Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 173(6): 1356-1369.e22, 2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29856954

RESUMEN

Genetic changes causing brain size expansion in human evolution have remained elusive. Notch signaling is essential for radial glia stem cell proliferation and is a determinant of neuronal number in the mammalian cortex. We find that three paralogs of human-specific NOTCH2NL are highly expressed in radial glia. Functional analysis reveals that different alleles of NOTCH2NL have varying potencies to enhance Notch signaling by interacting directly with NOTCH receptors. Consistent with a role in Notch signaling, NOTCH2NL ectopic expression delays differentiation of neuronal progenitors, while deletion accelerates differentiation into cortical neurons. Furthermore, NOTCH2NL genes provide the breakpoints in 1q21.1 distal deletion/duplication syndrome, where duplications are associated with macrocephaly and autism and deletions with microcephaly and schizophrenia. Thus, the emergence of human-specific NOTCH2NL genes may have contributed to the rapid evolution of the larger human neocortex, accompanied by loss of genomic stability at the 1q21.1 locus and resulting recurrent neurodevelopmental disorders.


Asunto(s)
Encéfalo/embriología , Corteza Cerebral/fisiología , Neurogénesis/fisiología , Receptor Notch2/metabolismo , Transducción de Señal , Animales , Diferenciación Celular , Células Madre Embrionarias/metabolismo , Femenino , Eliminación de Gen , Genes Reporteros , Gorilla gorilla , Células HEK293 , Humanos , Neocórtex/citología , Células-Madre Neurales/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Pan troglodytes , Receptor Notch2/genética , Análisis de Secuencia de ARN
2.
Blood ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38905635

RESUMEN

The interaction between menin and histone-lysine N-methyltransferase 2A (KMT2A) is a critical dependency for KMT2A- or nucleophosmin 1 (NPM1)-altered leukemias and an emerging opportunity for therapeutic development. JNJ-75276617 is a novel, orally bioavailable, potent, and selective protein-protein interaction inhibitor of the binding between menin and KMT2A. In KMT2A-rearranged (KMT2A-r) and NPM1-mutant (NPM1c) AML cells, JNJ-75276617 inhibited the association of the menin-KMT2A complex with chromatin at target gene promoters, resulting in reduced expression of several menin-KMT2A target genes, including MEIS1 and FLT3. JNJ-75276617 displayed potent anti-proliferative activity across several AML and ALL cell lines and patient samples harboring KMT2A- or NPM1-alterations in vitro. In xenograft models of AML and ALL, JNJ-75276617 reduced leukemic burden and provided a significant dose-dependent survival benefit accompanied by expression changes of menin-KMT2A target genes. JNJ-75276617 demonstrated synergistic effects with gilteritinib in vitro in AML cells harboring KMT2A-r. JNJ-75276617 further exhibited synergistic effects with venetoclax and azacitidine in AML cells bearing KMT2A-r in vitro, and significantly increased survival in mice. Interestingly, JNJ-75276617 showed potent anti-proliferative activity in cell lines engineered with recently discovered mutations (MEN1M327I or MEN1T349M) that developed in patients refractory to the menin-KMT2A inhibitor revumenib. A co-crystal structure of menin in complex with JNJ-75276617 indicates a unique binding mode distinct from other menin-KMT2A inhibitors, including revumenib. JNJ-75276617 is being clinically investigated for acute leukemias harboring KMT2A or NPM1 alterations, as a monotherapy for relapsed/refractory (R/R) acute leukemia (NCT04811560), or in combination with AML-directed therapies (NCT05453903).

3.
Genome Res ; 32(4): 656-670, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35332097

RESUMEN

Genome-wide association studies (GWAS) have been highly informative in discovering disease-associated loci but are not designed to capture all structural variations in the human genome. Using long-read sequencing data, we discovered widespread structural variation within SINE-VNTR-Alu (SVA) elements, a class of great ape-specific transposable elements with gene-regulatory roles, which represents a major source of structural variability in the human population. We highlight the presence of structurally variable SVAs (SV-SVAs) in neurological disease-associated loci, and we further associate SV-SVAs to disease-associated SNPs and differential gene expression using luciferase assays and expression quantitative trait loci data. Finally, we genetically deleted SV-SVAs in the BIN1 and CD2AP Alzheimer's disease-associated risk loci and in the BCKDK Parkinson's disease-associated risk locus and assessed multiple aspects of their gene-regulatory influence in a human neuronal context. Together, this study reveals a novel layer of genetic variation in transposable elements that may contribute to identification of the structural variants that are the actual drivers of disease associations of GWAS loci.


Asunto(s)
Elementos Transponibles de ADN , Estudio de Asociación del Genoma Completo , Elementos Alu , Elementos Transponibles de ADN/genética , Predisposición Genética a la Enfermedad , Variación Genética , Genoma Humano , Humanos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
4.
Genome Res ; 31(4): 551-563, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33722937

RESUMEN

Transposable element (TE) invasions have shaped vertebrate genomes over the course of evolution. They have contributed an extra layer of species-specific gene regulation by providing novel transcription factor binding sites. In humans, SINE-VNTR-Alu (SVA) elements are one of three still active TE families; approximately 2800 SVA insertions exist in the human genome, half of which are human-specific. TEs are often silenced by KRAB zinc finger (KZNF) proteins recruiting corepressor proteins that establish a repressive chromatin state. A number of KZNFs have been reported to bind SVAs, but their individual contribution to repressing SVAs and their roles in suppressing SVA-mediated gene-regulatory effects remains elusive. We analyzed the genome-wide binding profile for ZNF91 in human cells and found that ZNF91 interacts with the VNTR region of SVAs. Through CRISPR-Cas9-mediated deletion of ZNF91 in human embryonic stem cells, we established that loss of ZNF91 results in increased transcriptional activity of SVAs. In contrast, SVA activation was not observed upon genetic deletion of the ZNF611 gene encoding another strong SVA interactor. Epigenetic profiling confirmed the loss of SVA repression in the absence of ZNF91 and revealed that mainly evolutionary young SVAs gain gene activation-associated epigenetic modifications. Genes close to activated SVAs showed a mild up-regulation, indicating SVAs adopt properties of cis-regulatory elements in the absence of repression. Notably, genome-wide derepression of SVAs elicited the communal up-regulation of KZNFs that reside in KZNF clusters. This phenomenon may provide new insights into the potential mechanisms used by the host genome to sense and counteract TE invasions.


Asunto(s)
Células Madre Embrionarias Humanas , Factores de Transcripción de Tipo Kruppel/deficiencia , Familia de Multigenes/genética , Proteínas Represoras/genética , Retroelementos/genética , Activación Transcripcional , Regulación hacia Arriba , Genoma Humano , Humanos , Dedos de Zinc/genética
5.
Mol Pharm ; 20(7): 3505-3518, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37283406

RESUMEN

Madin-Darby canine kidney (MDCK) cells are widely used to study epithelial cell functionality. Their low endogenous drug transporter protein levels make them an amenable system to investigate transepithelial permeation and drug transporter protein activity after their transfection. MDCK cells display diverse phenotypic traits, and as such, laboratory-to-laboratory variability in drug permeability assessments is observed. Consequently, in vitro-in vivo extrapolation (IVIVE) approaches using permeability and/or transporter activity data require calibration. A comprehensive proteomic quantification of 11 filter-grown parental or mock-transfected MDCK monolayers from 8 different pharmaceutical laboratories using the total protein approach (TPA) is provided. The TPA enables estimations of key morphometric parameters such as monolayer cellularity and volume. Overall, metabolic liability to xenobiotics is likely to be limited for MDCK cells due to the low expression of required enzymes. SLC16A1 (MCT1) was the highest abundant SLC transporter linked to xenobiotic activity, while ABCC4 (MRP4) was the highest abundant ABC transporter. Our data supports existing findings that claudin-2 levels may be linked to tight junction modulation, thus impacting trans-epithelial resistance. This unique database provides data on more than 8000 protein copy numbers and concentrations, thus allowing an in-depth appraisal of the control monolayers used in each laboratory.


Asunto(s)
Proteoma , Proteómica , Animales , Perros , Células de Riñón Canino Madin Darby , Proteoma/metabolismo , Uniones Estrechas/metabolismo , Riñón/metabolismo , Proteínas Portadoras/metabolismo
6.
Mol Biol Evol ; 37(9): 2531-2548, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32330268

RESUMEN

Ever since the availability of genomes from Neanderthals, Denisovans, and ancient humans, the field of evolutionary genomics has been searching for protein-coding variants that may hold clues to how our species evolved over the last ∼600,000 years. In this study, we identify such variants in the human-specific NOTCH2NL gene family, which were recently identified as possible contributors to the evolutionary expansion of the human brain. We find evidence for the existence of unique protein-coding NOTCH2NL variants in Neanderthals and Denisovans which could affect their ability to activate Notch signaling. Furthermore, in the Neanderthal and Denisovan genomes, we find unusual NOTCH2NL configurations, not found in any of the modern human genomes analyzed. Finally, genetic analysis of archaic and modern humans reveals ongoing adaptive evolution of modern human NOTCH2NL genes, identifying three structural variants acting complementary to drive our genome to produce a lower dosage of NOTCH2NL protein. Because copy-number variations of the 1q21.1 locus, encompassing NOTCH2NL genes, are associated with severe neurological disorders, this seemingly contradicting drive toward low levels of NOTCH2NL protein indicates that the optimal dosage of NOTCH2NL may have not yet been settled in the human population.


Asunto(s)
Evolución Biológica , Hombre de Neandertal/genética , Receptor Notch2/genética , Animales , Genoma Humano , Variación Estructural del Genoma , Humanos , Familia de Multigenes , Receptor Notch2/metabolismo
7.
Nature ; 516(7530): 242-5, 2014 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-25274305

RESUMEN

Throughout evolution primate genomes have been modified by waves of retrotransposon insertions. For each wave, the host eventually finds a way to repress retrotransposon transcription and prevent further insertions. In mouse embryonic stem cells, transcriptional silencing of retrotransposons requires KAP1 (also known as TRIM28) and its repressive complex, which can be recruited to target sites by KRAB zinc-finger (KZNF) proteins such as murine-specific ZFP809 which binds to integrated murine leukaemia virus DNA elements and recruits KAP1 to repress them. KZNF genes are one of the fastest growing gene families in primates and this expansion is hypothesized to enable primates to respond to newly emerged retrotransposons. However, the identity of KZNF genes battling retrotransposons currently active in the human genome, such as SINE-VNTR-Alu (SVA) and long interspersed nuclear element 1 (L1), is unknown. Here we show that two primate-specific KZNF genes rapidly evolved to repress these two distinct retrotransposon families shortly after they began to spread in our ancestral genome. ZNF91 underwent a series of structural changes 8-12 million years ago that enabled it to repress SVA elements. ZNF93 evolved earlier to repress the primate L1 lineage until ∼12.5 million years ago when the L1PA3-subfamily of retrotransposons escaped ZNF93's restriction through the removal of the ZNF93-binding site. Our data support a model where KZNF gene expansion limits the activity of newly emerged retrotransposon classes, and this is followed by mutations in these retrotransposons to evade repression, a cycle of events that could explain the rapid expansion of lineage-specific KZNF genes.


Asunto(s)
Evolución Molecular , Factores de Transcripción de Tipo Kruppel/metabolismo , Primates/genética , Retroelementos/genética , Animales , Secuencia de Bases , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Mutación/genética , Dedos de Zinc
8.
Drug Metab Dispos ; 47(5): 453-464, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30787101

RESUMEN

In this phase 1 study, the absolute bioavailability and absorption, metabolism, and excretion (AME) of apalutamide, a competitive inhibitor of the androgen receptor, were evaluated in 12 healthy men. Subjects received 240 mg of apalutamide orally plus a 15-minute intravenous infusion of 100 µg of apalutamide containing 9.25 kBq (250 nCi) of 14C-apalutamide (2 hours postdose) for absolute bioavailability assessment or plus one 400-µg capsule containing 37 kBq (1000 nCi) of 14C-apalutamide for AME assessment. Content of 14C and metabolite profiling for whole blood, plasma, urine, feces, and expired air samples were analyzed using accelerator mass spectrometry. Apalutamide absolute oral bioavailability was ≈100%. After oral administration, apalutamide, its N-desmethyl metabolite (M3), and an inactive carboxylic acid metabolite (M4) accounted for most 14C in plasma (45%, 44%, and 3%, respectively). Apalutamide elimination was slow, with a mean plasma half-life of 151-178 hours. The mean cumulative recovery of total 14C over 70 days postdose was 64.6% in urine and 24.3% in feces. The urinary excretion of apalutamide, M3, and M4 was 1.2%, 2.7%, and 31.1% of dose, respectively. Fecal excretion of apalutamide, M3, and M4 was 1.5%, 2.0%, and 2.4% of dose, respectively. Seventeen apalutamide metabolites and six main metabolic clearance pathways were identified. In vitro studies confirmed CYP2C8 and CYP3A4 roles in apalutamide metabolism.


Asunto(s)
Hepatocitos/metabolismo , Tiohidantoínas/metabolismo , Anciano , Anciano de 80 o más Años , Disponibilidad Biológica , Líquidos Corporales/metabolismo , Radioisótopos de Carbono/metabolismo , Citocromo P-450 CYP2C8/metabolismo , Citocromo P-450 CYP3A/metabolismo , Heces/química , Semivida , Humanos , Infusiones Intravenosas/métodos , Masculino , Tasa de Depuración Metabólica/fisiología , Persona de Mediana Edad
9.
Mol Ther ; 25(11): 2513-2525, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28822689

RESUMEN

A causal role of hypercholesterolemia in non-ischemic heart failure has never been demonstrated. Adeno-associated viral serotype 8 (AAV8)-low-density lipoprotein receptor (AAV8-LDLr) gene transfer was performed in LDLr-deficient mice without and with pressure overload induced by transverse aortic constriction (TAC). AAV8-LDLr gene therapy resulted in an 82.8% (p < 0.0001) reduction of plasma cholesterol compared with controls. Mortality rate was lower (p < 0.05) in AAV8-LDLr TAC mice compared with control TAC mice (hazard ratio for mortality 0.457, 95% confidence interval [CI] 0.237-0.882) during 8 weeks of follow-up. AAV8-LDLr gene therapy attenuated cardiac hypertrophy, reduced interstitial and perivascular fibrosis, and decreased lung congestion in TAC mice. Cardiac function, quantified by invasive hemodynamic measurements and magnetic resonance imaging, was significantly improved 8 weeks after sham operation or after TAC in AAV8-LDLr mice compared with respective control groups. Myocardial protein levels of mammalian target of rapamycin and of acetyl-coenzyme A carboxylase were strikingly decreased following cholesterol lowering in mice without and with pressure overload. AAV8-LDLr therapy potently reduced cardiac glucose uptake and counteracted metabolic remodeling following pressure overload. Furthermore, oxidative stress and myocardial apoptosis were decreased following AAV8-LDLr therapy in mice with pressure overload. In conclusion, cholesterol-lowering gene therapy potently counteracts structural and metabolic remodeling, and enhances cardiac function.


Asunto(s)
Cardiomegalia/terapia , Cardiomiopatías/terapia , Colesterol/metabolismo , Terapia Genética/métodos , Vectores Genéticos/metabolismo , Receptores de LDL/genética , Acetil-CoA C-Acetiltransferasa/genética , Acetil-CoA C-Acetiltransferasa/metabolismo , Animales , Aorta/cirugía , Biomarcadores/metabolismo , Cardiomegalia/etiología , Cardiomegalia/metabolismo , Cardiomegalia/mortalidad , Cardiomiopatías/etiología , Cardiomiopatías/metabolismo , Cardiomiopatías/mortalidad , Constricción Patológica/complicaciones , Constricción Patológica/metabolismo , Constricción Patológica/patología , Dependovirus/genética , Dependovirus/metabolismo , Femenino , Expresión Génica , Vectores Genéticos/administración & dosificación , Vectores Genéticos/química , Pruebas de Función Cardíaca , Hemodinámica , Ratones , Ratones Noqueados , Miocardio/metabolismo , Miocardio/patología , Receptores de LDL/deficiencia , Análisis de Supervivencia , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
10.
Pharm Res ; 34(4): 750-764, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28097507

RESUMEN

PURPOSE: In view of pediatric drug development, juvenile animal studies are gaining importance. However, data on drug metabolizing capacities of juvenile animals are scarce, especially in non-rodent species. Therefore, we aimed to characterize the in vitro biotransformation of four human CYP450 substrates and one UGT substrate in the livers of developing Göttingen minipigs. METHODS: Liver microsomes from late fetal, Day 1, Day 3, Day 7, Day 28, and adult male and female Göttingen minipigs were incubated with a cocktail of CYP450 substrates, including phenacetin, tolbutamide, dextromethorphan, and midazolam. The latter are probe substrates for human CYP1A2, CYP2C9, CYP2D6, and CYP3A4, respectively. In addition, the UGT multienzyme substrate (from the UGT-GloTM assay), which is glucuronidated by several human UGT1A and UGT2B enzymes, was also incubated with the porcine liver microsomes. RESULTS: For all tested substrates, drug metabolism significantly rose postnatally. At one month of age, 60.5 and 75.4% of adult activities were observed for acetaminophen and dextrorphan formations, respectively, while 35.4 and 43.2% of adult activities were present for 4-OH-tolbutamide and 1'-OH-midazolam formations. Biotransformation of phenacetin was significantly higher in 28-day-old and adult females compared with males. CONCLUSIONS: Maturation of metabolizing capacities occurred postnatally, as described in man.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Microsomas Hepáticos/metabolismo , Factores de Edad , Animales , Animales Recién Nacidos , Biotransformación , Dextrometorfano/metabolismo , Femenino , Feto , Glucuronosiltransferasa/metabolismo , Humanos , Masculino , Fase I de la Desintoxicación Metabólica , Fase II de la Desintoxicación Metabólica , Midazolam/metabolismo , Fenacetina/metabolismo , Porcinos , Porcinos Enanos , Tolbutamida/metabolismo
11.
Int J Mol Sci ; 18(9)2017 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-28930153

RESUMEN

Epidemiological studies support an independent inverse association between high-density lipoprotein (HDL) cholesterol levels and heart failure incidence. The effect of selective HDL-raising adeno-associated viral serotype 8-human apolipoprotein (apo) A-I (AAV8-A-I) gene transfer on cardiac remodeling induced by transverse aortic constriction (TAC) was evaluated in C57BL/6 low-density lipoprotein receptor-deficient mice. Septal wall thickness and cardiomyocyte cross-sectional area were reduced by 16.5% (p < 0.001) and by 13.8% (p < 0.01), respectively, eight weeks after TAC in AAV8-A-I mice (n = 24) compared to control mice (n = 39). Myocardial capillary density was 1.11-fold (p < 0.05) higher and interstitial cardiac fibrosis was 45.3% (p < 0.001) lower in AAV8-A-I TAC mice than in control TAC mice. Lung weight and atrial weight were significantly increased in control TAC mice compared to control sham mice, but were not increased in AAV8-A-I TAC mice. The peak rate of isovolumetric contraction was 1.19-fold (p < 0.01) higher in AAV8-A-I TAC mice (n = 17) than in control TAC mice (n = 29). Diastolic function was also significantly enhanced in AAV8-A-I TAC mice compared to control TAC mice. Nitro-oxidative stress and apoptosis were significantly reduced in the myocardium of AAV8-A-I TAC mice compared to control TAC mice. In conclusion, selective HDL-raising human apo A-I gene transfer potently counteracts the development of pressure overload-induced cardiomyopathy.


Asunto(s)
Apolipoproteína A-I/metabolismo , Cardiomegalia/terapia , Cardiomiopatías/terapia , Terapia Genética/métodos , Lipoproteínas HDL/metabolismo , Animales , Apolipoproteína A-I/genética , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Fibrosis/genética , Fibrosis/terapia , Corazón/fisiopatología , Humanos , Estimación de Kaplan-Meier , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/metabolismo , Miocardio/patología
12.
Int J Mol Sci ; 18(8)2017 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-28783133

RESUMEN

The derivation of hepatocytes from human induced pluripotent stem cells (hiPSC) is of great interest for applications in pharmacological research. However, full maturation of hiPSC-derived hepatocytes has not yet been achieved in vitro. To improve hepatic differentiation, co-cultivation of hiPSC with human umbilical vein endothelial cells (HUVEC) during hepatic differentiation was investigated in this study. In the first step, different culture media variations based on hepatocyte culture medium (HCM) were tested in HUVEC mono-cultures to establish a suitable culture medium for co-culture experiments. Based on the results, two media variants were selected to differentiate hiPSC-derived definitive endodermal (DE) cells into mature hepatocytes with or without HUVEC addition. DE cells differentiated in mono-cultures in the presence of those media variants showed a significant increase (p < 0.05) in secretion of α-fetoprotein and in activities of cytochrome P450 (CYP) isoenzymes CYP2B6 and CYP3A4 as compared with cells differentiated in unmodified HCM used as control. Co-cultivation with HUVEC did not further improve the differentiation outcome. Thus, it can be concluded that the effect of the used medium outweighed the effect of HUVEC co-culture, emphasizing the importance of the culture medium composition for hiPSC differentiation.


Asunto(s)
Diferenciación Celular , Medios de Cultivo Condicionados/farmacología , Hepatocitos/citología , Células Madre Pluripotentes Inducidas/citología , Albúminas/metabolismo , Biomarcadores , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Técnicas de Cocultivo , Medios de Cultivo , Sistema Enzimático del Citocromo P-450 , Células Endoteliales/metabolismo , Expresión Génica , Perfilación de la Expresión Génica , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Inmunohistoquímica , Urea/metabolismo , alfa-Fetoproteínas/metabolismo
13.
Int J Mol Sci ; 18(7)2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28718833

RESUMEN

Studies evaluating the effects of high-saturated fat diets on cardiac function are most often confounded by diet-induced obesity and by systemic insulin resistance. We evaluated whether coconut oil, containing C12:0 and C14:0 as main fatty acids, aggravates pressure overload-induced cardiomyopathy induced by transverse aortic constriction (TAC) in C57BL/6 mice. Mortality rate after TAC was higher (p < 0.05) in 0.2% cholesterol 10% coconut oil diet-fed mice than in standard chow-fed mice (hazard ratio 2.32, 95% confidence interval 1.16 to 4.64) during eight weeks of follow-up. The effects of coconut oil on cardiac remodeling occurred in the absence of weight gain and of systemic insulin resistance. Wet lung weight was 1.76-fold (p < 0.01) higher in coconut oil mice than in standard chow mice. Myocardial capillary density (p < 0.001) was decreased, interstitial fibrosis was 1.88-fold (p < 0.001) higher, and systolic and diastolic function was worse in coconut oil mice than in standard chow mice. Myocardial glucose uptake was 1.86-fold (p < 0.001) higher in coconut oil mice and was accompanied by higher myocardial pyruvate dehydrogenase levels and higher acetyl-CoA carboxylase levels. The coconut oil diet increased oxidative stress. Myocardial triglycerides and free fatty acids were lower (p < 0.05) in coconut oil mice. In conclusion, coconut oil aggravates pressure overload-induced cardiomyopathy.


Asunto(s)
Cardiomiopatías/patología , Aceite de Coco/efectos adversos , Resistencia a la Insulina , Miocardio/patología , Obesidad/patología , Presión , Animales , Aorta/patología , Peso Corporal , Capilares/patología , Cardiomiopatías/sangre , Cardiomiopatías/complicaciones , Cardiomiopatías/fisiopatología , Colesterol , Constricción Patológica , Diástole , Dieta , Femenino , Fibrosis , Glucosa/metabolismo , Hemodinámica , Hipertrofia Ventricular Derecha/complicaciones , Hipertrofia Ventricular Derecha/patología , Hipertrofia Ventricular Derecha/fisiopatología , Estimación de Kaplan-Meier , Pulmón/patología , Ratones Endogámicos C57BL , Estrés Oxidativo , Transducción de Señal , Sístole , Factor de Crecimiento Transformador beta1/metabolismo
14.
Circ Res ; 115(6): 591-9, 2014 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-25023731

RESUMEN

RATIONALE: Familial hypercholesterolemia is a genetic disorder that arises because of loss-of-function mutations in the low-density lipoprotein receptor (LDLR) and homozygous familial hypercholesterolemia is a candidate for gene therapy using adeno-associated viral vectors. Proprotein convertase subtilisin/kexin type 9 (PCSK9) and inducible degrader of LDLR (IDOL) negatively regulate LDLR protein and could dampen adeno-associated viral vector encoded LDLR expression. OBJECTIVE: We sought to create vectors expressing gain-of-function human LDLR variants that are resistant to degradation by human PCSK9 (hPCSK9) and IDOL and thereby enhance hepatic LDLR protein abundance and plasma LDL cholesterol reduction. METHODS AND RESULTS: Amino acid substitutions were introduced into the coding sequence of human LDLR cDNA to reduce interaction with hPCSK9 and human IDOL. A panel of mutant human LDLRs was initially screened in vitro for escape from PCSK9. The variant human LDLR-L318D was further evaluated using a mouse model of homozygous familial hypercholesterolemia lacking endogenous LDLR and apolipoprotein B mRNA editing enzyme catalytic, APOBEC-1 (double knockout). Administration of wild-type human LDLR to double knockout mice, expressing hPCSK9, led to diminished LDLR activity. However, LDLR-L318D was resistant to hPCSK9-mediated degradation and effectively reduced cholesterol levels. Similarly, the LDLR-K809R\C818A construct avoided human IDOL regulation and achieved stable reductions in serum cholesterol. An adeno-associated viral vector serotype 8.LDLR-L318D\K809R\C818A vector that carried all 3 amino acid substitutions conferred partial resistance to both hPCSK9- and human IDOL-mediated degradation. CONCLUSIONS: Amino acid substitutions in the human LDLR confer partial resistance to PCSK9 and IDOL regulatory pathways with improved reduction in cholesterol levels and improve on a potential gene therapeutic approach to treat homozygous familial hypercholesterolemia subjects.


Asunto(s)
Dependovirus/genética , Variación Genética/genética , Vectores Genéticos/genética , Hiperlipoproteinemia Tipo II/genética , Receptores de LDL/genética , Desaminasas APOBEC-1 , Animales , Colesterol/metabolismo , Citidina Desaminasa/genética , Modelos Animales de Enfermedad , Terapia Genética , Células HEK293 , Humanos , Hiperlipoproteinemia Tipo II/metabolismo , Hiperlipoproteinemia Tipo II/terapia , Técnicas In Vitro , Masculino , Ratones , Ratones Noqueados , Proproteína Convertasa 9 , Proproteína Convertasas/genética , Serina Endopeptidasas/genética , Resultado del Tratamiento
15.
Int J Mol Sci ; 17(4): 584, 2016 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-27092500

RESUMEN

Accurate prediction of the potential hepatotoxic nature of new pharmaceuticals remains highly challenging. Therefore, novel in vitro models with improved external validity are needed to investigate hepatic metabolism and timely identify any toxicity of drugs in humans. In this study, we examined the effects of diclofenac, as a model substance with a known risk of hepatotoxicity in vivo, in a dynamic multi-compartment bioreactor using primary human liver cells. Biotransformation pathways of the drug and possible effects on metabolic activities, morphology and cell transcriptome were evaluated. Formation rates of diclofenac metabolites were relatively stable over the application period of seven days in bioreactors exposed to 300 µM diclofenac (300 µM bioreactors (300 µM BR)), while in bioreactors exposed to 1000 µM diclofenac (1000 µM BR) metabolite concentrations declined drastically. The biochemical data showed a significant decrease in lactate production and for the higher dose a significant increase in ammonia secretion, indicating a dose-dependent effect of diclofenac application. The microarray analyses performed revealed a stable hepatic phenotype of the cells over time and the observed transcriptional changes were in line with functional readouts of the system. In conclusion, the data highlight the suitability of the bioreactor technology for studying the hepatotoxicity of drugs in vitro.


Asunto(s)
Antiinflamatorios no Esteroideos/toxicidad , Reactores Biológicos , Técnicas de Cultivo de Célula/instrumentación , Diclofenaco/toxicidad , Hepatocitos/efectos de los fármacos , Pruebas de Toxicidad/instrumentación , Antiinflamatorios no Esteroideos/metabolismo , Células Cultivadas , Diclofenaco/metabolismo , Diseño de Equipo , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Transcriptoma
16.
Biochim Biophys Acta ; 1832(6): 718-28, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23429073

RESUMEN

Hyperhomocysteinemia, characterized by high plasma homocysteine levels, is recognized as an independent risk factor for cardiovascular diseases. The increased synthesis of homocysteine, a product of methionine metabolism involving B vitamins, and its slower intracellular utilization cause increased flux into the blood. Plasma homocysteine level is an important reflection of hepatic methionine metabolism and the rate of processes modified by B vitamins as well as different enzyme activity. Lowering homocysteine might offer therapeutic benefits. However, approximately 50% of hyperhomocysteinemic patients due to cystathionine-beta-synthase deficiency are biochemically responsive to pharmacological doses of B vitamins. Therefore, effective treatments to reduce homocysteine levels are needed, and gene therapy could provide a novel approach. We recently showed that hepatic expression of DYRK1A, a serine/threonine kinase, is negatively correlated with plasma homocysteine levels in cystathionine-beta-synthase deficient mice, a mouse model of hyperhomocysteinemia. Therefore, Dyrk1a is a good candidate for gene therapy to normalize homocysteine levels. We then used an adenoviral construct designed to restrict expression of DYRK1A to hepatocytes, and found decreased plasma homocysteine levels after hepatocyte-specific Dyrk1a gene transfer in hyperhomocysteinemic mice. The elevation of pyridoxal phosphate was consistent with the increase in cystathionine-beta-synthase activity. Commensurate with the decreased plasma homocysteine levels, targeted hepatic expression of DYRK1A resulted in elevated plasma paraoxonase-1 activity and apolipoprotein A-I levels, and rescued the Akt/GSK3 signaling pathways in aorta of mice, which can prevent homocysteine-induced endothelial dysfunction. These results demonstrate that hepatocyte-restricted Dyrk1a gene transfer can offer a useful therapeutic targets for the development of new selective homocysteine lowering therapy.


Asunto(s)
Aorta/metabolismo , Apolipoproteína A-I/sangre , Terapia Genética , Hepatocitos/metabolismo , Homocisteína , Proteínas Serina-Treonina Quinasas/biosíntesis , Proteínas Tirosina Quinasas/biosíntesis , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Aorta/patología , Cistationina betasintasa/genética , Cistationina betasintasa/metabolismo , Homocisteína/sangre , Hiperhomocisteinemia/sangre , Hiperhomocisteinemia/genética , Hiperhomocisteinemia/terapia , Ratones , Ratones Mutantes , Especificidad de Órganos/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Transducción Genética , Quinasas DyrK
17.
Development ; 138(23): 5213-22, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22069189

RESUMEN

Development of meso-diencephalic dopamine (mdDA) neurons requires the combined actions of the orphan nuclear receptor Nurr1 and the paired-like homeobox transcription factor Pitx3. Whereas all mdDA neurons require Nurr1 for expression of Th and survival, dependence on Pitx3 is displayed only by the mdDA subpopulation that will form the substantia nigra (SNc). Previously, we have demonstrated that Pitx3(-/-) embryos lack the expression of the retinoic acid (RA)-generating enzyme Ahd2, which is normally selectively expressed in the Pitx3-dependent DA neurons of the SNc. Restoring RA signaling in Pitx3(-/-) embryos revealed a selective dependence of SNc neurons on the presence of RA for differentiation into Th-positive neurons and maintenance throughout embryonic development. Whereas these data are suggestive of an important developmental role for RA in neurons of the SNc, it remained unclear whether other Nurr1 and Pitx3 target genes depend on RA signaling in a manner similar to Th. In the search for genes that were affected in Pitx3-deficient mdDA neurons and restored upon embryonic RA treatment, we provide evidence that Delta-like 1, D2R (Drd2) and Th are regulated by Pitx3 and RA signaling, which influences the mdDA terminal differentiated phenotype. Furthermore, we show that regulation of Ahd2-mediated RA signaling represents only one aspect of the Pitx3 downstream cascade, as Vmat2, Dat, Ahd2 (Aldh1a1), En1, En2 and Cck were unaffected by RA treatment and are (subset) specifically modulated by Pitx3. In conclusion, our data reveal several RA-dependent and -independent aspects of the Pitx3-regulated gene cascade, suggesting that Pitx3 acts on multiple levels in the molecular subset-specification of mdDA neurons.


Asunto(s)
Diencéfalo/citología , Diencéfalo/embriología , Redes Reguladoras de Genes/efectos de los fármacos , Proteínas de Homeodominio/metabolismo , Neuronas/metabolismo , Factores de Transcripción/metabolismo , Tretinoina/farmacología , Análisis de Varianza , Animales , Proteínas de Unión al Calcio , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Femenino , Técnica del Anticuerpo Fluorescente , Redes Reguladoras de Genes/fisiología , Genotipo , Hibridación in Situ , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones , Ratones Noqueados , Análisis por Micromatrices , Neuronas/fisiología , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Reacción en Cadena de la Polimerasa , Embarazo , Receptores de Dopamina D2/metabolismo , Factores de Transcripción/deficiencia
18.
J Comp Neurol ; 532(7): e25648, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38958676

RESUMEN

In this study, we investigated recurrent copy number variations (CNVs) in the 19p12 locus, which are associated with neurodevelopmental disorders. The two genes in this locus, ZNF675 and ZNF681, arose via gene duplication in primates, and their presence in several pathological CNVs in the human population suggests that either or both of these genes are required for normal human brain development. ZNF675 and ZNF681 are members of the Krüppel-associated box zinc finger (KZNF) protein family, a class of transcriptional repressors important for epigenetic silencing of specific genomic regions. About 170 primate-specific KZNFs are present in the human genome. Although KZNFs are primarily associated with repressing retrotransposon-derived DNA, evidence is emerging that they can be co-opted for other gene regulatory processes. We show that genetic deletion of ZNF675 causes developmental defects in cortical organoids, and our data suggest that part of the observed neurodevelopmental phenotype is mediated by a gene regulatory role of ZNF675 on the promoter of the neurodevelopmental gene Hes family BHLH transcription factor 1 (HES1). We also find evidence for the recently evolved regulation of genes involved in neurological disorders, microcephalin 1 and sestrin 3. We show that ZNF675 interferes with HES1 auto-inhibition, a process essential for the maintenance of neural progenitors. As a striking example of how some KZNFs have integrated into preexisting gene expression networks, these findings suggest the emergence of ZNF675 has caused a change in the balance of HES1 autoregulation. The association of ZNF675 CNV with human developmental disorders and ZNF675-mediated regulation of neurodevelopmental genes suggests that it evolved into an important factor for human brain development.


Asunto(s)
Primates , Factor de Transcripción HES-1 , Humanos , Animales , Factor de Transcripción HES-1/genética , Factor de Transcripción HES-1/metabolismo , Primates/genética , Homeostasis/fisiología , Homeostasis/genética , Variaciones en el Número de Copia de ADN/genética , Ratones , Evolución Biológica , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo
19.
Nat Microbiol ; 9(5): 1189-1206, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38548923

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with short- and long-term neurological complications. The variety of symptoms makes it difficult to unravel molecular mechanisms underlying neurological sequalae after coronavirus disease 2019 (COVID-19). Here we show that SARS-CoV-2 triggers the up-regulation of synaptic components and perturbs local electrical field potential. Using cerebral organoids, organotypic culture of human brain explants from individuals without COVID-19 and post-mortem brain samples from individuals with COVID-19, we find that neural cells are permissive to SARS-CoV-2 to a low extent. SARS-CoV-2 induces aberrant presynaptic morphology and increases expression of the synaptic components Bassoon, latrophilin-3 (LPHN3) and fibronectin leucine-rich transmembrane protein-3 (FLRT3). Furthermore, we find that LPHN3-agonist treatment with Stachel partially restored organoid electrical activity and reverted SARS-CoV-2-induced aberrant presynaptic morphology. Finally, we observe accumulation of relatively static virions at LPHN3-FLRT3 synapses, suggesting that local hindrance can contribute to synaptic perturbations. Together, our study provides molecular insights into SARS-CoV-2-brain interactions, which may contribute to COVID-19-related neurological disorders.


Asunto(s)
Encéfalo , COVID-19 , Homeostasis , Organoides , SARS-CoV-2 , Sinapsis , Humanos , SARS-CoV-2/fisiología , COVID-19/virología , COVID-19/metabolismo , COVID-19/patología , Encéfalo/virología , Sinapsis/virología , Sinapsis/metabolismo , Organoides/virología , Virión/metabolismo , Neuronas/virología , Neuronas/metabolismo , Receptores de Péptidos/metabolismo , Receptores de Péptidos/genética
20.
Genome Biol Evol ; 15(11)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37847041

RESUMEN

Krüppel-associated box (KRAB) zinc finger proteins (KZNFs) recognize and repress transposable elements (TEs); TEs are DNA elements that are capable of replicating themselves throughout our genomes with potentially harmful consequences. However, genes from this family of transcription factors have a much wider potential for genomic regulation. KZNFs have become integrated into gene-regulatory networks through the control of TEs that function as enhancers and gene promoters; some KZNFs also bind directly to gene promoters, suggesting an additional, more direct layer of KZNF co-option into gene-regulatory networks. Binding site analysis of ZNF519, ZNF441, and ZNF468 suggests the structural evolution of KZNFs to recognize TEs can result in coincidental binding to gene promoters independent of TE sequences. We show a higher rate of sequence turnover in gene promoter KZNF binding sites than neighboring regions, implying a selective pressure is being applied by the binding of a KZNF. Through CRISPR/Cas9 mediated genetic deletion of ZNF519, ZNF441, and ZNF468, we provide further evidence for genome-wide co-option of the KZNF-mediated gene-regulatory functions; KZNF knockout leads to changes in expression of KZNF-bound genes in neuronal lineages. Finally, we show that the opposite can be established upon KZNF overexpression, further strengthening the support for the role of KZNFs as bona-fide gene regulators. With no eminent role for ZNF519 in controlling its TE target, our study may provide a snapshot into the early stages of the completed co-option of a KZNF, showing the lasting, multilayered impact that retrovirus invasions and host response mechanisms can have upon the evolution of our genomes.


Asunto(s)
Primates , Dedos de Zinc , Animales , Dedos de Zinc/genética , Primates/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Elementos Transponibles de ADN , Redes Reguladoras de Genes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA