Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Differentiation ; 89(3-4): 77-86, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25861970

RESUMEN

Adaxial cells, the progenitors of slow-twitch muscle fibres in zebrafish, exhibit a stereotypic migratory behaviour during somitogenesis. Although this process is known to be disrupted in various mutants, its precise nature has remained unclear. Here, using in vivo imaging and chimera analysis, we show that adaxial cell migration is a cell autonomous process, during which cells become polarised and extend filopodia at their leading edge. Loss of function of the Prdm1a transcription factor disrupts the polarisation and migration of adaxial cells, reflecting a role that is independent of its repression of sox6 expression. Expression of the M- and N-cadherins, previously implicated in driving adaxial cell migration, is largely unaffected by loss of Prdm1a function, suggesting that differential cadherin expression is not sufficient for adaxial cell migration.


Asunto(s)
Cadherinas/biosíntesis , Diferenciación Celular/genética , Proteínas de Unión al ADN/biosíntesis , Desarrollo Embrionario/genética , Proteínas Nucleares/biosíntesis , Proteínas de Pez Cebra/biosíntesis , Animales , Cadherinas/genética , Movimiento Celular/genética , Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica , Músculo Esquelético/crecimiento & desarrollo , Proteínas Nucleares/genética , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/genética
2.
Skelet Muscle ; 5(1): 2, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25671076

RESUMEN

BACKGROUND: The transcription factor Sox6 has been implicated in regulating muscle fiber type-specific gene expression in mammals. In zebrafish, loss of function of the transcription factor Prdm1a results in a slow to fast-twitch fiber type transformation presaged by ectopic expression of sox6 in slow-twitch progenitors. Morpholino-mediated Sox6 knockdown can suppress this transformation but causes ectopic expression of only one of three slow-twitch specific genes assayed. Here, we use gain and loss of function analysis to analyse further the role of Sox6 in zebrafish muscle fiber type specification. METHODS: The GAL4 binary misexpression system was used to express Sox6 ectopically in zebrafish embryos. Cis-regulatory elements were characterized using transgenic fish. Zinc finger nuclease mediated targeted mutagenesis was used to analyse the effects of loss of Sox6 function in embryonic, larval and adult zebrafish. Zebrafish transgenic for the GCaMP3 Calcium reporter were used to assay Ca2+ transients in wild-type and mutant muscle fibres. RESULTS: Ectopic Sox6 expression is sufficient to downregulate slow-twitch specific gene expression in zebrafish embryos. Cis-regulatory elements upstream of the slow myosin heavy chain 1 (smyhc1) and slow troponin c (tnnc1b) genes contain putative Sox6 binding sites required for repression of the former but not the latter. Embryos homozygous for sox6 null alleles expressed tnnc1b throughout the fast-twitch muscle whereas other slow-specific muscle genes, including smyhc1, were expressed ectopically in only a subset of fast-twitch fibers. Ca2+ transients in sox6 mutant fast-twitch fibers were intermediate in their speed and amplitude between those of wild-type slow- and fast-twitch fibers. sox6 homozygotes survived to adulthood and exhibited continued misexpression of tnnc1b as well as smaller slow-twitch fibers. They also exhibited a striking curvature of the spine. CONCLUSIONS: The Sox6 transcription factor is a key regulator of fast-twitch muscle fiber differentiation in the zebrafish, a role similar to that ascribed to its murine ortholog.

3.
Mech Dev ; 130(9-10): 447-57, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23811405

RESUMEN

Vertebrate skeletal muscle is composed of distinct types of fibre that are functionally adapted through differences in their physiological and metabolic properties. An understanding of the molecular basis of fibre-type specification is of relevance to human health and fitness. The zebrafish provides an attractive model for investigating fibre type specification; not only are their rapidly developing embryos optically transparent, but in contrast to amniotes, the embryonic myotome shows a discrete temporal and spatial separation of fibre type ontogeny that simplifies its analysis. Here we review the current state of understanding of muscle fibre type specification and differentiation during embryonic development of the zebrafish, with a particular focus on the roles of the Prdm1a and Sox6 transcription factors, and consider the relevance of these findings to higher vertebrate muscle biology.


Asunto(s)
Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares de Contracción Lenta/metabolismo , Transcripción Genética , Pez Cebra/genética , Animales , Embrión no Mamífero/citología , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Morfogénesis/genética , Fibras Musculares de Contracción Rápida/citología , Fibras Musculares de Contracción Lenta/citología , Transducción de Señal , Pez Cebra/embriología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA