Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Neuroimage ; 251: 118990, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35158022

RESUMEN

Entrainment of brain oscillations can be achieved using rhythmic non-invasive brain stimulation, and stimulation of the motor cortex at a frequency associated with sensorimotor inhibition can impair motor responses. Despite the potential for therapeutic application, these techniques do not lend themselves to use outside of a clinical setting. Here, the aim was to investigate whether rhythmic median nerve stimulation (MNS) could be used to entrain oscillations related to sensorimotor inhibition. MEG data were recorded from 20 participants during 400 trials, where for each trial 10 pulses of MNS were delivered either rhythmically or arrhythmically at 12 or 20 Hz. Our results demonstrate a frequency specific increase in relative amplitude in the contralateral somatosensory cortex during rhythmic but not arrhythmic stimulation. This was coupled with an increase in inter-trial phase coherence at the same frequency, suggesting that the oscillations synchronised with the pulses of MNS. The results show that 12 and 20 Hz rhythmic peripheral nerve stimulation can produce entrainment. Rhythmic MNS resulted in synchronous firing of neuronal populations within the contralateral somatosensory cortex meaning these neurons were engaged in processing of the afferent input. Therefore, MNS could prove therapeutically useful in disorders associated with hyperexcitability within the sensorimotor cortices.


Asunto(s)
Corteza Motora , Corteza Sensoriomotora , Humanos , Nervio Mediano , Corteza Motora/fisiología , Neuronas/fisiología , Corteza Somatosensorial/fisiología
2.
J Neurophysiol ; 125(4): 1180-1190, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33625934

RESUMEN

The ability to induce neuroplasticity with noninvasive brain stimulation techniques offers a unique opportunity to examine the human brain systems involved in pain modulation. In experimental and clinical settings, the primary motor cortex (M1) is commonly targeted to alleviate pain, but its mechanism of action remains unclear. Using dynamic causal modeling (DCM) and Bayesian model selection (BMS), we tested seven competing hypotheses about how transcranial magnetic stimulation (TMS) modulates the directed influences (or effective connectivity) between M1 and three distinct cortical areas of the medial and lateral pain systems, including the insular cortex (INS), anterior cingulate cortex (ACC), and parietal operculum cortex (PO). The data set included a novel fMRI acquisition collected synchronously with M1 stimulation during rest and while performing a simple hand motor task. DCM and BMS showed a clear preference for the fully connected model in which all cortical areas receive input directly from M1, with facilitation of the connections INS→M1, PO→M1, and ACC→M1, plus increased inhibition of their reciprocal connections. An additional DCM analysis comparing the reduced models only corresponding to networks with a sparser connectivity within the full model showed that M1 input into the INS is the second-best model of plasticity following TMS manipulations. The results reported here provide a starting point for investigating whether pathway-specific targeting involving M1↔INS improves analgesic response beyond conventional targeting. We eagerly await future empirical data and models that tests this hypothesis.NEW & NOTEWORTHY Transcranial magnetic stimulation of the primary motor cortex (M1) is a promising treatment for chronic pain, but its mechanism of action remains unclear. Competing dynamic causal models of effective connectivity between M1 and medial and lateral pain systems suggest direct input into the insular, anterior cingulate cortex, and parietal operculum. This supports the hypothesis that analgesia produced from M1 stimulation most likely acts through the activation of top-down processes associated with intracortical modulation.


Asunto(s)
Giro del Cíngulo/fisiología , Modelos Teóricos , Corteza Motora/fisiología , Plasticidad Neuronal/fisiología , Lóbulo Parietal/fisiología , Estimulación Magnética Transcraneal , Adulto , Femenino , Giro del Cíngulo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Masculino , Corteza Motora/diagnóstico por imagen , Lóbulo Parietal/diagnóstico por imagen , Adulto Joven
3.
Brain ; 142(1): 209-219, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30561518

RESUMEN

Current theories of motor control emphasize how the brain may use internal models of the body to ensure accurate planning and control of movements. One such internal model-a forward model-is thought to generate an estimate of the next motor state and/or the sensory consequences of an upcoming movement, thereby allowing movement errors to be monitored. In addition, forward models may provide a means by which to determine a sense of agency, i.e. the (conscious) sense of authorship and control over our actions. Tourette syndrome is a developmental neurological condition characterized by the occurrence of motor and phonic tics. The involuntary (or voluntary) nature of tics has been the subject of considerable debate, and it was recently argued that the presence of tics in Tourette syndrome could result in a blurring of any subjective boundary between voluntary and involuntary movements. In particular, it was proposed that the level of sensorimotor noise that accompanies tics may be particularly high in Tourette syndrome, and this may contribute to less efficient forward models used to determine agency. We investigated whether the internal monitoring of movements is impaired in individuals with Tourette syndrome, relative to a matched group of typically developing individuals, using a task that involved executing double-step aiming movements using a hand-held robot manipulandum. Participants were required on each trial to execute two movements in turn, each directed to a remembered target location without visual feedback. Importantly, we assumed that to perform accurately on the second (return) movement it would be necessary to update any forward model to take into account errors made during the first (outward) movement. Here we demonstrate that while the Tourette syndrome group were equally accurate, and no more variable, than the matched control group in executing aiming movements to the first (outward) target location, they were significantly less accurate, and exhibited greater movement variability, than controls when executing the second (return) movement. Furthermore, we show that for the return movement only, movement accuracy and movement variability were significantly predicted by the Tourette syndrome group's clinical severity scores. We interpret these findings as consistent with the view that individuals with Tourette syndrome may experience a reduction in the precision of the forward model estimates thought necessary for the accurate planning and control of movements.


Asunto(s)
Modelos Psicológicos , Movimiento/fisiología , Desempeño Psicomotor/fisiología , Tics/fisiopatología , Síndrome de Tourette/fisiopatología , Síndrome de Tourette/psicología , Adolescente , Estudios de Casos y Controles , Niño , Humanos
4.
Exp Brain Res ; 237(11): 2853-2863, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31463531

RESUMEN

Tourette syndrome is a neurodevelopmental disorder characterised by motor and phonic tics. For some, tics can be managed using medication and/or forms of behavioural therapy; however, adverse side effects and access to specialist resources can be barriers to treatment. In this sham-controlled brain stimulation study, we investigated the effects of transcranial direct current stimulation (tDCS) on the occurrence of tics and motor cortical excitability in individuals aged 16-33 years with Tourette syndrome. Changes in tics were measured using video recordings scored using the RUSH method (Goetz et al. in Mov Disord 14:502-506, 1999) and changes in cortical excitability were measured using single-pulse transcranial magnetic stimulation (spTMS) over the primary motor cortex (M1). Video recordings and spTMS measures were taken before and after 20 min of sham or active tDCS: during which cathodal current was delivered to an electrode placed above the supplementary motor area (SMA). Tic impairment scores, calculated from the video data, were significantly lower post-cathodal stimulation in comparison with post-sham stimulation; however, the interaction between time (pre/post) and stimulation (cathodal/sham) was not significant. There was no indication of a statistically significant change in M1 cortical excitability following SMA stimulation. This study presents tentative evidence that tDCS may be helpful in reducing tics for some individuals, and provides a foundation for larger scale explorations of the use of tDCS as a treatment for reducing tics.


Asunto(s)
Potenciales Evocados Motores/fisiología , Corteza Motora/fisiopatología , Síndrome de Tourette/fisiopatología , Síndrome de Tourette/terapia , Estimulación Transcraneal de Corriente Directa , Adolescente , Adulto , Femenino , Humanos , Masculino , Estimulación Magnética Transcraneal , Adulto Joven
5.
Am J Ind Med ; 62(10): 874-882, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31332812

RESUMEN

BACKGROUND: Cannabis has been legalized in some form for much of the United States. The National Institute for Occupational Safety and Health (NIOSH) received a health hazard evaluation request from a Minnesota cannabis facility and their union to undertake an evaluation. METHODS: NIOSH representatives visited the facility in August 2016 and April 2017. Surface wipe samples were collected for analysis of delta-9 tetrahydrocannabinol (Δ9-THC), delta-9 tetrahydrocannabinol acid (Δ9-THCA), cannabidiol, and cannabinol. Environmental air samples were collected for volatile organic compounds (VOCs), endotoxins (limulus amebocyte lysate assay), and fungal diversity (NIOSH two-stage BC251 bioaerosol sampler with internal transcribed spacer region sequencing analysis). RESULTS: Surface wipe samples identified Δ9-THC throughout the facility. Diacetyl and 2,3-pentanedione were measured in initial VOC screening and subsequent sampling during tasks where heat transference was greatest, though levels were well below the NIOSH recommended exposure limits. Endotoxin concentrations were highest during processing activities, while internal transcribed spacer region sequencing revealed that the Basidiomycota genus, Wallemia, had the highest relative abundance. CONCLUSIONS: To the authors' knowledge, this is the first published report of potential diacetyl and 2,3-pentanedione exposure in the cannabis industry, most notably during cannabis decarboxylation. Endotoxin exposure was elevated during grinding, indicating that this is a potentially high-risk task. The findings indicate that potential health hazards of significance are present during cannabis processing, and employers should be aware of potential exposures to VOCs, endotoxin, and fungi. Further research into the degree of respiratory and dermal hazards and resulting health effects in this industry is recommended.


Asunto(s)
Agricultura , Contaminantes Ocupacionales del Aire/análisis , Cannabis/química , Exposición por Inhalación/análisis , Exposición Profesional/análisis , Microbiología del Aire , Cannabidiol/análisis , Cannabinol/análisis , Dronabinol/análogos & derivados , Dronabinol/análisis , Endotoxinas/análisis , Humanos , Minnesota , Compuestos Orgánicos Volátiles/análisis
6.
Neuroimage ; 156: 207-213, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28533117

RESUMEN

Functional magnetic resonance spectroscopy (fMRS) has been used to assess the dynamic metabolic responses of the brain to a physiological stimulus non-invasively. However, only limited information on the dynamic functional response of γ-aminobutyric acid (GABA), the primary inhibitory neurotransmitter in the brain, is available. We aimed to measure the activation-induced changes in GABA unambiguously using a spectral editing method, instead of the conventional direct detection techniques used in previous fMRS studies. The Mescher-Garwood-semi-localised by adiabatic selective refocusing (MEGA-sLASER) sequence was developed at 7T to obtain the time course of GABA concentration without macromolecular contamination. A significant decrease (-12±5%) in the GABA to total creatine ratio (GABA/tCr) was observed in the motor cortex during a period of 10min of hand-clenching, compared to an initial baseline level (GABA/tCr =0.11±0.02) at rest. An increase in the Glx (glutamate and glutamine) to tCr ratio was also found, which is in agreement with previous findings. In contrast, no significant changes in NAA/tCr and tCr were detected. With consistent and highly efficient editing performance for GABA detection and the advantage of visually identifying GABA resonances in the spectra, MEGA-sLASER is demonstrated to be an effective method for studying of dynamic changes in GABA at 7T.


Asunto(s)
Encéfalo/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Neuroimagen/métodos , Ácido gamma-Aminobutírico/análisis , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Adulto Joven , Ácido gamma-Aminobutírico/metabolismo
7.
Neuroimage ; 152: 360-370, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28284797

RESUMEN

Imbalances in glutamatergic (excitatory) and GABA (inhibitory) signalling within key brain networks are thought to underlie many brain and mental health disorders, and for this reason there is considerable interest in investigating how individual variability in localised concentrations of these molecules relate to brain disorders. Magnetic resonance spectroscopy (MRS) provides a reliable means of measuring, in vivo, concentrations of neurometabolites such as GABA, glutamate and glutamine that can be correlated with brain function and dysfunction. However, an issue of much debate is whether the GABA observed and measured using MRS represents the entire pool of GABA available for measurement (i.e., metabolic, intracellular, and extracellular) or is instead limited to only some portion of it. GABA function can also be investigated indirectly in humans through the use of non-invasive transcranial magnetic stimulation (TMS) techniques that can be used to measure cortical excitability and GABA-mediated physiological inhibition. To investigate this issue further we collected in a single session both types of measurement, i.e., TMS measures of cortical excitability and physiological inhibition and ultra-high-field (7 T) MRS measures of GABA, glutamate and glutamine, from the left sensorimotor cortex of the same group of right-handed individuals. We found that TMS and MRS measures were largely uncorrelated with one another, save for the plateau of the TMS IO curve that was negatively correlated with MRS-Glutamate (Glu) and intra-cortical facilitation (10ms ISI) that was positively associated with MRS-Glutamate concentration. These findings are consistent with the view that the GABA concentrations measured using the MRS largely represent pools of GABA that are linked to tonic rather than phasic inhibition and thus contribute to the inhibitory tone of a brain area rather than GABAergic synaptic transmission.


Asunto(s)
Corteza Motora/fisiología , Inhibición Neural , Ácido gamma-Aminobutírico/metabolismo , Adulto , Potenciales Evocados Motores , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Corteza Motora/metabolismo , Espectroscopía de Protones por Resonancia Magnética , Reproducibilidad de los Resultados , Estimulación Magnética Transcraneal , Adulto Joven , Ácido gamma-Aminobutírico/fisiología
8.
Atmos Environ (1994) ; 171: 132-148, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30792610

RESUMEN

Organic nitrates are relatively long-lived species and have been shown to have a potential impact on atmospheric chemistry on local, regional, and even global scales. However, the significance of these compounds in the indoor environment remains to be seen. This work describes an impinger-based sampling and analysis technique for organic nitrate species, focusing on formation via terpene ozonolysis in the presence of nitric oxide (NO). Experiments were conducted in a Teflon film environmental chamber to measure the formation of alkyl nitrates produced from α-pinene ozonolysis in the presence of NO and alkanes using gas chromatography with an electron capture detector. For the different concentrations of NO and O3 analyzed, the concentration ratio of [O3]/[NO] around 1 was found to produce the highest organic nitrate concentration, with [O3] = 100 ppb & [NO] = 105 ppb resulting in the most organic nitrate formation, roughly 5 ppb. The experiments on α-pinene ozonolysis in the presence of NO suggest that organic nitrates have the potential to form in indoor air between infiltrated ozone/NO and terpenes from household and consumer products.

10.
Atmos Environ (1994) ; 132: 300-308, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27346977

RESUMEN

The reaction products from limonene ozonolysis were investigated using the new carbonyl derivatization agent, O-tert-butylhydroxylamine hydrochloride (TBOX). With ozone (O3) as the limiting reagent, five carbonyl compounds were detected. The yields of the carbonyl compounds are discussed with and without the presence of a hydroxyl radical (OH•) scavenger, giving insight into the influence secondary OH radicals have on limonene ozonolysis products. The observed reaction product yields for limonaketone (LimaKet), 7-hydroxyl-6-oxo-3-(prop-1-en-2-yl)heptanal (7H6O), and 2-acetyl-5-oxohexanal (2A5O) were unchanged suggesting OH• generated by the limonene + O3 reaction does not contribute to their formation. The molar yields of 3-isopropenyl-6-oxo-heptanal (IPOH) and 3-acetyl-6-oxoheptanal (3A6O) decreased by 68% and >95%; respectively, when OH• was removed. This suggests that OH• radicals significantly impact the formation of these products. Nitric oxide (NO) did not significantly affect the molar yields of limonaketone or IPOH. However, NO (20 ppb) considerably decreased the molar reaction product yields of 7H6O (62%), 2A5O (63%), and 3A6O (47%), suggesting NO reacted with peroxyl intermediates, generated during limonene ozonolysis, to form other carbonyls (not detected) or organic nitrates. These studies give insight into the transformation of limonene and its reaction products that can lead to indoor exposures.

12.
Atmos Environ (1994) ; 122: 520, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31814795

RESUMEN

The new derivatization agent, O-tert-butylhydroxylamine hydrochloride (TBOX) was used to investigate the carbonyl reaction products from terpinolene ozonolysis. With ozone (O3) as the limiting reagent, four carbonyl compounds were detected: methylglyoxal (MG), 4-methylcyclohex-3-en-1-one, (4MCH), 6-oxo-3-(propan-2-ylidene) heptanal (6OPH), and 3,6-dioxoheptanal (36DOH). The tricarbonyl 36DOH has not been previously observed. Using cyclohexane as a hydroxyl radical (OH•) scavenger, the yields of 6OPH and 36DOH were reduced indicating the influence secondary OH• radicals have on terpinolene ozonolysis products. However, the MG yield increased and the 4MCH yield was unchanged when OH•radicals were scavenged suggesting they are only made by the terpinolene + O3 reaction. The detection of 36DOH using TBOX highlights the advantages of a smaller molecular weight derivatization agent for the detection of multi-carbonyl compounds. The product yields from terpinolene ozonolysis experiments conducted in the presence of 20 ppb nitric oxide (NO) remained unchanged except for MG which decreased. However, in experiments where O3 was kept constant at 50 ppb and NO was varied (20, 50, 100 ppb) MG, 6OPH, 36DOH decreased with increasing NO while 4MCH increased with increasing NO. The use of TBOX derivatization if combined with other derivatization agents may address a recurring need to simply and accurately detect multi-functional oxygenated species in air.

13.
Neuroimage ; 99: 237-43, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24904994

RESUMEN

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that alters cortical excitability in a polarity specific manner and has been shown to influence learning and memory. tDCS may have both on-line and after-effects on learning and memory, and the latter are thought to be based upon tDCS-induced alterations in neurochemistry and synaptic function. We used ultra-high-field (7 T) magnetic resonance spectroscopy (MRS), together with a robotic force adaptation and de-adaptation task, to investigate whether tDCS-induced alterations in GABA and Glutamate within motor cortex predict motor learning and memory. Note that adaptation to a robot-induced force field has long been considered to be a form of model-based learning that is closely associated with the computation and 'supervised' learning of internal 'forward' models within the cerebellum. Importantly, previous studies have shown that on-line tDCS to the cerebellum, but not to motor cortex, enhances model-based motor learning. Here we demonstrate that anodal tDCS delivered to the hand area of the left primary motor cortex induces a significant reduction in GABA concentration. This effect was specific to GABA, localised to the left motor cortex, and was polarity specific insofar as it was not observed following either cathodal or sham stimulation. Importantly, we show that the magnitude of tDCS-induced alterations in GABA concentration within motor cortex predicts individual differences in both motor learning and motor memory on the robotic force adaptation and de-adaptation task.


Asunto(s)
Aprendizaje/fisiología , Memoria/fisiología , Corteza Motora/metabolismo , Estimulación Transcraneal de Corriente Directa , Ácido gamma-Aminobutírico/metabolismo , Adaptación Psicológica , Adolescente , Adulto , Femenino , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Humanos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Masculino , Destreza Motora/fisiología , Corteza Visual/metabolismo , Adulto Joven
14.
J Am Chem Soc ; 136(14): 5261-3, 2014 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-24660654

RESUMEN

The development of the seeded growth synthesis for gold nanorods provided the first simple, convenient wet chemistry route to these nanomaterials. Over the past decade, the original silver-assisted seeded growth procedure has been the subject of further modifications that have continuously expanded access to anisotropic gold nanoparticles; however, the role of silver in formation of gold nanorods remains poorly understood. We report the first experimental evidence on the position of silver present on gold nanorods using advanced energy dispersive X-ray spectroscopy. Our results indicate the deposition of silver ions on the surface shows no preference for a specific face or axis. Furthermore, we show that the "dog bone" structures developed from gold nanorod solutions show preferential deposition of silver atoms on the ends and in the crevices.

15.
Chemosphere ; 358: 142129, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38679180

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are a unique class of chemicals synthesized to aid in industrial processes, fire-fighting products, and to benefit consumer products such as clothing, cosmetics, textiles, carpets, and coatings. The widespread use of PFAS and their strong carbon-fluorine bonds has led to their ubiquitous presence throughout the world. Airborne transport of PFAS throughout the atmosphere has also contributed to environmental pollution. Due to the potential environmental and human exposure concerns of some PFAS, research has extensively focused on water, soil, and organismal detection, but the presence of PFAS in the air has become an area of growing concern. Methods to measure polar PFAS in various matrices have been established, while the investigation of polar and nonpolar PFAS in air is still in its early development. This literature review aims to present the last two decades of research characterizing PFAS in outdoor and indoor air, focusing on active and passive air sampling and analytical methods. The PFAS classes targeted and detected in air samples include fluorotelomer alcohols (FTOHs), perfluoroalkane sulfonamides (FASAs), perfluoroalkane sulfonamido ethanols (FASEs), perfluorinated carboxylic acids (PFCAs), and perfluorinated sulfonic acids (PFSAs). Although the manufacturing of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) has been largely phased out, these two PFAS are still often detected in air samples. Additionally, recent estimates indicate that there are thousands of PFAS that are likely present in the air that are not currently monitored in air methods. Advances in air sampling methods are needed to fully characterize the atmospheric transport of PFAS.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Monitoreo del Ambiente , Fluorocarburos , Fluorocarburos/análisis , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Humanos
16.
J Chromatogr A ; 1693: 463884, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36863195

RESUMEN

This study is a workflow development for the analysis, identification, and categorization of per- and polyfluoroalkyl substances (PFAS) using gas chromatography-high resolution mass spectrometry (GC-HRMS) with non-targeted analysis (NTA) and suspect screening techniques. The behavior of various PFAS in a GC-HRMS was studied with regards to retention indices, ionization susceptibility, fragmentation patterns, etc. A custom PFAS database was constructed from 141 diverse PFAS. The database contains mass spectra from electron ionization (EI) mode, as well as MS and MS/MS spectra from positive and negative chemical ionization (PCI and NCI, respectively) modes. Common fragments of PFAS were identified across a diverse set of 141 PFAS analyzed. A workflow for suspect screening of PFAS and partially fluorinated products of incomplete combustion/destruction (PICs/PIDs) was developed which utilized both the custom PFAS database and external databases. PFAS and other fluorinated compounds were identified in both a challenge sample (designed to test the identification workflow) and incineration samples suspected to contain PFAS and fluorinated PICs/PIDs. The challenge sample resulted in a 100% true positive rate (TPR) for PFAS which were present in the custom PFAS database. Several fluorinated species were tentatively identified in the incineration samples using the developed workflow.


Asunto(s)
Fluorocarburos , Intervención Coronaria Percutánea , Espectrometría de Masas en Tándem , Cromatografía de Gases y Espectrometría de Masas/métodos , Incineración , Fluorocarburos/análisis
17.
J Neuropsychol ; 17(3): 540-563, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37133932

RESUMEN

Tourette syndrome (TS) and chronic tic disorder (CTD) are neurological disorders of childhood onset characterized by the occurrence of tics; repetitive, purposeless, movements or vocalizations of short duration which can occur many times throughout a day. Currently, effective treatment for tic disorders is an area of considerable unmet clinical need. We aimed to evaluate the efficacy of a home-administered neuromodulation treatment for tics involving the delivery of rhythmic pulse trains of median nerve stimulation (MNS) delivered via a wearable 'watch-like' device worn at the wrist. We conducted a UK-wide parallel double-blind sham-controlled trial for the reduction of tics in individuals with tic disorder. The device was programmed to deliver rhythmic (10 Hz) trains of low-intensity (1-19 mA) electrical stimulation to the median nerve for a pre-determined duration each day, and was intended to be used by each participant in their home once each day, 5 days each week, for a period of 4 weeks. Between 18th March 2022 and 26th September 2022, 135 participants (45 per group) were initially allocated, using stratified randomization, to one of the following groups; active stimulation; sham stimulation or to a waitlist (i.e. treatment as usual) control group. Recruited participants were individuals with confirmed or suspected TS/CTD aged 12 years of age or upward with moderate to severe tics. Researchers involved in the collection or processing of measurement outcomes and assessing the outcomes, as well as participants in the active and sham groups and their legal guardians were all blind to the group allocation. The primary outcome measure used to assess the 'offline' or treatment effect of stimulation was the Yale Global Tic Severity Scale-Total Tic Severity Score (YGTSS-TTSS) assessed at the conclusion of 4 weeks of stimulation. The primary outcome measure used to assess the 'online' effects of stimulation was tic frequency, measured as the number of tics per minute (TPM) observed, based upon blind analysis of daily video recordings obtained while stimulation was delivered. The results demonstrated that after 4-week stimulation, tic severity (YGTSS-TTSS) had reduced by 7.1 points (35 percentile reduction) for the active stimulation group compared to 2.13/2.11 points for the sham stimulation and waitlist control groups. The reduction in YGTSS-TTSS for the active stimulation group was substantially larger, clinically meaningful (effect size = .5) and statistically significant (p = .02) compared to both the sham stimulation and waitlist control groups, which did not differ from one another (effect size = -.03). Furthermore, blind analyses of video recordings demonstrated that tic frequency (tics per minute) reduced substantially (-15.6 TPM) during active stimulation compared to sham stimulation (-7.7 TPM). This difference represents a statistically significant (p < .03) and clinically meaningful reduction in tic frequency (>25 percentile reduction: effect size = .3). These findings indicate that home-administered rhythmic MNS delivered through a wearable wrist-worn device has the potential to be an effective community-based treatment for tic disorders.


Asunto(s)
Trastornos de Tic , Tics , Síndrome de Tourette , Humanos , Niño , Síndrome de Tourette/terapia , Tics/terapia , Nervio Mediano , Trastornos de Tic/terapia , Resultado del Tratamiento , Índice de Severidad de la Enfermedad
18.
J Air Waste Manag Assoc ; 73(7): 533-552, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36947591

RESUMEN

During thermal processes utilized in affixing fluoropolymer coatings dispersion to fibers and fabrics, coating components are vaporized. It is suspected that per- and polyfluoroalkyl substances (PFAS) from the dispersions may undergo chemical transformations at the temperatures used, leading to additional emitted PFAS thermal byproducts. It is important to characterize these emissions to support evaluation of the resulting environmental and health impacts. In this study, a bench-scale system was built to simulate this industrial process via thermal application of dispersions to fiberglass utilizing relevant temperatures and residence times in sequential drying, baking, and sintering steps. Experiments were performed with two commercially available dispersions and a simple model mixture containing a single PFAS (6:2 fluorotelomer alcohol [6:2 FTOH]). Vapor-phase emissions were sampled and characterized by several off-line and real-time mass spectrometry techniques for targeted and nontargeted PFAS. Results indicate that multiple PFAS thermal transformation products and multiple nonhalogenated organic species were emitted from the exit of the high temperature third (sintering) furnace when 6:2 FTOH was the only PFAS present in the aqueous mixture. This finding supports the hypothesis that temperatures typical of these industrial furnaces may also induce chemical transformations within the fluorinated air emissions. Experiments using the two commercial fluoropolymer dispersions indicate air emissions of part-per-million by volume (ppmv) concentrations of heptafluoropropyl-1,2,2,2-tetrafluoroethyl ether (Fluoroether E1), as well as other PFAS at operationally relevant temperatures. We suspect that E1 is a direct thermal decomposition product (via decarboxylation) of 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoic acid (commonly referred to as HFPO-DA) present in the dispersions. Other thermal decomposition products, including the monomer, tetrafluoroethene, may originate from the PFAS used to stabilize the dispersion or from the polymer particles in suspension. This study represents the first researcher-built coating application simulator to report nontargeted PFAS emission characterization, real-time analyses, and the quantification of 30 volatile target PFAS.Implications: Thermal processes used to affix fluoropolymers to fabrics are believed to be a source of PFAS air emissions. These coating operations are used by many large and small manufacturers and typically do not currently require any air emissions control. This research designed and constructed a bench-scale system that simulates these processes and used several off-line and advanced real-time mass spectroscopy techniques to characterize PFAS air emissions from two commercial fluoropolymer dispersions. Further, as the compositions of commercial dispersions are largely unknown, a model three-component solution containing a single PFAS was used to characterize emissions of multiple PFAS thermal transformation products at operationally relevant conditions. This research shows that fluoropolymer fabric coating facilities can be sources of complex mixtures of PFAS air emissions that include volatile and semivolatile PFAS present in the dispersions, as well as PFAS byproducts formed by the thermal transformation of fluorocarbon and hydrocarbon species present in these dispersions.


Asunto(s)
Polímeros de Fluorocarbono , Fluorocarburos , Polímeros de Fluorocarbono/análisis , Fluorocarburos/análisis , Fluorocarburos/química , Calor , Temperatura
19.
J Neurophysiol ; 107(3): 859-67, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22114156

RESUMEN

Previous research demonstrates that our apparent mental flexibility depends largely on the strength of our prior intention; changing our intention in advance enables a smooth transition from one task to another (e.g., Astle DE, Jackson GM, Swainson R. J Cogn Neurosci 20: 255-267, 2008; Duncan J, Emslie H, Williams P, Johnson R, Freer C. Cogn Psychol 30: 257-303, 1996; Husain M, Parton A, Hodgson TL, Mort D, Rees G. Nat Neurosci 6: 117-118, 2003). However, these necessarily rapid anticipatory mechanisms have been difficult to study in the human brain. We used EEG and magnetoencephalography, specifically event-related potentials and fields (ERPs and ERFs), respectively, to explore the neural correlates of this important aspect of mental flexibility. Subjects performed a manual version of a pro/antisaccade task using preparatory cues to switch between the pro- and antirules. When subjects switched their intention, we observed a positivity over central electrodes, which correlated significantly with our behavioral data; the greater the ERP effect, the stronger the subject's change of intention. ERFs, alongside subject-specific structural MRIs, were used to project into source space. When subjects switched their intention, they showed significantly elevated activity in the right frontal eye field and left intraparietal sulcus (IPS); the greater the left IPS activity on switch trials, the stronger the subject's change of intention. This network has previously been implicated in the top-down control of eye movements, but here we demonstrate its role in the top-down control of a task set, in particular, that it is recruited when we change the task that we intend to perform.


Asunto(s)
Intención , Lóbulo Parietal/fisiología , Adulto , Atención/fisiología , Mapeo Encefálico/métodos , Señales (Psicología) , Electroencefalografía , Potenciales Evocados/fisiología , Femenino , Humanos , Imagen por Resonancia Magnética , Magnetoencefalografía , Masculino , Desempeño Psicomotor/fisiología , Movimientos Sacádicos/fisiología , Adulto Joven
20.
Langmuir ; 28(2): 1068-82, 2012 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-21905721

RESUMEN

Nucleic-acid-functionalized gold surfaces have been used extensively for the development of biological sensors. The development of an effective biomarker detection assay requires careful design, synthesis, and characterization of probe components. In this Feature Article, we describe fundamental probe development constraints and provide a critical appraisal of the current methodologies and applications in the field. We discuss critical issues and obstacles that impede the sensitivity and reliability of the sensors to underscore the challenges that must be met to advance the field of biomarker detection.


Asunto(s)
Biomarcadores/análisis , Oro/química , Ácidos Nucleicos/química , Línea Celular , Código de Barras del ADN Taxonómico , Humanos , Nanopartículas del Metal , Microscopía Fluorescente , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA