robustness to the organic layer, and (ii) control over the bioconjugation density is highly challenging. We report here a novel functionalization strategy based on calix[4]arene-tetradiazonium platforms for the coating of AuNPs with a robust PEG layer and their controlled bioconjugation. AuNPs were first modified with a functional calix[4]arene-diazonium salt bearing three PEG chains ended by a methoxy group and one by a carboxyl group. The resulting particles showed excellent chemical and colloidal stabilities, compared to similar systems obtained via a classical thiol chemistry, and could even be dispersed in human serum without degrading or aggregating. In addition to that, the carboxyl groups protruding from the PEG layer allowed their conjugation via amide bond formation with amine-containing biomolecules such as peptides. The control of the bioconjugation was obtained by grafting mixed layers of functional and nonfunctional PEGylated calix[4]arenes, that allowed varying the number of functional groups carried by the AuNPs and subsequently their bioconjugation capacity while preserving their dense protective PEG shell. Finally, we used these nanomaterials, modified with peptide aptamers, for the in vitro biosensing of a cancer biomarker, Mdm2.


Asunto(s)
Calixarenos/química , Oro/química , Nanopartículas del Metal/química , Polietilenglicoles/química , Biomarcadores de Tumor/análisis , Técnicas Biosensibles , Humanos , Análisis Espectral/métodos , Termogravimetría
12.
Chemistry ; 27(55): 13730-13738, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34288166

RESUMEN

In this study, the ligand exchange mechanism at a biomimetic ZnII centre, embedded in a pocket mimicking the possible constrains induced by a proteic structure, is explored. The residence time of different guest ligands (dimethylformamide, acetonitrile and ethanol) inside the cavity of a calix[6]arene-based tris(imidazole) tetrahedral zinc complex was probed using 1D EXchange SpectroscopY NMR experiments. A strong dependence of residence time on water content was observed with no exchange occurring under anhydrous conditions, even in the presence of a large excess of guest ligand. These results advocate for an associative exchange mechanism involving the transient exo-coordination of a water molecule, giving rise to 5-coordinate ZnII intermediates, and inversion of the pyramid at the ZnII centre. Theoretical modelling by DFT confirmed that the associative mechanism is at stake. These results are particularly relevant in the context of the understanding of kinetic stability/lability in Zn proteins and highlight the key role that a single water molecule can play in catalysing ligand exchange and controlling the lability of ZnII in proteins.


Asunto(s)
Calixarenos , Biomimética , Ligandos , Agua , Zinc
13.
Chemistry ; 27(55): 13663, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34529309

RESUMEN

Invited for the cover of this issue are Kristin Bartik, Olivia Reinaud and co-workers at the Université libre de Bruxelles and Université Paris Descartes. The image depicts a Zn protein and highlights the role that a single water molecule can play in catalysing ligand exchange. Read the full text of the article at 10.1002/chem.202102184.


Asunto(s)
Calixarenos , Biomimética , Humanos , Ligandos , Agua , Zinc
14.
J Org Chem ; 86(17): 12075-12083, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34409837

RESUMEN

A molecular capsule based on a calix[6]arene core closed at the small rim by a three-point coordinated metal ion and at the large rim by a three-point covalent capping is described. It is derived from a trisimidazole funnel complex capped by a trenamide unit that prevents in/out exchange of guest molecules through the large rim. A detailed comparative study with three different calixarenes provides a unique opportunity for (i) comparing the binding ability of two different coordination sites in well three-dimensional (3D)-structured macrocyclic receptors and (ii) evaluating the impact of a covalent closing of one rim of a funnel receptor while the other rim is closed by weaker coordination bonds. Indeed, this study allowed for highlighting various interesting new features. It is first shown that the trenamide site can bind a metal ion such as Zn2+ by itself. This involves a 1:1 coordination of the metal ion to the three carbonyl groups of the amide functions, which undergo trans-to-cis isomerization and are partially embedded in the calix core. When the trisimidazole core is present, the Zn2+ ion preferentially binds at the small rim, thus closing the cavity. Guest ligand exchange must then occur through a decoordination/recoordination process of the metal ion. The modification and rigidification of the calixarene conformation induced by the large rim capping strengthen the metal ion coordination at the small rim. This also leads to a selective metallo-receptor that readily binds EtNH2 under conditions where PrNH2 is not recognized at all. The increased rigidity of the receptor, however, weakens the host-guest interactions, precluding important induced-fit behaviors that are at work in the parent, large rim opened, funnel complex.


Asunto(s)
Calixarenos , Modelos Moleculares , Fenoles , Zinc
15.
Chemistry ; 26(14): 3022-3025, 2020 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-31944456

RESUMEN

This work describes a calix[6]arene-based wheel that binds, in non-polar media, a stilbazolium salt to yield a mixture of pseudorotaxane orientational isomers. The isomer's abundance ratio evolves with time and can be reversibly tuned by adjusting the temperature. The spectroscopic properties, and notably the emission spectrum, of the bound guest depend on its orientation inside the non-palindromic wheel, suggesting such a system as a switch with spectroscopic readout.


Asunto(s)
Calixarenos/química , Colorantes Fluorescentes/química , Fenoles/química , Rotaxanos/química , Cinética , Estructura Molecular , Espectrometría de Fluorescencia , Estereoisomerismo , Temperatura , Termodinámica
16.
Chemphyschem ; 21(1): 83-89, 2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31659835

RESUMEN

The straightforward synthesis of a new hexahomotrioxacalix[3]arene-based ligand capped by a tren subunit was developed and the binding properties of the corresponding zinc complex were explored by NMR spectroscopy. Similarly to the closely related calix[6]tren-based systems, the homooxacalixarene core ensures the mononuclearity of the zinc complex and the metal center displays a labile coordination site for exogenous guests. However, very different host-guest properties were observed: i) in CDCl3 , the zinc complex strongly binds a water molecule and is reluctant to recognize other neutral guests, ii) in CD3 CN, the exo-coordination of anions prevails. Thus, in strong contrast to the calix[6]tren-based systems, the coordination of neutral guests that thread through the small rim and fill the polyaromatic cavity was not observed. This unique behaviour is likely due to the fact that the 18-membered ethereal macrocycle is too small to let a molecule threading through it. This work illustrates the key role played by the second coordination sphere in the binding properties of metal complexes.

17.
Langmuir ; 36(40): 12068-12076, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33007158

RESUMEN

Germanium is particularly suitable for the design of FTIR-based biosensors for proteins. The grafting of stable and thin organic layers on germanium surfaces remains, however, challenging. To tackle this problem, we developed a calix[4]arene-tetradiazonium salt decorated with four oligo(ethylene glycol) chains and a terminal reactive carboxyl group. This versatile molecular platform was covalently grafted on germanium surfaces to yield robust ready-to-use surfaces for biosensing applications. The grafted calixarene monolayer prevents nonspecific adsorption of proteins while allowing bioconjugation with biomolecules such as bovine serum albumin (BSA) or biotin. It is shown that the native form of the investigated proteins was maintained upon immobilization. As a proof of concept, the resulting calix[4]arene-based germanium biosensors were used through a combination of ATR-FTIR spectroscopy and fluorescence microscopy for the selective detection of streptavidin from a complex medium. This study opens real possibilities for the development of sensitive and selective FTIR-based biosensors devoted to the detection of proteins.

18.
J Org Chem ; 85(15): 10062-10071, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32657587

RESUMEN

The binding of ammonium ions by two homooxacalix[3]arene-based receptors was studied using NMR spectroscopy and in silico methods. Both receptors are shown to endocomplex, even in a protic environment, a large variety of primary ammonium ions, including biomolecules. The binding mode is similar for all guests with the ammonium ion deeply inserted into the polyaromatic cavity and its NH3+ head nearly in the plane defined by the three oxygen atoms of the 18-crown-3 moiety, thus enabling it to establish three H-bonds with the ethereal macrocycle. The remarkable electronic, size, and shape complementarity between primary ammonium ions and the two cavity-based receptors leads to an unprecedented specificity for primary ammonium ions over secondary, tertiary, and quaternary ones. These binding properties were exploited for the selective liquid-liquid extraction of primary ammonium salts from water and for the selective recognition of lysine-containing peptides, opening new perspectives in the field of peptide sensing.

19.
Org Biomol Chem ; 18(19): 3624-3637, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32154553

RESUMEN

Surface modification represents an active field of research that finds applications, amongst others, in the development of medical devices, sensors and biosensors, anti-biofouling materials, self-cleaning surfaces, surfaces with controlled wettability, corrosion resistance, heterogeneous catalysis and microelectronics. For some applications, surface functionalization with a nanometric-size monolayer is desired. In this review, efforts to covalently functionalize a wide array of surfaces with calixarenes bearing diazonium groups are described. More specifically, methodologies to obtain monolayers of calix[4 or 6]arene derivatives on conductive, semi-conductive or insulating surfaces as well as on nanoparticles are presented. The main advantages of this general surface modification strategy (i.e. formation of true monolayers that can be post-functionalized, high robustness and control over the composition of the calixarene-based coating) and its current scope of applications and future challenges are discussed.

20.
Bioorg Chem ; 89: 103014, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31170642

RESUMEN

Seventy-one 7-oxycoumarins, 66 synthesized and 5 commercially sourced, were tested for their ability to inhibit growth in murine PAM212 keratinocytes. Forty-nine compounds from the library demonstrated light-induced lethality. None was toxic in the absence of UVA light. Structure-activity correlations indicate that the ability of the compounds to inhibit cell growth was dependent not only on their physiochemical characteristics, but also on their ability to absorb UVA light. Relative lipophilicity was an important factor as was electron density in the pyrone ring. Coumarins with electron withdrawing moieties - cyano and fluoro at C3 - were considerably less active while those with bromines or iodine at that location displayed enhanced activity. Coumarins that were found to inhibit keratinocyte growth were also tested for photo-induced DNA plasmid nicking. A concentration-dependent alteration in migration on neutral gels caused by nicking was observed.


Asunto(s)
Cumarinas/farmacología , Queratinocitos/efectos de los fármacos , Fármacos Fotosensibilizantes/farmacología , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Cumarinas/síntesis química , Cumarinas/química , Relación Dosis-Respuesta a Droga , Ratones , Estructura Molecular , Procesos Fotoquímicos , Fármacos Fotosensibilizantes/síntesis química , Fármacos Fotosensibilizantes/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA