Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hepatology ; 77(6): 1943-1957, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36052732

RESUMEN

BACKGROUND: Morreton virus (MORV) is an oncolytic Vesiculovirus , genetically distinct from vesicular stomatitis virus (VSV). AIM: To report that MORV induced potent cytopathic effects (CPEs) in cholangiocarcinoma (CCA) and hepatocellular carcinoma (HCC) in vitro models. APPROACH AND RESULTS: In preliminary safety analyses, high intranasal doses (up to 10 10 50% tissue culture infectious dose [TCID 50 ]) of MORV were not associated with significant adverse effects in immune competent, non-tumor-bearing mice. MORV was shown to be efficacious in a Hep3B hepatocellular cancer xenograft model but not in a CCA xenograft HuCCT1 model. In an immune competent, syngeneic murine CCA model, single intratumoral treatments with MORV (1 × 10 7 TCID 50 ) triggered a robust antitumor immune response leading to substantial tumor regression and disease control at a dose 10-fold lower than VSV (1 × 10 8 TCID 50 ). MORV led to increased CD8 + cytotoxic T cells without compensatory increases in tumor-associated macrophages and granulocytic or monocytic myeloid-derived suppressor cells. CONCLUSIONS: Our findings indicate that wild-type MORV is safe and can induce potent tumor regression via immune-mediated and immune-independent mechanisms in HCC and CCA animal models without dose limiting adverse events. These data warrant further development and clinical translation of MORV as an oncolytic virotherapy platform.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Viroterapia Oncolítica , Ratones , Humanos , Animales , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patología , Carcinoma Hepatocelular/patología , Vesiculovirus , Modelos Animales de Enfermedad , Línea Celular Tumoral
2.
Adv Exp Med Biol ; 1451: 125-137, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38801575

RESUMEN

Poxviruses are notorious for having acquired/evolved numerous genes to counteract host innate immunity. Chordopoxviruses have acquired/evolved at least three different inhibitors of host necroptotic death: E3, which blocks ZBP1-dependent necroptotic cell death, and vIRD and vMLKL that inhibit necroptosis downstream of initial cell death signaling. While this suggests the importance of the necroptotic cell death pathway in inhibiting chordopoxvirus replication, several chordopoxviruses have lost one or more of these inhibitory functions. Monkeypox/mpox virus (MPXV) has lost a portion of the N-terminus of its E3 homologue. The N-terminus of the vaccinia virus E3 homologue serves to inhibit activation of the interferon-inducible antiviral protein, ZBP1. This likely makes MPXV unique among the orthopoxviruses in being sensitive to interferon (IFN) treatment in many mammals, including humans, which encode a complete necroptotic cell death pathway. Thus, IFN sensitivity may be the Achille's Heel for viruses like MPXV that cannot fully inhibit IFN-inducible, ZBP1-dependent antiviral pathways.


Asunto(s)
Interferón Tipo I , Proteínas Virales , Humanos , Animales , Interferón Tipo I/inmunología , Interferón Tipo I/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Monkeypox virus/efectos de los fármacos , Monkeypox virus/fisiología , Monkeypox virus/genética , Inmunidad Innata , Necroptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Mpox/virología
3.
Artículo en Inglés | MEDLINE | ID: mdl-33507400

RESUMEN

Poxviruses have been long regarded as potent inhibitors of apoptotic cell death. More recently, they have been shown to inhibit necroptotic cell death through two distinct strategies. These strategies involve either blocking virus sensing by the host pattern recognition receptor, ZBP1 (also called DAI) or by influencing receptor interacting protein kinase (RIPK)3 signal transduction by inhibition of activation of the executioner of necroptosis, mixed lineage kinase-like protein (MLKL). Vaccinia virus E3 specifically blocks ZBP1 â†’ RIPK3 â†’ MLKL necroptosis, leaving virus-infected cells susceptible to the TNF death-receptor signaling (e.g., TNFR1 â†’ FADD â†’ RIPK1 â†’ RIPK3 â†’ MLKL), and, potentially, TLR3 â†’ TRIF â†’ RIPK3 â†’ MLKL necroptosis. While E3 restriction of necroptosis appears to be common to many poxviruses that infect vertebrate hosts, another modulatory strategy not observed in vaccinia or variola virus manifests through subversion of MLKL activation. Recently described viral mimics of MLKL in other chordopoxviruses inhibit all three modes of necroptotic cell death. As with inhibition of apoptosis, the evolution of potentially redundant viral mechanisms to inhibit programmed necroptotic cell death emphasizes the importance of this pathway in the arms race between pathogens and their hosts.

4.
Dig Dis Sci ; 67(8): 3797-3805, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34773565

RESUMEN

BACKGROUND: FGFR2 genomic alterations are observed in 10-20% of cholangiocarcinoma (CCA). Although FGFR2 fusions are an important actionable target, FGFR2 protein expression has not been thoroughly characterized. AIMS: To evaluate FGFR2 protein expression in cholangiocarcinoma harboring FGFR2 genomic alterations. METHODS: FGFR2 protein expression was evaluated in 99 CCA cases with two different antibodies. FGFR2 genomic alterations were confirmed via next-generating sequencing (NGS) or FISH. Primary objective was to determine the specificity and sensitivity of FGFR2 immunohistochemistry staining for detecting FGFR2 genomic alterations. Secondary objectives included overall FGFR2 immunohistochemistry staining in CCA patients, and evaluation of whether FGFR2 expression correlates with clinical outcomes including overall survival (OS), progression-free survival (PFS), and time-to-tumor recurrence (TTR). RESULTS: Immunohistochemistry staining with two antibodies against FGFR2, FPR2-D, and clone 98706 showed high accuracy (78.7% and 91.9%) and specificity (82.9% and 97.7%), and moderate sensitivity (53.9% and 57.1%), respectively, when compared with the standard methods for detecting FGFR2 genomic alterations. In a median follow-up of 72 months, there were no statistically significant differences in OS, PFS, and TTR, for patients with positive or negative FGFR2 staining. CONCLUSION: FGFR2 protein expression by immunohistochemistry has high specificity and therefore could be used to imply the presence of FGFR2 genomic alterations in the context of a positive test. In the case of a negative test, NGS or FISH would be necessary to ascertain cases with FGFR2 genomic alterations.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Neoplasias de los Conductos Biliares/diagnóstico , Neoplasias de los Conductos Biliares/genética , Conductos Biliares Intrahepáticos/patología , Colangiocarcinoma/diagnóstico , Colangiocarcinoma/genética , Genómica , Humanos , Inmunohistoquímica , Recurrencia Local de Neoplasia/patología , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo
5.
J Gen Virol ; 102(8)2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34382930

RESUMEN

Since the successful use of vaccinia virus (VACV) in the immunization strategies to eliminate smallpox, research has been focused on the development of recombinant VACV strains expressing proteins from various pathogens. Attempts at decreasing the side effects associated with exposure to recombinant, wild-type viral strains have led to the development of attenuated viruses. Yet while these attenuated VACV's have improved safety profiles compared to unmodified strains, their clinical use has been hindered due to efficacy issues in stimulating a host immune response. This deficiency has largely been attributed to decreased production of the target protein for immunization. Efforts to increase protein production from attenuated VACV strains has largely centered around modulation of viral factors, while manipulation of the translation of viral mRNAs has been largely unexplored. In this study we evaluate the use of translation enhancing element hTEE-658 to increase recombinant protein production in an attenuated VACV system. Optimization of the use of this motif is also attempted by combining it with strategies that have demonstrated effectiveness in previous research. We show that extension of the 5' leader sequence containing hTEE-658 does not improve motif function, nor does the combination with other known translation enhancing elements. However, the sole use of hTEE-658 in an attenuated VACV system is shown to increase protein expression levels beyond those of a standard viral promoter when used with a wild-type virus. Taken together these results highlight the potential for hTEE-658 to improve the effectiveness of attenuated VACV vaccine candidates and give insights into the optimal sequence context for its use in vaccine design.


Asunto(s)
Vacuna contra Viruela/biosíntesis , Viruela/prevención & control , Virus Vaccinia , Animales , Línea Celular , Chlorocebus aethiops , Humanos , Vacunas Atenuadas/biosíntesis , Vacunas Sintéticas/biosíntesis , Virus Vaccinia/genética , Virus Vaccinia/inmunología
6.
J Virol ; 93(3)2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30429340

RESUMEN

As part of the continuing effort to develop an effective HIV vaccine, we generated a poxviral vaccine vector (previously described) designed to improve on the results of the RV144 phase III clinical trial. The construct, NYVAC-KC, is a replication-competent, attenuated recombinant of the vaccinia virus strain NYVAC. NYVAC is a vector that has been used in many previous clinical studies but is replication deficient. Here, we report a side-by-side comparison of replication-restricted NYVAC and replication-competent NYVAC-KC in a nonhuman primate study, which utilized a prime-boost regimen similar to that of RV144. NYVAC-C and NYVAC-C-KC express the HIV-1 antigens gp140, and Gag/Gag-Pol-Nef-derived virus-like particles (VLPs) from clade C and were used as the prime, with recombinant virus plus envelope protein used as the boost. In nearly every T and B cell immune assay against HIV-1, including neutralization and antibody binding, NYVAC-C-KC induced a greater immune response than NYVAC-C, indicating that replication competence in a poxvirus may improve upon the modestly successful regimen used in the RV144 clinical trial.IMPORTANCE Though the RV144 phase III clinical trial showed promise that an effective vaccine against HIV-1 is possible, a successful vaccine will require improvement over the vaccine candidate (ALVAC) used in the RV144 study. With that goal in mind, we have tested in nonhuman primates an attenuated but replication-competent vector, NYVAC-KC, in direct comparison to its parental vector, NYVAC, which is replication restricted in human cells, similar to the ALVAC vector used in RV144. We have utilized a prime-boost regimen for administration of the vaccine candidate that is similar to the one used in the RV144 study. The results of this study indicate that a replication-competent poxvirus vector may improve upon the effectiveness of the RV144 clinical trial vaccine candidate.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Antígenos VIH/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Vacunas Virales/administración & dosificación , Replicación Viral , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Anti-VIH/sangre , Infecciones por VIH/prevención & control , Infecciones por VIH/virología , Humanos , Macaca mulatta , Masculino , Vacunación , Virus Vaccinia/inmunología , Vacunas Virales/inmunología
7.
J Virol ; 93(3)2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30429343

RESUMEN

The use of heterologous immunization regimens and improved vector systems has led to increases in immunogenicity of HIV-1 vaccine candidates in nonhuman primates. In order to resolve interrelations between different delivery modalities, three different poxvirus boost regimens were compared. Three groups of rhesus macaques were each primed with the same DNA vaccine encoding Gag, Pol, Nef, and gp140. The groups were then boosted with either the vaccinia virus strain NYVAC or a variant with improved replication competence in human cells, termed NYVAC-KC. The latter was administered either by scarification or intramuscularly. Finally, macaques were boosted with adjuvanted gp120 protein to enhance humoral responses. The regimen elicited very potent CD4+ and CD8+ T cell responses in a well-balanced manner, peaking 2 weeks after the boost. T cells were broadly reactive and polyfunctional. All animals exhibited antigen-specific humoral responses already after the poxvirus boost, which further increased following protein administration. Polyclonal reactivity of IgG antibodies was highest against HIV-1 clade C Env proteins, with considerable cross-reactivity to other clades. Substantial effector functional activities (antibody-dependent cell-mediated cytotoxicity and antibody-dependent cell-mediated virus inhibition) were observed in serum obtained after the last protein boost. Notably, major differences between the groups were absent, indicating that the potent priming induced by the DNA vaccine initially framed the immune responses in such a way that the subsequent boosts with NYVAC and protein led only to an increase in the response magnitudes without skewing the quality. This study highlights the importance of selecting the best combination of vector systems in heterologous prime-boost vaccination regimens.IMPORTANCE The evaluation of HIV vaccine efficacy trials indicates that protection would most likely correlate with a polyfunctional immune response involving several effector functions from all arms of the immune system. Heterologous prime-boost regimens have been shown to elicit vigorous T cell and antibody responses in nonhuman primates that, however, qualitatively and quantitatively differ depending on the respective vector systems used. The present study evaluated a DNA prime and poxvirus and protein boost regimen and compared how two poxvirus vectors with various degrees of replication capacity and two different delivery modalities-conventional intramuscular delivery and percutaneous delivery by scarification-impact several immune effectors. It was found that despite the different poxvirus boosts, the overall immune responses in the three groups were similar, suggesting the potent DNA priming as the major determining factor of immune responses. These findings emphasize the importance of selecting optimal priming agents in heterologous prime-boost vaccination settings.


Asunto(s)
Antígenos VIH/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Linfocitos T/inmunología , Vacunas de ADN/administración & dosificación , Vacunas Virales/inmunología , Replicación Viral , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Anti-VIH/sangre , Infecciones por VIH/prevención & control , Infecciones por VIH/virología , Humanos , Macaca mulatta , Masculino , Poxviridae , Vacunación , Vacunas de ADN/inmunología , Virus Vaccinia/inmunología
8.
Proc Natl Acad Sci U S A ; 114(43): 11506-11511, 2017 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-29073079

RESUMEN

Vaccinia virus (VACV) encodes an innate immune evasion protein, E3, which contains an N-terminal Z-nucleic acid binding (Zα) domain that is critical for pathogenicity in mice. Here we demonstrate that the N terminus of E3 is necessary to inhibit an IFN-primed virus-induced necroptosis. VACV deleted of the Zα domain of E3 (VACV-E3LΔ83N) induced rapid RIPK3-dependent cell death in IFN-treated L929 cells. Cell death was inhibited by the RIPK3 inhibitor, GSK872, and infection with this mutant virus led to phosphorylation and aggregation of MLKL, the executioner of necroptosis. In 293T cells, induction of necroptosis depended on expression of RIPK3 as well as the host-encoded Zα domain-containing DNA sensor, DAI. VACV-E3LΔ83N is attenuated in vivo, and pathogenicity was restored in either RIPK3- or DAI-deficient mice. These data demonstrate that the N terminus of the VACV E3 protein prevents DAI-mediated induction of necroptosis.


Asunto(s)
ADN de Forma Z/metabolismo , Glicoproteínas/metabolismo , Proteínas de Unión al ARN/metabolismo , Virus Vaccinia/metabolismo , Proteínas Virales/metabolismo , Animales , Caspasas/metabolismo , Muerte Celular , Línea Celular , Supervivencia Celular , ADN de Forma Z/química , Glicoproteínas/genética , Humanos , Inmunidad Innata , Interferón Tipo I/química , Interferón Tipo I/farmacología , Ratones , Dominios Proteicos , Proteínas de Unión al ARN/química , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Virus Vaccinia/inmunología , Virus Vaccinia/patogenicidad , Proteínas Virales/química , Virulencia
9.
Yale J Biol Med ; 93(2): 239-250, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32607085

RESUMEN

Astragalus membranaceus is a staple of Traditional Chinese Medicine being one of the oldest medicinal herbs listed in the material medica of Chinese herbal medicine. Chinese herbalists have used Astragalus to help the human body fight a variety of diseases. Modern herbalists utilize Astragalus primarily as an immunostimulant to prevent common infection and aid in the recovery following infection. Historically, the biological activities associated with Astragalus have been accounted for, at least in part, to several constituents present in the botanical including saponins and polysaccharides. We propose that in addition to these constituents, compounds from endophytic (or epiphytic) bacteria present in (or on) the roots of Astragalus may have an important biological role. Lipopolysaccharides and lipoproteins are major components of Gram-negative bacteria and highly potent activators of the innate immune response. Our data supports a direct correlation between the level of immune gene induction and the level of lipopolysaccharides/lipoproteins present in the Astragalus extract. We demonstrate that extracts from Astragalus specifically activate Toll-like and NOD-like receptors involved in the recognition and response to bacterial constituents and that removal of the lipopolysaccharide/lipoprotein from the Astragalus extract reduced the level of this response. The results support that many immune enhancing botanicals have established a symbiotic relationship with Gram-negative bacteria and that the immune enhancing effect of these botanical extracts on the body may not only be due to endogenous plant compounds, but endophytic (or epiphytic) bacterial components as well.


Asunto(s)
Astragalus propinquus , Medicamentos Herbarios Chinos , Endófitos/fisiología , Inmunidad Innata/efectos de los fármacos , Polisacáridos , Saponinas , Adyuvantes Inmunológicos/farmacología , Astragalus propinquus/química , Astragalus propinquus/microbiología , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Células HEK293 , Humanos , Medicina Tradicional China , Raíces de Plantas/química , Raíces de Plantas/microbiología , Polisacáridos/química , Polisacáridos/farmacología , Saponinas/química , Saponinas/farmacología , Simbiosis
10.
J Virol ; 92(8)2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29386289

RESUMEN

African swine fever virus (ASFV) causes an acute hemorrhagic fever in domestic pigs, with high socioeconomic impact. No vaccine is available, limiting options for control. Although live attenuated ASFV can induce up to 100% protection against lethal challenge, little is known of the antigens which induce this protective response. To identify additional ASFV immunogenic and potentially protective antigens, we cloned 47 viral genes in individual plasmids for gene vaccination and in recombinant vaccinia viruses. These antigens were selected to include proteins with different functions and timing of expression. Pools of up to 22 antigens were delivered by DNA prime and recombinant vaccinia virus boost to groups of pigs. Responses of immune lymphocytes from pigs to individual recombinant proteins and to ASFV were measured by interferon gamma enzyme-linked immunosorbent spot (ELISpot) assays to identify a subset of the antigens that consistently induced the highest responses. All 47 antigens were then delivered to pigs by DNA prime and recombinant vaccinia virus boost, and pigs were challenged with a lethal dose of ASFV isolate Georgia 2007/1. Although pigs developed clinical and pathological signs consistent with acute ASFV, viral genome levels were significantly reduced in blood and several lymph tissues in those pigs immunized with vectors expressing ASFV antigens compared with the levels in control pigs.IMPORTANCE The lack of a vaccine limits the options to control African swine fever. Advances have been made in the development of genetically modified live attenuated ASFV that can induce protection against challenge. However, there may be safety issues relating to the use of these in the field. There is little information about ASFV antigens that can induce a protective immune response against challenge. We carried out a large screen of 30% of ASFV antigens by delivering individual genes in different pools to pigs by DNA immunization prime and recombinant vaccinia virus boost. The responses in immunized pigs to these individual antigens were compared to identify the most immunogenic. Lethal challenge of pigs immunized with a pool of antigens resulted in reduced levels of virus in blood and lymph tissues compared to those in pigs immunized with control vectors. Novel immunogenic ASFV proteins have been identified for further testing as vaccine candidates.


Asunto(s)
Virus de la Fiebre Porcina Africana/inmunología , Fiebre Porcina Africana/inmunología , Inmunización Secundaria , Vacunas de ADN/inmunología , Virus Vaccinia/inmunología , Proteínas Virales/inmunología , Fiebre Porcina Africana/genética , Fiebre Porcina Africana/prevención & control , Virus de la Fiebre Porcina Africana/genética , Animales , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Porcinos , Vacunas de ADN/genética , Virus Vaccinia/genética , Proteínas Virales/genética
11.
J Virol ; 92(8)2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29437967

RESUMEN

A preventive human immunodeficiency virus type 1 (HIV-1) vaccine is an essential part of the strategy to eradicate AIDS. A critical question is whether antibodies that do not neutralize primary isolate (tier 2) HIV-1 strains can protect from infection. In this study, we investigated the ability of an attenuated poxvirus vector (NYVAC) prime-envelope gp120 boost to elicit potentially protective antibody responses in a rhesus macaque model of mucosal simian-human immunodeficiency virus (SHIV) infection. NYVAC vector delivery of a group M consensus envelope, trivalent mosaic envelopes, or a natural clade B isolate B.1059 envelope elicited antibodies that mediated neutralization of tier 1 viruses, cellular cytotoxicity, and phagocytosis. None of the macaques made neutralizing antibodies against the tier 2 SHIV SF162P3 used for mucosal challenge. Significant protection from infection was not observed for the three groups of vaccinated macaques compared to unvaccinated macaques, although binding antibody to HIV-1 Env correlated with decreased viremia after challenge. Thus, NYVAC Env prime-gp120 boost vaccination elicited polyfunctional, nonneutralizing antibody responses with minimal protective activity against tier 2 SHIV mucosal challenge.IMPORTANCE The antibody responses that confer protection against HIV-1 infection remain unknown. Polyfunctional antibody responses correlated with time to infection in previous macaque studies. Determining the ability of vaccines to induce these types of responses is critical for understanding how to improve upon the one efficacious human HIV-1 vaccine trial completed thus far. We characterized the antibody responses induced by a NYVAC-protein vaccine and determined the protective capacity of polyfunctional antibody responses in an R5, tier 2 mucosal SHIV infection model.


Asunto(s)
Vacunas contra el SIDA/inmunología , VIH-1/inmunología , Inmunización Secundaria , Inmunogenicidad Vacunal , Virus de la Inmunodeficiencia de los Simios/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Animales , Humanos , Macaca mulatta
12.
J Virol ; 91(9)2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28179536

RESUMEN

The nonreplicating attenuated poxvirus vector NYVAC expressing clade C(CN54) HIV-1 Env(gp120) and Gag-Pol-Nef antigens (NYVAC-C) showed limited immunogenicity in phase I clinical trials. To enhance the capacity of the NYVAC vector to trigger broad humoral responses and a more balanced activation of CD4+ and CD8+ T cells, here we compared the HIV-1-specific immunogenicity elicited in nonhuman primates immunized with two replicating NYVAC vectors that have been modified by the insertion of the K1L and C7L vaccinia virus host range genes and express the clade C(ZM96) trimeric HIV-1 gp140 protein or a Gag(ZM96)-Pol-Nef(CN54) polyprotein as Gag-derived virus-like particles (termed NYVAC-C-KC). Additionally, one NYVAC-C-KC vector was generated by deleting the viral gene B19R, an inhibitor of the type I interferon response (NYVAC-C-KC-ΔB19R). An immunization protocol mimicking that of the RV144 phase III clinical trial was used. Two groups of macaques received two doses of the corresponding NYVAC-C-KC vectors (weeks 0 and 4) and booster doses with NYVAC-C-KC vectors plus the clade C HIV-1 gp120 protein (weeks 12 and 24). The two replicating NYVAC-C-KC vectors induced enhanced and similar HIV-1-specific CD4+ and CD8+ T cell responses, similar levels of binding IgG antibodies, low levels of IgA antibodies, and high levels of antibody-dependent cellular cytotoxicity responses and HIV-1-neutralizing antibodies. Small differences within the NYVAC-C-KC-ΔB19R group were seen in the magnitude of CD4+ and CD8+ T cells, the induction of some cytokines, and the neutralization of some HIV-1 isolates. Thus, replication-competent NYVAC-C-KC vectors acquired relevant immunological properties as vaccine candidates against HIV/AIDS, and the viral B19 molecule exerts some control of immune functions.IMPORTANCE It is of special importance to find a safe and effective HIV/AIDS vaccine that can induce strong and broad T cell and humoral immune responses correlating with HIV-1 protection. Here we developed novel replicating poxvirus NYVAC-based HIV/AIDS vaccine candidates expressing clade C HIV-1 antigens, with one of them lacking the vaccinia virus B19 protein, an inhibitor of the type I interferon response. Immunization of nonhuman primates with these novel NYVAC-C-KC vectors and the protein component gp120 elicited high levels of T cell and humoral immune responses, with the vector containing a deletion in B19R inducing a trend toward a higher magnitude of CD4+ and CD8+ T cell responses and neutralization of some HIV-1 strains. These poxvirus vectors could be considered HIV/AIDS vaccine candidates based on their activation of potential immune correlates of protection.


Asunto(s)
Vacunas contra el SIDA/inmunología , Anticuerpos Neutralizantes/sangre , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Anticuerpos Anti-VIH/sangre , Proteína gp120 de Envoltorio del VIH/inmunología , Vacunas de Partículas Similares a Virus/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo , Vacunas contra el SIDA/genética , Animales , Anticuerpos Neutralizantes/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Anticuerpos Anti-VIH/inmunología , Antígenos VIH/inmunología , Infecciones por VIH/prevención & control , Interferón Tipo I/genética , Macaca mulatta , Masculino , Receptores de Interferón/genética , Receptores de Interferón/inmunología , Vacunación , Virus Vaccinia/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética
13.
J Virol ; 91(9)2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28202751

RESUMEN

We compared the HIV-1-specific immune responses generated by targeting HIV-1 envelope protein (Env gp140) to either CD40 or LOX-1, two endocytic receptors on dendritic cells (DCs), in rhesus macaques primed with a poxvirus vector (NYVAC-KC) expressing Env gp140. The DC-targeting vaccines, humanized recombinant monoclonal antibodies fused to Env gp140, were administered as a boost with poly-ICLC adjuvant either alone or coadministered with the NYVAC-KC vector. All the DC-targeting vaccine administrations with poly-ICLC increased the low-level serum anti-Env IgG responses elicited by NYVAC-KC priming significantly more (up to a P value of 0.01) than in a group without poly-ICLC. The responses were robust and cross-reactive and contained antibodies specific to multiple epitopes within gp140, including the C1, C2, V1, V2, and V3, C4, C5, and gp41 immunodominant regions. The DC-targeting vaccines also elicited modest serum Env-specific IgA responses. All groups gave serum neutralization activity limited to tier 1 viruses and antibody-dependent cytotoxicity responses (ADCC) after DC-targeting boosts. Furthermore, CD4+ and CD8+ T cell responses specific to multiple Env epitopes were strongly boosted by the DC-targeting vaccines plus poly-ICLC. Together, these results indicate that prime-boost immunization via NYVAC-KC and either anti-CD40.Env gp140/poly-ICLC or anti-LOX-1.Env gp140/poly-ICLC induced balanced antibody and T cell responses against HIV-1 Env. Coadministration of NYVAC-KC with the DC-targeting vaccines increased T cell responses but had minimal effects on antibody responses except for suppressing serum IgA responses. Overall, targeting Env to CD40 gave more robust T cell and serum antibody responses with broader epitope representation and greater durability than with LOX-1.IMPORTANCE An effective vaccine to prevent HIV-1 infection does not yet exist. An approach to elicit strong protective antibody development is to direct virus protein antigens specifically to dendritic cells, which are now known to be the key cell type for controlling immunity. In this study, we have tested in nonhuman primates two prototype vaccines engineered to direct the HIV-1 coat protein Env to dendritic cells. These vaccines bind to either CD40 or LOX-1, two dendritic cell surface receptors with different functions and tissue distributions. We tested the vaccines described above in combination with attenuated virus vectors that express Env. Both vaccines, but especially that delivered via CD40, raised robust immunity against HIV-1 as measured by monitoring potentially protective antibody and T cell responses in the blood. The safety and efficacy of the CD40-targeted vaccine justify further development for future human clinical trials.


Asunto(s)
Vacunas contra el SIDA/inmunología , Linfocitos T CD4-Positivos/inmunología , Antígenos CD40/inmunología , Linfocitos T CD8-positivos/inmunología , Anticuerpos Anti-VIH/inmunología , VIH-1/inmunología , Receptores Depuradores de Clase E/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Vacunas contra el SIDA/genética , Animales , Anticuerpos Neutralizantes/inmunología , Células CHO , Carboximetilcelulosa de Sodio/análogos & derivados , Cricetulus , Células Dendríticas/inmunología , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , Macaca mulatta , Masculino , Poli I-C/inmunología , Polilisina/análogos & derivados , Polilisina/inmunología , Vacunación
14.
J Virol ; 90(8): 4133-4149, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26865719

RESUMEN

UNLABELLED: In a follow-up to the modest efficacy observed in the RV144 trial, researchers in the HIV vaccine field seek to substantiate and extend the results by evaluating other poxvirus vectors and combinations with DNA and protein vaccines. Earlier clinical trials (EuroVacc trials 01 to 03) evaluated the immunogenicity of HIV-1 clade C GagPolNef and gp120 antigens delivered via the poxviral vector NYVAC. These showed that a vaccination regimen including DNA-C priming prior to a NYVAC-C boost considerably enhanced vaccine-elicited immune responses compared to those with NYVAC-C alone. Moreover, responses were improved by using three as opposed to two DNA-C primes. In the present study, we assessed in nonhuman primates whether such vaccination regimens can be streamlined further by using fewer and accelerated immunizations and employing a novel generation of improved DNA-C and NYVAC-C vaccine candidates designed for higher expression levels and more balanced immune responses. Three different DNA-C prime/NYVAC-C+ protein boost vaccination regimens were tested in rhesus macaques. All regimens elicited vigorous and well-balanced CD8(+)and CD4(+)T cell responses that were broad and polyfunctional. Very high IgG binding titers, substantial antibody-dependent cellular cytotoxicity (ADCC), and modest antibody-dependent cell-mediated virus inhibition (ADCVI), but very low neutralization activity, were measured after the final immunizations. Overall, immune responses elicited in all three groups were very similar and of greater magnitude, breadth, and quality than those of earlier EuroVacc vaccines. In conclusion, these findings indicate that vaccination schemes can be simplified by using improved antigens and regimens. This may offer a more practical and affordable means to elicit potentially protective immune responses upon vaccination, especially in resource-constrained settings. IMPORTANCE: Within the EuroVacc clinical trials, we previously assessed the immunogenicity of HIV clade C antigens delivered in a DNA prime/NYVAC boost regimen. The trials showed that the DNA prime crucially improved the responses, and three DNA primes with a NYVAC boost appeared to be optimal. Nevertheless, T cell responses were primarily directed toward Env, and humoral responses were modest. The aim of this study was to assess improved antigens for the capacity to elicit more potent and balanced responses in rhesus macaques, even with various simpler immunization regimens. Our results showed that the novel antigens in fact elicited larger numbers of T cells with a polyfunctional profile and a good Env-GagPolNef balance, as well as high-titer and Fc-functional antibody responses. Finally, comparison of the different schedules indicates that a simpler regimen of only two DNA primes and one NYVAC boost in combination with protein may be very efficient, thus showing that the novel antigens allow for easier immunization protocols.


Asunto(s)
Vacunas contra el SIDA/inmunología , Cartilla de ADN , VIH-1/inmunología , Vacunas de ADN/inmunología , Vacunas contra el SIDA/genética , Animales , Anticuerpos Neutralizantes/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos , Anticuerpos Anti-VIH/inmunología , Antígenos VIH/inmunología , Interferón gamma/biosíntesis , Masculino , Linfocitos T/inmunología , Vacunación/métodos , Vacunas de ADN/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/inmunología
15.
Nat Methods ; 10(8): 747-50, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23770754

RESUMEN

We report an in vitro selection strategy to identify RNA sequences that mediate cap-independent initiation of translation. This method entails mRNA display of trillions of genomic fragments, selection for initiation of translation and high-throughput deep sequencing. We identified >12,000 translation-enhancing elements (TEEs) in the human genome, generated a high-resolution map of human TEE-bearing regions (TBRs), and validated the function of a subset of sequences in vitro and in cultured cells.


Asunto(s)
Genoma Humano , Iniciación de la Cadena Peptídica Traduccional , ARN Mensajero/genética , Regiones no Traducidas 5' , Biblioteca de Genes , Células HeLa , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Biosíntesis de Proteínas , ARN Mensajero/metabolismo
16.
J Virol ; 89(20): 10489-99, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26246580

RESUMEN

UNLABELLED: The vaccinia virus (VACV) E3 protein has been shown to be important for blocking activation of the cellular innate immune system and allowing viral replication to occur unhindered. Mutation or deletion of E3L severely affects viral host range and pathogenesis. While the monkeypox virus (MPXV) genome encodes a homologue of the VACV E3 protein, encoded by the F3L gene, the MPXV gene is predicted to encode a protein with a truncation of 37 N-terminal amino acids. VACV with a genome encoding a similarly truncated E3L protein (VACV-E3LΔ37N) has been shown to be attenuated in mouse models, and infection with VACV-E3LΔ37N has been shown to lead to activation of the host antiviral protein kinase R pathway. In this report, we present data demonstrating that, despite containing a truncated E3 homologue, MPXV phenotypically resembles a wild-type (wt) VACV rather than VACV-E3LΔ37N. Thus, MPXV appears to contain a gene or genes that can suppress the phenotypes associated with an N-terminal truncation in E3. The suppression maps to sequences outside F3L, suggesting that the suppression is extragenic in nature. Thus, MPXV appears to have evolved mechanisms to minimize the effects of partial inactivation of its E3 homologue. IMPORTANCE: Poxviruses have evolved to have many mechanisms to evade host antiviral innate immunity; these mechanisms may allow these viruses to cause disease. Within the family of poxviruses, variola virus (which causes smallpox) is the most pathogenic, while monkeypox virus is intermediate in pathogenicity between vaccinia virus and variola virus. Understanding the mechanisms of monkeypox virus innate immune evasion will help us to understand the evolution of poxvirus innate immune evasion capabilities, providing a better understanding of how poxviruses cause disease.


Asunto(s)
Evasión Inmune , Inmunidad Innata , Interferón Tipo I/inmunología , Monkeypox virus/genética , Proteínas de Unión al ARN/genética , Virus Vaccinia/genética , Proteínas Virales/genética , Secuencia de Aminoácidos , Animales , Evolución Biológica , Línea Celular , Chlorocebus aethiops , Cricetulus , Células Epiteliales/inmunología , Células Epiteliales/virología , Expresión Génica , Células HeLa , Especificidad del Huésped , Interacciones Huésped-Patógeno , Humanos , Interferón Tipo I/genética , Datos de Secuencia Molecular , Monkeypox virus/inmunología , Monkeypox virus/patogenicidad , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/inmunología , Conejos , Alineación de Secuencia , Transducción de Señal , Virus Vaccinia/inmunología , Virus Vaccinia/patogenicidad , Células Vero , Proteínas Virales/química , Proteínas Virales/inmunología , Replicación Viral
17.
J Virol ; 89(2): 970-88, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25355891

RESUMEN

UNLABELLED: The generation of vaccines against HIV/AIDS able to induce long-lasting protective immunity remains a major goal in the HIV field. The modest efficacy (31.2%) against HIV infection observed in the RV144 phase III clinical trial highlighted the need for further improvement of HIV vaccine candidates, formulation, and vaccine regimen. In this study, we have generated two novel NYVAC vectors, expressing HIV-1 clade C gp140(ZM96) (NYVAC-gp140) or Gag(ZM96)-Pol-Nef(CN54) (NYVAC-Gag-Pol-Nef), and defined their virological and immunological characteristics in cultured cells and in mice. The insertion of HIV genes does not affect the replication capacity of NYVAC recombinants in primary chicken embryo fibroblast cells, HIV sequences remain stable after multiple passages, and HIV antigens are correctly expressed and released from cells, with Env as a trimer (NYVAC-gp140), while in NYVAC-Gag-Pol-Nef-infected cells Gag-induced virus-like particles (VLPs) are abundant. Electron microscopy revealed that VLPs accumulated with time at the cell surface, with no interference with NYVAC morphogenesis. Both vectors trigger specific innate responses in human cells and show an attenuation profile in immunocompromised adult BALB/c and newborn CD1 mice after intracranial inoculation. Analysis of the immune responses elicited in mice after homologous NYVAC prime/NYVAC boost immunization shows that recombinant viruses induced polyfunctional Env-specific CD4 or Gag-specific CD8 T cell responses. Antibody responses against gp140 and p17/p24 were elicited. Our findings showed important insights into virus-host cell interactions of NYVAC vectors expressing HIV antigens, with the activation of specific immune parameters which will help to unravel potential correlates of protection against HIV in human clinical trials with these vectors. IMPORTANCE: We have generated two novel NYVAC-based HIV vaccine candidates expressing HIV-1 clade C trimeric soluble gp140 (ZM96) and Gag(ZM96)-Pol-Nef(CN54) as VLPs. These vectors are stable and express high levels of both HIV-1 antigens. Gag-induced VLPs do not interfere with NYVAC morphogenesis, are highly attenuated in immunocompromised and newborn mice after intracranial inoculation, trigger specific innate immune responses in human cells, and activate T (Env-specific CD4 and Gag-specific CD8) and B cell immune responses to the HIV antigens, leading to high antibody titers against gp140. For these reasons, these vectors can be considered vaccine candidates against HIV/AIDS and currently are being tested in macaques and humans.


Asunto(s)
Vacunas contra el SIDA/inmunología , Vacunación/métodos , Vacunas de Partículas Similares a Virus/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/inmunología , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/inmunología , Vacunas contra el SIDA/administración & dosificación , Vacunas contra el SIDA/genética , Animales , Linfocitos T CD8-positivos/inmunología , Células Cultivadas , Pollos , Anticuerpos Anti-VIH/sangre , Ratones , Microscopía Electrónica de Transmisión , Vacunas de Partículas Similares a Virus/administración & dosificación , Vacunas de Partículas Similares a Virus/genética , Vacunas de Partículas Similares a Virus/ultraestructura , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética
18.
J Virol ; 89(12): 6462-80, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25855741

RESUMEN

UNLABELLED: An effective human immunodeficiency virus type 1 (HIV-1) vaccine must induce protective antibody responses, as well as CD4(+) and CD8(+) T cell responses, that can be effective despite extraordinary diversity of HIV-1. The consensus and mosaic immunogens are complete but artificial proteins, computationally designed to elicit immune responses with improved cross-reactive breadth, to attempt to overcome the challenge of global HIV diversity. In this study, we have compared the immunogenicity of a transmitted-founder (T/F) B clade Env (B.1059), a global group M consensus Env (Con-S), and a global trivalent mosaic Env protein in rhesus macaques. These antigens were delivered using a DNA prime-recombinant NYVAC (rNYVAC) vector and Env protein boost vaccination strategy. While Con-S Env was a single sequence, mosaic immunogens were a set of three Envs optimized to include the most common forms of potential T cell epitopes. Both Con-S and mosaic sequences retained common amino acids encompassed by both antibody and T cell epitopes and were central to globally circulating strains. Mosaics and Con-S Envs expressed as full-length proteins bound well to a number of neutralizing antibodies with discontinuous epitopes. Also, both consensus and mosaic immunogens induced significantly higher gamma interferon (IFN-γ) enzyme-linked immunosorbent spot assay (ELISpot) responses than B.1059 immunogen. Immunization with these proteins, particularly Con-S, also induced significantly higher neutralizing antibodies to viruses than B.1059 Env, primarily to tier 1 viruses. Both Con-S and mosaics stimulated more potent CD8-T cell responses against heterologous Envs than did B.1059. Both antibody and cellular data from this study strengthen the concept of using in silico-designed centralized immunogens for global HIV-1 vaccine development strategies. IMPORTANCE: There is an increasing appreciation for the importance of vaccine-induced anti-Env antibody responses for preventing HIV-1 acquisition. This nonhuman primate study demonstrates that in silico-designed global HIV-1 immunogens, designed for a human clinical trial, are capable of eliciting not only T lymphocyte responses but also potent anti-Env antibody responses.


Asunto(s)
VIH-1/inmunología , Vacunas contra el SIDAS/inmunología , Vacunación/métodos , Vacunas de ADN/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Antígenos Virales/genética , Antígenos Virales/inmunología , Aspartato Aminotransferasas , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Secuencia de Consenso , Ensayo de Immunospot Ligado a Enzimas , Anticuerpos Anti-VIH/sangre , VIH-1/genética , Humanos , Interferón gamma/metabolismo , Macaca mulatta , Vacunas contra el SIDAS/administración & dosificación , Vacunas contra el SIDAS/genética , Vacunas de ADN/administración & dosificación , Vacunas de ADN/genética , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/genética , Vacunas de Subunidad/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología
19.
J Gen Virol ; 96(Pt 6): 1478-1483, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25667320

RESUMEN

The Thai trial (RV144) indicates that a prime-boost vaccine combination that induces both T-cell and antibody responses may be desirable for an effective HIV vaccine. We have previously shown that immunization with synthetic long peptides (SLP), covering the conserved parts of SIV, induced strong CD4 T-cell and antibody responses, but only modest CD8 T-cell responses. To generate a more balanced CD4/CD8 T-cell and antibody response, this study evaluated a pox-vector prime/SLP boost strategy in rhesus macaques. Priming with a replication-competent NYVAC, encoding HIV-1 clade C gag, pol and nef, induced modest IFNγ T-cell immune responses, predominantly directed against HIV-1 Gag. Booster immunization with SLP, covering the conserved parts of HIV-1 Gag, Pol and Env, resulted in a more than 10-fold increase in IFNγ ELISpot responses in four of six animals, which were predominantly HIV-1 Pol-specific. The animals showed a balanced polyfunctional CD4 and CD8 T-cell response and high Ab titres.


Asunto(s)
Vacunas contra el SIDA/inmunología , Formación de Anticuerpos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Anticuerpos Anti-VIH/sangre , VIH-1/inmunología , Inmunización Secundaria/métodos , Vacunas contra el SIDA/administración & dosificación , Animales , Macaca mulatta , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA