Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur Heart J ; 35(45): 3224-31, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25217442

RESUMEN

RATIONALE: Many processes in endothelial cells including angiogenic responses are regulated by microRNAs. However, there is limited information available about their complex cross-talk in regulating certain endothelial functions. AIM: The objective of this study is to identify endothelial functions of the pro-hypertrophic miR-212/132 cluster and its cross-talk with other microRNAs during development and disease. METHODS AND RESULTS: We here show that anti-angiogenic stimulation by transforming growth factor-beta activates the microRNA-212/132 cluster by derepression of their transcriptional co-activator cAMP response element-binding protein (CREB)-binding protein (CBP) which is a novel target of a previously identified pro-angiogenic miRNA miR-30a-3p in endothelial cells. Surprisingly, despite having the same seed-sequence, miR-212 and miR-132 exerted differential effects on endothelial transcriptome regulation and cellular functions with stronger endothelial inhibitory effects caused by miR-212. These differences could be attributed to additional auxiliary binding of miR-212 to its targets. In vivo, deletion of the miR-212/132 cluster increased endothelial vasodilatory function, improved angiogenic responses during postnatal development and in adult mice. CONCLUSION: Our results identify (i) a novel miRNA-cross-talk involving miR-30a-3p and miR-212, which led to suppression of important endothelial genes such as GAB1 and SIRT1 finally culminating in impaired endothelial function; and (ii) microRNAs may have different biological roles despite having the same seed sequence.


Asunto(s)
Endotelio Vascular/fisiología , MicroARNs/fisiología , Neovascularización Fisiológica/fisiología , Proteínas Adaptadoras Transductoras de Señales , Análisis de Varianza , Inhibidores de la Angiogénesis/farmacología , Animales , Proteína de Unión a CREB/antagonistas & inhibidores , Capilares/fisiología , AMP Cíclico/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Ratones Noqueados , MicroARNs/antagonistas & inhibidores , MicroARNs/metabolismo , Neovascularización Patológica/prevención & control , Fosfoproteínas/genética , Sirtuina 1/genética , Factor de Crecimiento Transformador beta/farmacología
3.
Vasc Cell ; 8: 4, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27790365

RESUMEN

Angiogenesis is a fundamental process during development and disease, and many details of the underlying molecular and cellular mechanisms are incompletely understood. Mitogen-activated protein kinase (MAPK)-activated protein kinase 2 (MK2), a major downstream target of p38 MAPK, has recently been identified as a regulator of Interleukin 1ß dependent angiogenesis in vivo, and in vitro data suggest a role of MK2 for VEGF-dependent angiogenic processes in endothelial cells. We thus hypothesized that MK2 plays a role during physiological vascular development in vivo. Vascular development was investigated in the retina of MK2-deficient mice. Retinal angiogenesis such as sprouting, branching and pruning was unchanged in MK2-/- mice compared to wildtype littermates. Early arterial development was also comparable between genotypes. However, with further expansion of vascular smooth muscle cells (SMC) during maturation of the arterial network at later time points, the number of arterial branch points was significantly lower in MK2-/- mice, resulting in a reduced total arterial area in adult mice. Isolated aortic smooth muscle cells from MK2-/- mice showed a more dedifferentiated phenotype in vitro and downregulation of central SMC marker genes, consistent with the known impaired migration of MK2-/- SMC. In conclusion, MK2 is not required for physiological retinal angiogenesis. However, its loss is associated with an altered genetic profile of SMC and an impaired arterial network in adult mice, indicating a distinct and probably cell-specific role of MK2 in arteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA