Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 169(1): 6-12, 2017 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-28340351

RESUMEN

Genome sequencing has revolutionized the diagnosis of genetic diseases. Close collaborations between basic scientists and clinical genomicists are now needed to link genetic variants with disease causation. To facilitate such collaborations, we recommend prioritizing clinically relevant genes for functional studies, developing reference variant-phenotype databases, adopting phenotype description standards, and promoting data sharing.


Asunto(s)
Investigación Biomédica , Genómica , Animales , Análisis Mutacional de ADN , Bases de Datos Genéticas , Enfermedad/genética , Proyecto Genoma Humano , Humanos , Difusión de la Información , Modelos Animales
2.
Cell ; 154(3): 691-703, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23890820

RESUMEN

Large numbers of inbred laboratory rat strains have been developed for a range of complex disease phenotypes. To gain insights into the evolutionary pressures underlying selection for these phenotypes, we sequenced the genomes of 27 rat strains, including 11 models of hypertension, diabetes, and insulin resistance, along with their respective control strains. Altogether, we identified more than 13 million single-nucleotide variants, indels, and structural variants across these rat strains. Analysis of strain-specific selective sweeps and gene clusters implicated genes and pathways involved in cation transport, angiotensin production, and regulators of oxidative stress in the development of cardiovascular disease phenotypes in rats. Many of the rat loci that we identified overlap with previously mapped loci for related traits in humans, indicating the presence of shared pathways underlying these phenotypes in rats and humans. These data represent a step change in resources available for evolutionary analysis of complex traits in disease models.


Asunto(s)
Ratas/clasificación , Ratas/genética , Animales , Modelos Animales de Enfermedad , Genoma , Fenotipo , Filogenia , Polimorfismo de Nucleótido Simple , Ratas Endogámicas
3.
Br J Cancer ; 124(4): 760-769, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33139798

RESUMEN

BACKGROUND: The balance between immune-stimulatory and immune-suppressive mechanisms in the tumour microenvironment is associated with tumour rejection and can predict the efficacy of immune checkpoint-inhibition therapies. METHODS: We consider the observed differences between the transcriptional programmes associated with cancer types where the levels of immune infiltration predict a favourable prognosis versus those in which the immune infiltration predicts an unfavourable prognosis and defined a score named Mediators of Immune Response Against Cancer in soLid microEnvironments (MIRACLE). MIRACLE deconvolves T cell infiltration, from inhibitory mechanisms, such as TGFß, EMT and PI3Kγ signatures. RESULTS: Our score outperforms current state-of-the-art immune signatures as a predictive marker of survival in TCGA (n = 9305, HR: 0.043, p value: 6.7 × 10-36). In a validation cohort (n = 7623), MIRACLE predicts better survival compared to other immune metrics (HR: 0.1985, p value: 2.73 × 10-38). MIRACLE also predicts response to checkpoint-inhibitor therapies (n = 333). The tumour-intrinsic factors inversely associated with the reported score such as EGFR, PRKAR1A and MAP3K1 are frequently associated with immune-suppressive phenotypes. CONCLUSIONS: The association of cancer outcome with the level of infiltrating immune cells is mediated by the balance of activatory and suppressive factors. MIRACLE accounts for this balance and predicts favourable cancer outcomes.


Asunto(s)
Neoplasias/genética , Neoplasias/inmunología , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Estudios de Cohortes , Bases de Datos Genéticas , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Vigilancia Inmunológica , Linfocitos Infiltrantes de Tumor/inmunología , Neoplasias/tratamiento farmacológico , Neoplasias/mortalidad , Análisis de Supervivencia
4.
N Engl J Med ; 379(22): 2131-2139, 2018 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-30304647

RESUMEN

BACKGROUND: Many patients remain without a diagnosis despite extensive medical evaluation. The Undiagnosed Diseases Network (UDN) was established to apply a multidisciplinary model in the evaluation of the most challenging cases and to identify the biologic characteristics of newly discovered diseases. The UDN, which is funded by the National Institutes of Health, was formed in 2014 as a network of seven clinical sites, two sequencing cores, and a coordinating center. Later, a central biorepository, a metabolomics core, and a model organisms screening center were added. METHODS: We evaluated patients who were referred to the UDN over a period of 20 months. The patients were required to have an undiagnosed condition despite thorough evaluation by a health care provider. We determined the rate of diagnosis among patients who subsequently had a complete evaluation, and we observed the effect of diagnosis on medical care. RESULTS: A total of 1519 patients (53% female) were referred to the UDN, of whom 601 (40%) were accepted for evaluation. Of the accepted patients, 192 (32%) had previously undergone exome sequencing. Symptoms were neurologic in 40% of the applicants, musculoskeletal in 10%, immunologic in 7%, gastrointestinal in 7%, and rheumatologic in 6%. Of the 382 patients who had a complete evaluation, 132 received a diagnosis, yielding a rate of diagnosis of 35%. A total of 15 diagnoses (11%) were made by clinical review alone, and 98 (74%) were made by exome or genome sequencing. Of the diagnoses, 21% led to recommendations regarding changes in therapy, 37% led to changes in diagnostic testing, and 36% led to variant-specific genetic counseling. We defined 31 new syndromes. CONCLUSIONS: The UDN established a diagnosis in 132 of the 382 patients who had a complete evaluation, yielding a rate of diagnosis of 35%. (Funded by the National Institutes of Health Common Fund.).


Asunto(s)
Pruebas Genéticas , Enfermedades Raras/genética , Análisis de Secuencia de ADN , Adulto , Animales , Niño , Diagnóstico Diferencial , Drosophila , Exoma , Femenino , Pruebas Genéticas/economía , Costos de la Atención en Salud/estadística & datos numéricos , Humanos , Masculino , Modelos Animales , National Institutes of Health (U.S.) , Enfermedades Raras/diagnóstico , Síndrome , Estados Unidos
5.
J Am Soc Nephrol ; 31(4): 687-700, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32029431

RESUMEN

BACKGROUND: The genes and mechanisms involved in the association between diabetes or hypertension and CKD risk are unclear. Previous studies have implicated a role for γ-adducin (ADD3), a cytoskeletal protein encoded by Add3. METHODS: We investigated renal vascular function in vitro and in vivo and the susceptibility to CKD in rats with wild-type or mutated Add3 and in genetically modified rats with overexpression or knockout of ADD3. We also studied glomeruli and primary renal vascular smooth muscle cells isolated from these rats. RESULTS: This study identified a K572Q mutation in ADD3 in fawn-hooded hypertensive (FHH) rats-a mutation previously reported in Milan normotensive (MNS) rats that also develop kidney disease. Using molecular dynamic simulations, we found that this mutation destabilizes a critical ADD3-ACTIN binding site. A reduction of ADD3 expression in membrane fractions prepared from the kidney and renal vascular smooth muscle cells of FHH rats was associated with the disruption of the F-actin cytoskeleton. Compared with renal vascular smooth muscle cells from Add3 transgenic rats, those from FHH rats had elevated membrane expression of BKα and BK channel current. FHH and Add3 knockout rats exhibited impairments in the myogenic response of afferent arterioles and in renal blood flow autoregulation, which were rescued in Add3 transgenic rats. We confirmed these findings in a genetic complementation study that involved crossing FHH and MNS rats that share the ADD3 mutation. Add3 transgenic rats showed attenuation of proteinuria, glomerular injury, and kidney fibrosis with aging and mineralocorticoid-induced hypertension. CONCLUSIONS: This is the first report that a mutation in ADD3 that alters ACTIN binding causes renal vascular dysfunction and promotes the susceptibility to kidney disease.


Asunto(s)
Proteínas de Unión a Calmodulina/genética , Hipertensión/complicaciones , Enfermedades Renales/etiología , Mutación/efectos de los fármacos , Circulación Renal/genética , Animales , Modelos Animales de Enfermedad , Homeostasis , Hipertensión/genética , Glomérulos Renales/metabolismo , Glomérulos Renales/patología , Masculino , Músculo Liso Vascular/fisiología , Miocitos del Músculo Liso/metabolismo , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas
6.
Physiol Genomics ; 51(1): 27-41, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30540547

RESUMEN

Although cystic fibrosis (CF) is attributed to dysfunction of a single gene, the relationships between the abnormal gene product and the development of inflammation and progression of lung disease are not fully understood, which limits our ability to predict an individual patient's clinical course and treatment response. To better understand CF progression, we characterized the molecular signatures of CF disease status with plasma-based functional genomics. Peripheral blood mononuclear cells (PBMCs) from healthy donors were cultured with plasma samples from CF patients ( n = 103) and unrelated, healthy controls ( n = 31). Gene expression levels were measured with an Affymetrix microarray (GeneChip Human Genome U133 Plus 2.0). Peripheral blood samples from a subset of the CF patients ( n = 40) were immunophenotyped by flow cytometry, and the data were compared with historical data for age-matched healthy controls ( n = 351). Plasma samples from another subset of CF patients ( n = 56) and healthy controls ( n = 16) were analyzed by multiplex enzyme-linked immunosorbent assay (ELISA) for numerous cytokines and chemokines. Principal component analysis and hierarchical clustering of induced transcriptional data revealed disease-specific plasma-induced PBMC profiles. Among 1,094 differentially expressed probe sets, 51 genes were associated with pancreatic sufficient status, and 224 genes were associated with infection with Pseudomonas aeruginosa. The flow cytometry and ELISA data confirmed that various immune modulators are relevant contributors to the CF molecular signature. This study provides strong evidence for distinct molecular signatures among CF patients. An understanding of these molecular signatures may lead to unique molecular markers that will enable more personalized prognoses, individualized treatment plans, and rapid monitoring of treatment response.


Asunto(s)
Fibrosis Quística/sangre , Fibrosis Quística/genética , Plasma/metabolismo , Transcriptoma/genética , Adolescente , Adulto , Donantes de Sangre , Estudios de Casos y Controles , Niño , Preescolar , Estudios de Cohortes , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Citocinas/sangre , Femenino , Genotipo , Humanos , Inmunofenotipificación , Leucocitos Mononucleares/metabolismo , Masculino , Persona de Mediana Edad , Mutación , Neutrófilos/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Especies Reactivas de Oxígeno/metabolismo , Adulto Joven
7.
J Am Soc Nephrol ; 29(5): 1525-1535, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29476007

RESUMEN

Background Interpreting genetic variants is one of the greatest challenges impeding analysis of rapidly increasing volumes of genomic data from patients. For example, SHROOM3 is an associated risk gene for CKD, yet causative mechanism(s) of SHROOM3 allele(s) are unknown.Methods We used our analytic pipeline that integrates genetic, computational, biochemical, CRISPR/Cas9 editing, molecular, and physiologic data to characterize coding and noncoding variants to study the human SHROOM3 risk locus for CKD.Results We identified a novel SHROOM3 transcriptional start site, which results in a shorter isoform lacking the PDZ domain and is regulated by a common noncoding sequence variant associated with CKD (rs17319721, allele frequency: 0.35). This variant disrupted allele binding to the transcription factor TCF7L2 in podocyte cell nuclear extracts and altered transcription levels of SHROOM3 in cultured cells, potentially through the loss of repressive looping between rs17319721 and the novel start site. Although common variant mechanisms are of high utility, sequencing is beginning to identify rare variants involved in disease; therefore, we used our biophysical tools to analyze an average of 112,849 individual human genome sequences for rare SHROOM3 missense variants, revealing 35 high-effect variants. The high-effect alleles include a coding variant (P1244L) previously associated with CKD (P=0.01, odds ratio=7.95; 95% CI, 1.53 to 41.46) that we find to be present in East Asian individuals at an allele frequency of 0.0027. We determined that P1244L attenuates the interaction of SHROOM3 with 14-3-3, suggesting alterations to the Hippo pathway, a known mediator of CKD.Conclusions These data demonstrate multiple new SHROOM3-dependent genetic/molecular mechanisms that likely affect CKD.


Asunto(s)
Proteínas de Microfilamentos/genética , Insuficiencia Renal Crónica/genética , Alelos , Animales , Núcleo Celular , Frecuencia de los Genes , Sitios Genéticos , Células HEK293 , Humanos , Ratones , Mutación Missense , Podocitos , Isoformas de Proteínas/genética , Proteína 2 Similar al Factor de Transcripción 7/genética , Transcripción Genética , Pez Cebra
8.
Genome Res ; 25(1): 57-65, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25273069

RESUMEN

Genome-wide association studies (GWAS) identify regions of the genome correlated with disease risk but are restricted in their ability to identify the underlying causative mechanism(s). Thus, GWAS are useful "roadmaps" that require functional analysis to establish the genetic and mechanistic structure of a particular locus. Unfortunately, direct functional testing in humans is limited, demonstrating the need for complementary approaches. Here we used an integrated approach combining zebrafish, rat, and human data to interrogate the function of an established GWAS locus (SHROOM3) lacking prior functional support for chronic kidney disease (CKD). Congenic mapping and sequence analysis in rats suggested Shroom3 was a strong positional candidate gene. Transferring a 6.1-Mb region containing the wild-type Shroom3 gene significantly improved the kidney glomerular function in FHH (fawn-hooded hypertensive) rat. The wild-type Shroom3 allele, but not the FHH Shroom3 allele, rescued glomerular defects induced by knockdown of endogenous shroom3 in zebrafish, suggesting that the FHH Shroom3 allele is defective and likely contributes to renal injury in the FHH rat. We also show for the first time that variants disrupting the actin-binding domain of SHROOM3 may cause podocyte effacement and impairment of the glomerular filtration barrier.


Asunto(s)
Barrera de Filtración Glomerular/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas de Pez Cebra/metabolismo , Alelos , Secuencia de Aminoácidos , Animales , Animales Congénicos , Animales Modificados Genéticamente , Clonación Molecular , Exones , Femenino , Sitios Genéticos , Variación Genética , Estudio de Asociación del Genoma Completo , Humanos , Enfermedades Renales/genética , Masculino , Proteínas de Microfilamentos/genética , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Plásmidos/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Análisis de Secuencia de ADN , Pez Cebra , Proteínas de Pez Cebra/genética
9.
Hum Mol Genet ; 24(1): 154-66, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25149474

RESUMEN

Chromosome 8q24 locus contains regulatory variants that modulate genetic risk to various cancers including prostate cancer (PC). However, the biological mechanism underlying this regulation is not well understood. Here, we developed a chromosome conformation capture (3C)-based multi-target sequencing technology and systematically examined three PC risk regions at the 8q24 locus and their potential regulatory targets across human genome in six cell lines. We observed frequent physical contacts of this risk locus with multiple genomic regions, in particular, inter-chromosomal interaction with CD96 at 3q13 and intra-chromosomal interaction with MYC at 8q24. We identified at least five interaction hot spots within the predicted functional regulatory elements at the 8q24 risk locus. We also found intra-chromosomal interaction genes PVT1, FAM84B and GSDMC and inter-chromosomal interaction gene CXorf36 in most of the six cell lines. Other gene regions appeared to be cell line-specific, such as RRP12 in LNCaP, USP14 in DU-145 and SMIN3 in lymphoblastoid cell line. We further found that the 8q24 functional domains more likely interacted with genomic regions containing genes enriched in critical pathways such as Wnt signaling and promoter motifs such as E2F1 and TCF3. This result suggests that the risk locus may function as a regulatory hub by physical interactions with multiple genes important for prostate carcinogenesis. Further understanding genetic effect and biological mechanism of these chromatin interactions will shed light on the newly discovered regulatory role of the risk locus in PC etiology and progression.


Asunto(s)
Cromosomas Humanos Par 8/genética , Estudios de Asociación Genética/métodos , Sitios Genéticos , Neoplasias de la Próstata/genética , Línea Celular Tumoral , Cromatina/genética , Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Análisis de Secuencia de ADN
10.
Nature ; 478(7367): 114-8, 2011 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-21979051

RESUMEN

Left ventricular mass (LVM) is a highly heritable trait and an independent risk factor for all-cause mortality. So far, genome-wide association studies have not identified the genetic factors that underlie LVM variation, and the regulatory mechanisms for blood-pressure-independent cardiac hypertrophy remain poorly understood. Unbiased systems genetics approaches in the rat now provide a powerful complementary tool to genome-wide association studies, and we applied integrative genomics to dissect a highly replicated, blood-pressure-independent LVM locus on rat chromosome 3p. Here we identified endonuclease G (Endog), which previously was implicated in apoptosis but not hypertrophy, as the gene at the locus, and we found a loss-of-function mutation in Endog that is associated with increased LVM and impaired cardiac function. Inhibition of Endog in cultured cardiomyocytes resulted in an increase in cell size and hypertrophic biomarkers in the absence of pro-hypertrophic stimulation. Genome-wide network analysis unexpectedly implicated ENDOG in fundamental mitochondrial processes that are unrelated to apoptosis. We showed direct regulation of ENDOG by ERR-α and PGC1α (which are master regulators of mitochondrial and cardiac function), interaction of ENDOG with the mitochondrial genome and ENDOG-mediated regulation of mitochondrial mass. At baseline, the Endog-deleted mouse heart had depleted mitochondria, mitochondrial dysfunction and elevated levels of reactive oxygen species, which were associated with enlarged and steatotic cardiomyocytes. Our study has further established the link between mitochondrial dysfunction, reactive oxygen species and heart disease and has uncovered a role for Endog in maladaptive cardiac hypertrophy.


Asunto(s)
Cardiomegalia/enzimología , Cardiomegalia/patología , Endodesoxirribonucleasas/metabolismo , Mitocondrias/metabolismo , Animales , Apoptosis , Peso Corporal/genética , Cardiomegalia/genética , Cardiomegalia/fisiopatología , Respiración de la Célula , Cromosomas de los Mamíferos/genética , Cruzamientos Genéticos , Endodesoxirribonucleasas/deficiencia , Endodesoxirribonucleasas/genética , Femenino , Regulación de la Expresión Génica , Genes Mitocondriales/genética , Hipertrofia Ventricular Izquierda/enzimología , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/fisiopatología , Metabolismo de los Lípidos , Masculino , Mitocondrias/genética , Mitocondrias/patología , Tamaño de los Órganos/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Sitios de Carácter Cuantitativo/genética , Proteínas de Unión al ARN/metabolismo , Ratas , Ratas Endogámicas , Especies Reactivas de Oxígeno/metabolismo , Receptores de Estrógenos/metabolismo , Factores de Transcripción/metabolismo , Receptor Relacionado con Estrógeno ERRalfa
11.
Nucleic Acids Res ; 43(Database issue): D743-50, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25355511

RESUMEN

The Rat Genome Database (RGD, http://rgd.mcw.edu) provides the most comprehensive data repository and informatics platform related to the laboratory rat, one of the most important model organisms for disease studies. RGD maintains and updates datasets for genomic elements such as genes, transcripts and increasingly in recent years, sequence variations, as well as map positions for multiple assemblies and sequence information. Functional annotations for genomic elements are curated from published literature, submitted by researchers and integrated from other public resources. Complementing the genomic data catalogs are those associated with phenotypes and disease, including strains, QTL and experimental phenotype measurements across hundreds of strains. Data are submitted by researchers, acquired through bulk data pipelines or curated from published literature. Innovative software tools provide users with an integrated platform to query, mine, display and analyze valuable genomic and phenomic datasets for discovery and enhancement of their own research. This update highlights recent developments that reflect an increasing focus on: (i) genomic variation, (ii) phenotypes and diseases, (iii) data related to the environment and experimental conditions and (iv) datasets and software tools that allow the user to explore and analyze the interactions among these and their impact on disease.


Asunto(s)
Bases de Datos Genéticas , Variación Genética , Genómica , Fenotipo , Ratas/genética , Animales , Enfermedad/genética , Ambiente , Genoma , Internet , Anotación de Secuencia Molecular
12.
Proc Natl Acad Sci U S A ; 111(35): 12817-22, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25136115

RESUMEN

PLEKHA7 (pleckstrin homology domain containing family A member 7) has been found in multiple studies as a candidate gene for human hypertension, yet functional data supporting this association are lacking. We investigated the contribution of this gene to the pathogenesis of salt-sensitive hypertension by mutating Plekha7 in the Dahl salt-sensitive (SS/JrHsdMcwi) rat using zinc-finger nuclease technology. After four weeks on an 8% NaCl diet, homozygous mutant rats had lower mean arterial (149 ± 9 mmHg vs. 178 ± 7 mmHg; P < 0.05) and systolic (180 ± 7 mmHg vs. 213 ± 8 mmHg; P < 0.05) blood pressure compared with WT littermates. Albumin and protein excretion rates were also significantly lower in mutant rats, demonstrating a renoprotective effect of the mutation. Total peripheral resistance and perivascular fibrosis in the heart and kidney were significantly reduced in Plekha7 mutant animals, suggesting a potential role of the vasculature in the attenuation of hypertension. Indeed, both flow-mediated dilation and endothelium-dependent vasodilation in response to acetylcholine were improved in isolated mesenteric resistance arteries of Plekha7 mutant rats compared with WT. These vascular improvements were correlated with changes in intracellular calcium handling, resulting in increased nitric oxide bioavailability in mutant vessels. Collectively, these data provide the first functional evidence that Plekha7 may contribute to blood pressure regulation and cardiovascular function through its effects on the vasculature.


Asunto(s)
Presión Sanguínea/genética , Proteínas Portadoras/genética , Hipertensión Renal/genética , Cloruro de Sodio/farmacología , Albuminuria/genética , Albuminuria/patología , Albuminuria/fisiopatología , Animales , Presión Sanguínea/fisiología , Calcio/metabolismo , Gasto Cardíaco/genética , Gasto Cardíaco/fisiología , Proteínas Portadoras/fisiología , Modelos Animales de Enfermedad , Células Endoteliales/fisiología , Estudio de Asociación del Genoma Completo , Hipertensión Renal/patología , Hipertensión Renal/fisiopatología , Arterias Mesentéricas/fisiología , Óxido Nítrico/metabolismo , Ratas , Ratas Endogámicas Dahl , Ratas Mutantes , Resistencia Vascular/genética , Resistencia Vascular/fisiología
13.
Physiol Genomics ; 48(1): 62-72, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26534937

RESUMEN

A 1.37 Mbp region of chromosome 13 previously identified by exclusion mapping was consistently associated with a reduction of salt-induced hypertension in the Dahl salt-sensitive (SS) rat. This region contained five genes that were introgressed from the salt-insensitive Brown Norway (BN) rat. The goal of the present study was to further narrow that region to identify the gene(s) most likely to protect from salt-induced hypertension. The studies yielded a subcongenic SS rat strain containing a 0.71 Mbp insert from BN (26-P strain) in which salt-induced hypertension was reduced by 24 mmHg. The region contained two protein-coding genes (Astn1 and Pappa2) and a microRNA (miR-488). Pappa2 mRNA in the renal cortex of the protected 26-P was 6- to 10-fold greater than in SS fed a 0.4% NaCl diet but was reduced to levels observed in SS when fed 8.0% NaCl diet for 7 days. Compared with brain nuclei (NTS, RVLM, CVLM) and the adrenal gland, Pappa2 in the renal cortex was the only gene found to be differentially expressed between SS and 26-P and that responded to changes of salt diet. Immunohistochemistry studies found Pappa2 localized in the cytosol of the epithelial cells of the cortical thick ascending limbs. In more distal segments of the renal tubules, it was observed within tubular lumens and most notably bound to the apical membranes of the intercalated cells of collecting ducts. We conclude that we have identified a variant form of Pappa2 that can protect against salt-induced hypertension in the Dahl S rat.


Asunto(s)
Hipertensión/metabolismo , Proteína Plasmática A Asociada al Embarazo/metabolismo , Cloruro de Sodio Dietético/efectos adversos , Glándulas Suprarrenales/metabolismo , Albuminuria/complicaciones , Albuminuria/genética , Albuminuria/fisiopatología , Animales , Emparejamiento Base/genética , Presión Sanguínea , Tronco Encefálico/metabolismo , Núcleo Celular/metabolismo , Cromosomas de los Mamíferos/genética , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica , Genoma , Hipertensión/complicaciones , Hipertensión/genética , Hipertensión/fisiopatología , Riñón/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Endogámicas Dahl , Análisis de Secuencia de ADN , Simportadores del Cloruro de Sodio/metabolismo
15.
Genome Res ; 23(12): 1996-2002, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24006081

RESUMEN

Genome-wide association studies (GWAS) are useful for nominating candidate genes, but typically are unable to establish disease causality or differentiate between the effects of variants in linkage disequilibrium (LD). Additionally, some GWAS loci might contain multiple causative variants or genes that contribute to the overall disease susceptibility at a single locus. However, the majority of current GWAS lack the statistical power to test whether multiple causative genes underlie the same locus, prompting us to adopt an alternative approach to testing multiple GWAS genes empirically. We used gene targeting in a disease-susceptible rat model of genetic hypertension to test all six genes at the Agtrap-Plod1 locus (Agtrap, Mthfr, Clcn6, Nppa, Nppb, and Plod1) for blood pressure (BP) and renal phenotypes. This revealed that the majority of genes at this locus (five out of six) can impact hypertension by modifying BP and renal phenotypes. Mutations of Nppa, Plod1, and Mthfr increased disease susceptibility, whereas Agtrap and Clcn6 mutations decreased hypertension risk. Reanalysis of the human AGTRAP-PLOD1 locus also implied that disease-associated haplotype blocks with polygenic effects were not only possible, but rather were highly plausible. Combined, these data demonstrate for the first time that multiple modifiers of hypertension can cosegregate at a single GWAS locus.


Asunto(s)
Presión Sanguínea/genética , Genes Modificadores , Hipertensión/etiología , Hipertensión/genética , Riñón/metabolismo , Sitios de Carácter Cuantitativo , Animales , Modelos Animales de Enfermedad , Femenino , Marcación de Gen , Predisposición Genética a la Enfermedad , Variación Genética , Estudio de Asociación del Genoma Completo , Haplotipos , Humanos , Desequilibrio de Ligamiento , Masculino , Mutación , Fenotipo , Polimorfismo de Nucleótido Simple , Ratas , Ratas Sprague-Dawley , Estudios Retrospectivos
16.
Bioinformatics ; 31(1): 25-32, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25217576

RESUMEN

MOTIVATION: RNA-Seq (also called whole-transcriptome sequencing) is an emerging technology that uses the capabilities of next-generation sequencing to detect and quantify entire transcripts. One of its important applications is the improvement of existing genome annotations. RNA-Seq provides rapid, comprehensive and cost-effective tools for the discovery of novel genes and transcripts compared with expressed sequence tag (EST), which is instrumental in gene discovery and gene sequence determination. The rat is widely used as a laboratory disease model, but has a less well-annotated genome as compared with humans and mice. In this study, we incorporated deep RNA-Seq data from three rat tissues-bone marrow, brain and kidney-with EST data to improve the annotation of the rat genome. RESULTS: Our analysis identified 32 197 transcripts, including 13 461 known transcripts, 13 934 novel isoforms and 4802 new genes, which almost doubled the numbers of transcripts in the current public rat genome database (rn5). Comparisons of our predicted protein-coding gene sets with those in public datasets suggest that RNA-Seq significantly improves genome annotation and identifies novel genes and isoforms in the rat. Importantly, the large majority of novel genes and isoforms are supported by direct evidence of RNA-Seq experiments. These predicted genes were integrated into the Rat Genome Database (RGD) and can serve as an important resource for functional studies in the research community. AVAILABILITY AND IMPLEMENTATION: The predicted genes are available at http://rgd.mcw.edu.


Asunto(s)
Genoma , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Anotación de Secuencia Molecular , ARN/genética , Transcriptoma , Animales , Etiquetas de Secuencia Expresada , Variación Genética , Ratones , Ratas
17.
Kidney Int ; 88(4): 796-803, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26108065

RESUMEN

Antithrombin III, encoded by SerpinC1, is a major anti-coagulation molecule in vivo and has anti-inflammatory effects. We found that patients with low antithrombin III activities presented a higher risk of developing acute kidney injury after cardiac surgery. To study this further, we generated SerpinC1 heterozygous knockout rats and followed the development of acute kidney injury in a model of modest renal ischemia/reperfusion injury. Renal injury, assessed by serum creatinine and renal tubular injury scores after 24 h of reperfusion, was significantly exacerbated in SerpinC1(+/-) rats compared to wild-type littermates. Concomitantly, renal oxidative stress, tubular apoptosis, and macrophage infiltration following this injury were significantly aggravated in SerpinC1(+/-) rats. However, significant thrombosis was not found in the kidneys of any group of rats. Antithrombin III is reported to stimulate the production of prostaglandin I2, a known regulator of renal cortical blood flow, in addition to having anti-inflammatory effects and to protect against renal failure. Prostaglandin F1α, an assayable metabolite of prostaglandin I2, was increased in the kidneys of the wild-type rats at 3 h after reperfusion. The increase of prostaglandin F1α was significantly blunted in SerpinC1(+/-) rats, which preceded increased tubular injury and oxidative stress. Thus, our study found a novel role of SerpinC1 insufficiency in increasing the severity of renal ischemia/reperfusion injury.


Asunto(s)
Lesión Renal Aguda/etiología , Deficiencia de Antitrombina III/complicaciones , Antitrombina III/metabolismo , Riñón/metabolismo , Daño por Reperfusión/etiología , Lesión Renal Aguda/genética , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Anciano , Animales , Antitrombina III/análisis , Antitrombina III/genética , Deficiencia de Antitrombina III/genética , Deficiencia de Antitrombina III/metabolismo , Apoptosis , Biomarcadores/sangre , Procedimientos Quirúrgicos Cardíacos/efectos adversos , Creatinina/sangre , Modelos Animales de Enfermedad , Femenino , Técnicas de Silenciamiento del Gen , Predisposición Genética a la Enfermedad , Heterocigoto , Humanos , Riñón/patología , Macrófagos/metabolismo , Masculino , Persona de Mediana Edad , Estrés Oxidativo , Fenotipo , Prostaglandinas F/metabolismo , Ratas Transgénicas , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Factores de Riesgo , Índice de Severidad de la Enfermedad , Transducción de Señal , Factores de Tiempo
18.
Brief Bioinform ; 14(4): 520-6, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23434633

RESUMEN

The Rat Genome Database (RGD) was started >10 years ago to provide a core genomic resource for rat researchers. Currently, RGD combines genetic, genomic, pathway, phenotype and strain information with a focus on disease. RGD users are provided with access to structured and curated data from the molecular level through the organismal level. Those users access RGD from all over the world. End users are not only rat researchers but also researchers working with mouse and human data. Translational research is supported by RGD's comparative genetics/genomics data in disease portals, in GBrowse, in VCMap and on gene report pages. The impact of RGD also goes beyond the traditional biomedical researcher, as the influence of RGD reaches bioinformaticians, tool developers and curators. Import of RGD data into other publicly available databases expands the influence of RGD to a larger set of end users than those who avail themselves of the RGD website. The value of RGD continues to grow as more types of data and more tools are added, while reaching more types of end users.


Asunto(s)
Bases de Datos Genéticas , Genoma , Animales , Humanos , Ratones , Fenotipo , Ratas
19.
Am J Physiol Regul Integr Comp Physiol ; 308(5): R379-90, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25540098

RESUMEN

We have reported that a reduction in renal production of 20-HETE contributes to development of hypertension in Dahl salt-sensitive (SS) rats. The present study examined whether 20-HETE production is also reduced in the cerebral vasculature of SS rats and whether this impairs the myogenic response and autoregulation of cerebral blood flow (CBF). The production of 20-HETE, the myogenic response of middle cerebral arteries (MCA), and autoregulation of CBF were compared in SS, SS-5(BN) rats and a newly generated CYP4A1 transgenic rat. 20-HETE production was 6-fold higher in cerebral arteries of CYP4A1 and SS-5(BN) than in SS rats. The diameter of the MCA decreased to 70 ± 3% to 65 ± 6% in CYP4A1 and SS-5(BN) rats when pressure was increased from 40 to 140 mmHg. In contrast, the myogenic response of MCA isolated from SS rats did not constrict. Administration of a 20-HETE synthesis inhibitor, HET0016, abolished the myogenic response of MCA in CYP4A1 and SS-5(BN) rats but had no effect in SS rats. Autoregulation of CBF was impaired in SS rats compared with CYP4A1 and SS-5(BN) rats. Blood-brain barrier leakage was 5-fold higher in the brain of SS rats than in SS-5(BN) and SS.CYP4A1 rats. These findings indicate that a genetic deficiency in the formation of 20-HETE contributes to an impaired myogenic response in MCA and autoregulation of CBF in SS rats and this may contribute to vascular remodeling and cerebral injury following the onset of hypertension.


Asunto(s)
Circulación Cerebrovascular , Citocromo P-450 CYP4A/metabolismo , Hipertensión/enzimología , Arteria Cerebral Media/enzimología , Cloruro de Sodio Dietético , Vasoconstricción , Animales , Presión Arterial , Barrera Hematoencefálica/metabolismo , Permeabilidad Capilar , Citocromo P-450 CYP4A/genética , Modelos Animales de Enfermedad , Genotipo , Homeostasis , Ácidos Hidroxieicosatetraenoicos/metabolismo , Hipertensión/genética , Hipertensión/fisiopatología , Arteria Cerebral Media/fisiopatología , Fenotipo , Ratas Endogámicas Dahl , Ratas Endogámicas Lew , Ratas Transgénicas , Transposasas/genética , Remodelación Vascular
20.
Hum Genomics ; 8: 17, 2014 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-25265995

RESUMEN

BACKGROUND: Biological systems are exquisitely poised to respond and adjust to challenges, including damage. However, sustained damage can overcome the ability of the system to adjust and result in a disease phenotype, its underpinnings many times elusive. Unraveling the molecular mechanisms of systems biology, of how and why it falters, is essential for delineating the details of the path(s) leading to the diseased state and for designing strategies to revert its progression. An important aspect of this process is not only to define the function of a gene but to identify the context within which gene functions act. It is within the network, or pathway context, that the function of a gene fulfills its ultimate biological role. Resolving the extent to which defective function(s) affect the proceedings of pathway(s) and how altered pathways merge into overpowering the system's defense machinery are key to understanding the molecular aspects of disease and envisioning ways to counteract it. A network-centric approach to diseases is increasingly being considered in current research. It also underlies the deployment of disease pathways at the Rat Genome Database Pathway Portal. The portal is presented with an emphasis on disease and altered pathways, associated drug pathways, pathway suites, and suite networks. RESULTS: The Pathway Portal at the Rat Genome Database (RGD) provides an ever-increasing collection of interactive pathway diagrams and associated annotations for metabolic, signaling, regulatory, and drug pathways, including disease and altered pathways. A disease pathway is viewed from the perspective of networks whose alterations are manifested in the affected phenotype. The Pathway Ontology (PW), built and maintained at RGD, facilitates the annotations of genes, the deployment of pathway diagrams, and provides an overall navigational tool. Pathways that revolve around a common concept and are globally connected are presented within pathway suites; a suite network combines two or more pathway suites. CONCLUSIONS: The Pathway Portal is a rich resource that offers a range of pathway data and visualization, including disease pathways and related pathway suites. Viewing a disease pathway from the perspective of underlying altered pathways is an aid for dissecting the molecular mechanisms of disease.


Asunto(s)
Bases de Datos Genéticas , Redes Reguladoras de Genes/genética , Genoma , Redes y Vías Metabólicas/genética , Biología de Sistemas/métodos , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Anotación de Secuencia Molecular , Fenotipo , Ratas , Transducción de Señal , Interfaz Usuario-Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA