Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Vet Res ; 53(1): 51, 2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35799278

RESUMEN

Bacterial biofilms are structured clusters of bacterial cells enclosed in a self-produced polymer matrix that are attached to a biotic or abiotic surface. This structure protects bacteria from hostile environmental conditions. There are also accumulating reports about bacterial aggregates associated but not directly adherent to surfaces. Interestingly, these bacterial aggregates exhibit many of the same phenotypes as surface-attached biofilms. Surface-attached biofilms as well as non-attached aggregates are ubiquitous and found in a wide variety of natural and clinical settings. This strongly suggests that biofilm/aggregate formation is important at some steps in the bacterial lifecycle. Biofilm/aggregate formation might therefore be important for some bacterial species for persistence within their host or their environment, while for other bacterial species it might be more important for persistence in the environment between infection of different individuals or even between infection of different hosts (humans or animals). This is strikingly similar to the One Health concept which recognizes that the health and well-being of humans, animals and the environment are intricately linked. We would like to propose that within this One Health concept, the One Biofilm concept also exists, where biofilm/aggregate formation in humans, animals and the environment are also intricately linked. Biofilm/aggregates could represent the unifying factor underneath the One Health concept. The One Biofilm concept would support that biofilm/aggregate formation might be important for persistence during infection but might as well be even more important for persistence in the environment and for transmission between different individuals/different hosts.


Asunto(s)
Biopelículas , Salud Única , Animales , Microbiología Ambiental , Humanos
2.
J Bacteriol ; 201(18)2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31262835

RESUMEN

In open environments such as water, enterohemorrhagic Escherichia coli O157:H7 responds to inorganic phosphate (Pi) starvation by inducing the Pho regulon controlled by PhoB. This activates the phosphate-specific transport (Pst) system that contains a high-affinity Pi transporter. In the Δpst mutant, PhoB is constitutively activated and regulates the expression of genes in the Pho regulon. Here, we show that Pi starvation and deletion of the pst system enhance E. coli O157:H7 biofilm formation. Among differentially expressed genes of EDL933 grown under Pi starvation conditions and in the Δpst mutant, we have found that a member of the PhoB regulon, waaH, predicted to encode a glycosyltransferase, was highly expressed. Interestingly, WaaH contributed to biofilm formation of E. coli O157:H7 during both Pi starvation and in the Δpst mutant. In the Δpst mutant, the presence of waaH was associated with lipopolysaccharide (LPS) R3 core type modifications, whereas in E. coli O157:H7, waaH overexpression had no effect on LPS structure during Pi starvation. Therefore, waaH participates in E. coli O157:H7 biofilm formation during Pi starvation, but its biochemical role remains to be clarified. This study highlights the importance of the Pi starvation stress response to biofilm formation, which may contribute to the persistence of E. coli O157:H7 in the environment.IMPORTANCE Enterohemorrhagic Escherichia coli O157:H7 is a human pathogen that causes bloody diarrhea that can result in renal failure. Outside of mammalian hosts, E. coli O157:H7 survives for extended periods of time in nutrient-poor environments, likely as part of biofilms. In E. coli K-12, the levels of free extracellular Pi affect biofilm formation; however, it was unknown whether Pi influences biofilm formation by E. coli O157:H7. Our results show that upon Pi starvation, PhoB activates waaH expression, which favors biofilm formation by E. coli O157:H7. These findings suggest that WaaH is a target for controlling biofilm formation. Altogether, our work demonstrates how adaptation to Pi starvation allows E. coli O157:H7 to occupy different ecological niches.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Proteínas de Escherichia coli/metabolismo , Hexosiltransferasas/metabolismo , Fosfatos/farmacología , Factores de Transcripción/metabolismo , Adhesión Bacteriana , Escherichia coli O157 , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/fisiología , Hexosiltransferasas/genética , Mutación , Factores de Transcripción/genética , Regulación hacia Arriba
3.
J Dairy Sci ; 101(6): 4729-4746, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29525302

RESUMEN

Clinical mastitis (CM) is one of the most frequent and costly diseases in dairy cows. A frustrating aspect of CM is its recurrent nature. This review was conducted to synthesize knowledge on risk of repeated cases of CM, effects of recurrent CM cases, and risk factors for CM recurrence. A systematic review methodology was used to identify articles for this narrative review. Searches were performed to identify relevant scientific literature published after 1989 in English or French from 2 databases (PubMed and CAB Abstracts) and 1 search platform (Web of Science). Fifty-seven manuscripts were selected for qualitative synthesis according to the inclusion criteria. Among the 57 manuscripts selected in this review, a description of CM recurrence, its risk factors, and effects were investigated and reported in 33, 37, and 19 selected manuscripts, respectively. Meta-analysis and meta-regression analyses were used to compute risk ratio comparing risk of CM in cows that already had 1 CM event in the current lactation with risk of CM in healthy cows. For these analyses, 9 manuscripts that reported the total number of lactations followed and the number of lactations with ≤1 and ≤2 CM cases were used. When summarizing results from studies requiring ≥5 d between CM events to consider a CM event as a new case, we observed no significant change in CM susceptibility following a first CM case (risk ratio: 0.99; 95% confidence interval: 0.86-1.14). However, for studies using a more liberal CM recurrence definition (i.e., only 24 h between CM events to consider new CM cases), we observed a 1.54 times greater CM risk (95% confidence interval: 1.20-1.97) for cows that already had 1 CM event in the current lactation compared with healthy cows. The most important risk factors for CM recurrence were parity (i.e., higher risk in older cows), a higher milk production, pathogen species involved in the preceding case, and whether a bacteriological cure was observed following the preceding case. The most important effects of recurrent CM were the milk yield reduction following a recurrent CM case, which was reported to be similar to that of the first CM case, and the increased risk of culling and mortality, which were reported to surpass those of first CM cases.


Asunto(s)
Mastitis Bovina/epidemiología , Animales , Bovinos , Femenino , Incidencia , Lactancia , Mastitis Bovina/metabolismo , Mastitis Bovina/fisiopatología , Leche/metabolismo , Paridad , Embarazo
4.
Food Microbiol ; 62: 32-38, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27889162

RESUMEN

Clostridium perfringens is an opportunistic pathogen that can cause food poisoning in humans and various enterotoxemia in animal species. Recently, it was shown to form mono-species biofilms, a structured community of bacterial cells enclosed in a self-produced extracellular matrix. Biofilms have been associated with tolerance to antibiotics, disinfectants, and physical and environmental stresses. Very little is known about the tolerance of C. perfringens biofilm toward disinfectants. In the present study, susceptibilities of C. perfringens biofilms to five types of commonly used disinfectants on farms and in food processing environments were analysed. In this paper, we show that C. perfringens mono-species biofilms can protect the bacterial cells from the action of potassium monopersulfate, quaternary ammonium chloride, hydrogen peroxide and glutaraldehyde solutions. However, sodium hypochlorite solution was shown to be effective on C. perfringens biofilms. Our investigation of dual-species biofilms of C. perfringens with the addition of Staphylococcus aureus or Escherichia coli demonstrated that overall, the mono-species biofilm of C. perfringens was more tolerant to all disinfectants than the dual-species biofilms. For the anaerobic grown biofilms, the mono-species biofilm of C. perfringens was more tolerant to sodium hypochlorite and quaternary ammonium chloride than the dual-species biofilms of C. perfringens with S. aureus or E. coli. This study demonstrates that C. perfringens biofilm is an effective protection mechanism to disinfectants commonly used on farms and in food processing environments.


Asunto(s)
Biopelículas/efectos de los fármacos , Clostridium perfringens/efectos de los fármacos , Clostridium perfringens/fisiología , Desinfectantes/farmacología , Anaerobiosis , Clostridium perfringens/crecimiento & desarrollo , Escherichia coli/efectos de los fármacos , Industria de Alimentos/normas , Microbiología de Alimentos , Industria de Procesamiento de Alimentos/métodos , Compuestos de Potasio/farmacología , Hipoclorito de Sodio/farmacología , Staphylococcus aureus/efectos de los fármacos , Sulfatos/farmacología
5.
J Dairy Sci ; 100(8): 6454-6464, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28624271

RESUMEN

Coagulase-negative staphylococci (CNS) are considered to be commensal bacteria in humans and animals, but are now also recognized as etiological agents in several infections, including bovine mastitis. Biofilm formation appears to be an important factor in CNS pathogenicity. Furthermore, some researchers have proposed that CNS colonization of the intramammary environment has a protective effect against other pathogens. The mechanisms behind the protective effect of CNS have yet to be characterized. The aim of this study was to evaluate the effect of CNS isolates with a weak-biofilm phenotype on the biofilm formation of other staphylococcal isolates. We selected 10 CNS with a weak-biofilm phenotype and 30 staphylococcal isolates with a strong-biofilm phenotype for this study. We measured biofilm production by individual isolates using a standard polystyrene microtiter plate assay and compared the findings with biofilm produced in mixed cultures. We confirmed the results using confocal microscopy and a microfluidic system with low shear force. Four of the CNS isolates with a weak-biofilm phenotype (Staphylococcus chromogenes C and E and Staphylococcus simulans F and H) significantly reduced biofilm formation in approximately 80% of the staphylococcal species tested, including coagulase-positive Staphylococcus aureus. The 4 Staph. chromogenes and Staph. simulans isolates were also able to disperse pre-established biofilms, but to a lesser extent. We also performed a deferred antagonism assay and recorded the number of colony-forming units in the mixed-biofilm assays on differential or selective agar plates. Overall, CNS with a weak-biofilm phenotype did not inhibit the growth of isolates with a strong-biofilm phenotype. These results suggest that some CNS isolates can negatively affect the ability of other staphylococcal isolates and species to form biofilms via a mechanism that does not involve growth inhibition.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Coagulasa/metabolismo , Mastitis Bovina/microbiología , Infecciones Estafilocócicas/veterinaria , Staphylococcus/enzimología , Animales , Bovinos , Femenino , Humanos , Infecciones Estafilocócicas/microbiología , Staphylococcus/fisiología , Staphylococcus aureus
6.
BMC Microbiol ; 16(1): 128, 2016 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-27349384

RESUMEN

BACKGROUND: Actinobacillus pleuropneumoniae is the etiologic agent of porcine contagious pleuropneumonia, which causes important worldwide economic losses in the swine industry. Several respiratory tract infections are associated with biofilm formation, and A. pleuropneumoniae has the ability to form biofilms in vitro. Biofilms are structured communities of bacterial cells enclosed in a self-produced polymer matrix that are attached to an abiotic or biotic surface. Virtually all bacteria can grow as a biofilm, and multi-species biofilms are the most common form of microbial growth in nature. The goal of this study was to determine the ability of A. pleuropneumoniae to form multi-species biofilms with other bacteria frequently founded in pig farms, in the absence of pyridine compounds (nicotinamide mononucleotide [NMN], nicotinamide riboside [NR] or nicotinamide adenine dinucleotide [NAD]) that are essential for the growth of A. pleuropneumoniae. RESULTS: For the biofilm assay, strain 719, a field isolate of A. pleuropneumoniae serovar 1, was mixed with swine isolates of Streptococcus suis, Bordetella bronchiseptica, Pasteurella multocida, Staphylococcus aureus or Escherichia coli, and deposited in 96-well microtiter plates. Based on the CFU results, A. pleuropneumoniae was able to grow with every species tested in the absence of pyridine compounds in the culture media. Interestingly, A. pleuropneumoniae was also able to form strong biofilms when mixed with S. suis, B. bronchiseptica or S. aureus. In the presence of E. coli, A. pleuropneumoniae only formed a weak biofilm. The live and dead populations, and the matrix composition of multi-species biofilms were also characterized using fluorescent markers and enzyme treatments. The results indicated that poly-N-acetyl-glucosamine remains the primary component responsible for the biofilm structure. CONCLUSIONS: In conclusion, A. pleuropneumoniae apparently is able to satisfy the requirement of pyridine compounds through of other swine pathogens by cross-feeding, which enables A. pleuropneumoniae to grow and form multi-species biofilms.


Asunto(s)
Infecciones por Actinobacillus/veterinaria , Actinobacillus pleuropneumoniae/crecimiento & desarrollo , Actinobacillus pleuropneumoniae/metabolismo , Biopelículas/crecimiento & desarrollo , NAD/deficiencia , Acetilglucosamina/metabolismo , Infecciones por Actinobacillus/microbiología , Actinobacillus pleuropneumoniae/aislamiento & purificación , Actinobacillus pleuropneumoniae/patogenicidad , Animales , Biopelículas/efectos de los fármacos , Bordetella bronchiseptica/crecimiento & desarrollo , Bordetella bronchiseptica/metabolismo , Medios de Cultivo , Desoxirribonucleasa I/farmacología , Endopeptidasa K/farmacología , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Hibridación Fluorescente in Situ , Microscopía Confocal , Niacinamida/análogos & derivados , Niacinamida/deficiencia , Mononucleótido de Nicotinamida/deficiencia , Pasteurella multocida/crecimiento & desarrollo , Pasteurella multocida/metabolismo , Piridinas/metabolismo , Compuestos de Piridinio , Especificidad de la Especie , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/metabolismo , Células Madre , Streptococcus suis/crecimiento & desarrollo , Streptococcus suis/metabolismo , Porcinos , Enfermedades de los Porcinos/microbiología
7.
Avian Pathol ; 45(5): 593-601, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27207477

RESUMEN

Clostridium perfringens is an opportunistic pathogen that can cause food poisoning in humans and various enterotoxaemias in animal species. Recently, C. perfringens was shown to form biofilms, a structured community of bacterial cells enclosed in a self-produced extracellular matrix. However, very little is known on the subject and no information is available on gene expression in C. perfringens biofilms. To gain insights into the differences between free-living C. perfringens cells and those in biofilms, we used RNA sequencing. In total, 25.7% of genes showed differential expression in the two growth modes; about 12.8% of genes were up-regulated and about 12.9% were down-regulated in biofilms. We show that 772 genes were significantly differentially expressed between biofilms and planktonic cells from the supernatant of biofilms. Genes that were down-regulated in biofilm cells, relative to planktonic cells, included those involved in virulence, energy production, amino acid, nucleotide and carbohydrate metabolism, and in translation and ribosomal structure. Genes up-regulated in biofilm cells were mainly involved in amino acid and carbohydrate metabolism, transcription, inorganic ion metabolism and in defence mechanisms. This study provides new insights into the transcriptomic response of C. perfringens during biofilm formation.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Infecciones por Clostridium/microbiología , Clostridium perfringens/genética , Regulación Bacteriana de la Expresión Génica , Transcriptoma , Animales , Proteínas Bacterianas/genética , Clostridium perfringens/crecimiento & desarrollo , Regulación hacia Abajo , Perfilación de la Expresión Génica , Humanos , Plancton/microbiología , Análisis de Secuencia de ARN , Regulación hacia Arriba , Virulencia
8.
Appl Environ Microbiol ; 81(8): 2827-40, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25681176

RESUMEN

Biofilm formation and host-pathogen interactions are frequently studied using multiwell plates; however, these closed systems lack shear force, which is present at several sites in the host, such as the intestinal and urinary tracts. Recently, microfluidic systems that incorporate shear force and very small volumes have been developed to provide cell biology models that resemble in vivo conditions. Therefore, the objective of this study was to determine if the BioFlux 200 microfluidic system could be used to study host-pathogen interactions and biofilm formation by pathogenic Escherichia coli. Strains of various pathotypes were selected to establish the growth conditions for the formation of biofilms in the BioFlux 200 system on abiotic (glass) or biotic (eukaryotic-cell) surfaces. Biofilm formation on glass was observed for the majority of strains when they were grown in M9 medium at 30 °C but not in RPMI medium at 37 °C. In contrast, HRT-18 cell monolayers enhanced binding and, in most cases, biofilm formation by pathogenic E. coli in RPMI medium at 37 °C. As a proof of principle, the biofilm-forming ability of a diffusely adherent E. coli mutant strain lacking AIDA-I, a known mediator of attachment, was assessed in our models. In contrast to the parental strain, which formed a strong biofilm, the mutant formed a thin biofilm on glass or isolated clusters on HRT-18 monolayers. In conclusion, we describe a microfluidic method for high-throughput screening that could be used to identify novel factors involved in E. coli biofilm formation and host-pathogen interactions under shear force.


Asunto(s)
Técnicas Bacteriológicas , Biopelículas/crecimiento & desarrollo , Escherichia coli/fisiología , Interacciones Huésped-Patógeno , Microfluídica , Adhesión Bacteriana , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/metabolismo
9.
Appl Environ Microbiol ; 82(5): 1448-1458, 2015 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-26712549

RESUMEN

Forming biofilms may be a survival strategy of Shiga toxin-producing Escherichia coli to enable it to persist in the environment and the food industry. Here, we evaluate and characterize the biofilm-forming ability of 39 isolates of Shiga toxin-producing Escherichia coli isolates recovered from human infection and belonging to seropathotypes A, B, or C. The presence and/or production of biofilm factors such as curli, cellulose, autotransporter, and fimbriae were investigated. The polymeric matrix of these biofilms was analyzed by confocal microscopy and by enzymatic digestion. Cell viability and matrix integrity were examined after sanitizer treatments. Isolates of the seropathotype A (O157:H7 and O157:NM), which have the highest relative incidence of human infection, had a greater ability to form biofilms than isolates of seropathotype B or C. Seropathotype A isolates were unique in their ability to produce cellulose and poly-N-acetylglucosamine. The integrity of the biofilms was dependent on proteins. Two autotransporter genes, ehaB and espP, and two fimbrial genes, z1538 and lpf2, were identified as potential genetic determinants for biofilm formation. Interestingly, the ability of several isolates from seropathotype A to form biofilms was associated with their ability to agglutinate yeast in a mannose-independent manner. We consider this an unidentified biofilm-associated factor produced by those isolates. Treatment with sanitizers reduced the viability of Shiga toxin-producing Escherichia coli but did not completely remove the biofilm matrix. Overall, our data indicate that biofilm formation could contribute to the persistence of Shiga toxin-producing Escherichia coli and specifically seropathotype A isolates in the environment.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Escherichia coli Shiga-Toxigénica/aislamiento & purificación , Escherichia coli Shiga-Toxigénica/fisiología , Aglutinación , Desinfectantes/farmacología , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Genes Bacterianos , Genotipo , Humanos , Viabilidad Microbiana/efectos de los fármacos , Microscopía Confocal , Serogrupo , Escherichia coli Shiga-Toxigénica/efectos de los fármacos , Escherichia coli Shiga-Toxigénica/genética
10.
Virol J ; 12: 188, 2015 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-26577697

RESUMEN

BACKGROUND: Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogens in the swine industry and causes important economic losses. No effective antiviral drugs against it are commercially available. We recently reported that the culture supernatant of Actinobacillus pleuropneumoniae, the porcine pleuropneumonia causative agent, has an antiviral activity in vitro against PRRSV in SJPL cells. Objectives of this study were (i) to identify the mechanism behind the antiviral activity displayed by A. pleuropneumoniae and (ii) to characterize the active molecules present in the bacterial culture supernatant. METHODS: Antibody microarray analysis was used in order to point out cellular pathways modulated by the A. pleuropneumoniae supernatant. Subsequent, flow cytometry analysis and cell cycle inhibitors were used to confirm antibody microarray data and to link them to the antiviral activity of the A. pleuropneumoniae supernatant. Finally, A. pleuropneumoniae supernatant characterization was partially achieved using mass spectrometry. RESULTS: Using antibody microarray, we observed modulations in G2/M-phase cell cycle regulation pathway when SJPL cells were treated with A. pleuropneumoniae culture supernatant. These modulations were confirmed by a cell cycle arrest at the G2/M-phase when cells were treated with the A. pleuropneumoniae culture supernatant. Furthermore, two G2/M-phase cell cycle inhibitors demonstrated the ability to inhibit PRRSV infection, indicating a potential key role for PRRSV infection. Finally, mass spectrometry lead to identify two molecules (m/z 515.2 and m/z 663.6) present only in the culture supernatant. CONCLUSIONS: We demonstrated for the first time that A. pleuropneumoniae is able to disrupt SJPL cell cycle resulting in inhibitory activity against PRRSV. Furthermore, two putative molecules were identified from the culture supernatant. This study highlighted the cell cycle importance for PRRSV and will allow the development of new prophylactic or therapeutic approaches against PRRSV.


Asunto(s)
Actinobacillus pleuropneumoniae/metabolismo , Antivirales/metabolismo , Puntos de Control del Ciclo Celular , Células Epiteliales/fisiología , Inhibidores de Crecimiento/metabolismo , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Replicación Viral/efectos de los fármacos , Animales , Antivirales/química , Antivirales/aislamiento & purificación , Línea Celular , Medios de Cultivo/química , Células Epiteliales/efectos de los fármacos , Células Epiteliales/virología , Inhibidores de Crecimiento/química , Inhibidores de Crecimiento/aislamiento & purificación , Espectrometría de Masas , Porcinos
11.
Vet Res ; 45: 104, 2014 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-25428823

RESUMEN

Haemophilus parasuis is a commensal bacterium of the upper respiratory tract of healthy pigs. It is also the etiological agent of Glässer's disease, a systemic disease characterized by polyarthritis, fibrinous polyserositis and meningitis, which causes high morbidity and mortality in piglets. The aim of this study was to evaluate biofilm formation by well-characterized virulent and non-virulent strains of H. parasuis. We observed that non-virulent strains isolated from the nasal cavities of healthy pigs formed significantly (p < 0.05) more biofilms than virulent strains isolated from lesions of pigs with Glässer's disease. These differences were observed when biofilms were formed in microtiter plates under static conditions or formed in the presence of shear force in a drip-flow apparatus or a microfluidic system. Confocal laser scanning microscopy using different fluorescent probes on a representative subset of strains indicated that the biofilm matrix contains poly-N-acetylglucosamine, proteins and eDNA. The biofilm matrix was highly sensitive to degradation by proteinase K. Comparison of transcriptional profiles of biofilm and planktonic cells of the non-virulent H. parasuis F9 strain revealed a significant number of up-regulated membrane-related genes in biofilms, and genes previously identified in Actinobacillus pleuropneumoniae biofilms. Our data indicate that non-virulent strains of H. parasuis have the ability to form robust biofilms in contrast to virulent, systemic strains. Biofilm formation might therefore allow the non-virulent strains to colonize and persist in the upper respiratory tract of pigs. Conversely, the planktonic state of the virulent strains might allow them to disseminate within the host.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Infecciones por Haemophilus/veterinaria , Haemophilus parasuis/fisiología , Haemophilus parasuis/patogenicidad , Enfermedades de los Porcinos/microbiología , Tráquea/microbiología , Animales , Infecciones por Haemophilus/microbiología , Haemophilus parasuis/genética , Haemophilus parasuis/crecimiento & desarrollo , Microscopía Confocal/veterinaria , Datos de Secuencia Molecular , Análisis de Secuencia de ADN/veterinaria , Porcinos , Virulencia
12.
BMC Genomics ; 14: 364, 2013 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-23725589

RESUMEN

BACKGROUND: Actinobacillus pleuropneumoniae is the Gram-negative bacterium responsible for porcine pleuropneumonia. This respiratory infection is highly contagious and characterized by high morbidity and mortality. The objectives of our study were to study the transcriptome of A. pleuropneumoniae biofilms at different stages and to develop a protocol to grow an A. pleuropneumoniae biofilm in a drip-flow apparatus. This biofilm reactor is a system with an air-liquid interface modeling lung-like environment. Bacteria attached to a surface (biofilm) and free floating bacteria (plankton) were harvested for RNA isolation. Labelled cDNA was hybridized to a microarray to compare the expression profiles of planktonic cells and biofilm cells. RESULTS: It was observed that 47 genes were differentially expressed (22 up, 25 down) in a 4 h-static growing/maturing biofilm and 117 genes were differentially expressed (49 up, 68 down) in a 6h-static dispersing biofilm. The transcriptomes of a 4 h biofilm and a 6 h biofilm were also compared and 456 genes (235 up, 221 down) were identified as differently expressed. Among the genes identified in the 4 h vs 6h biofilm experiment, several regulators of stress response were down-regulated and energy metabolism associated genes were up-regulated. Biofilm bacteria cultured using the drip-flow apparatus differentially expressed 161 genes (68 up, 93 down) compared to the effluent bacteria. Cross-referencing of differentially transcribed genes in the different assays revealed that drip-flow biofilms shared few differentially expressed genes with static biofilms (4 h or 6 h) but shared several differentially expressed genes with natural or experimental infections in pigs. CONCLUSION: The formation of a static biofilm by A. pleuropneumoniae strain S4074 is a rapid process and transcriptional analysis indicated that dispersal observed at 6 h is driven by nutritional stresses. Furthermore, A. pleuropneumoniae can form a biofilm under low-shear force in a drip-flow apparatus and analyses indicated that the formation of a biofilm under low-shear force requires a different sub-set of genes than a biofilm grown under static conditions. The drip-flow apparatus may represent the better in vitro model to investigate biofilm formation of A. pleuropneumoniae.


Asunto(s)
Actinobacillus pleuropneumoniae/genética , Actinobacillus pleuropneumoniae/fisiología , Biopelículas/crecimiento & desarrollo , Técnicas de Cultivo/métodos , Transcriptoma , Actinobacillus pleuropneumoniae/crecimiento & desarrollo , Técnicas de Cultivo/instrumentación , Regulación hacia Abajo , Ambiente , Genes Bacterianos/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Estrés Fisiológico/genética , Factores de Tiempo
13.
Microbiology (Reading) ; 159(Pt 3): 536-544, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23347956

RESUMEN

Actinobacillus pleuropneumoniae is the aetiological agent of porcine pleuropneumonia and is normally transmitted by aerosols and direct contact between animals. A. pleuropneumoniae has traditionally been considered an obligate pathogen of pigs and its presence in the environment has yet to be investigated. Here, the presence of A. pleuropneumoniae was detected in drinking water of pig farms in Mexico using a PCR specific for the RTX toxin gene, apxIV. The presence of A. pleuropneumoniae in farm drinking water was confirmed by indirect immunofluorescence using an A. pleuropneumoniae-specific polyclonal antibody and by fluorescent in situ hybridization. Viable bacteria from the farm drinking water were detected using the Live/Dead BacLight stain. Additionally, viable A. pleuropneumoniae was selected and isolated using the cAMP test and the identity of the isolated bacteria were confirmed by Gram staining, a specific polyclonal antibody and an A. pleuropneumoniae-specific PCR. Furthermore, biofilms were observed by scanning electron microscopy in A. pleuropneumoniae-positive samples. In conclusion, our data suggest that viable A. pleuropneumoniae is present in the drinking water of swine farms and may use biofilm as a strategy to survive in the environment.


Asunto(s)
Actinobacillus pleuropneumoniae/aislamiento & purificación , Crianza de Animales Domésticos , Agua Potable/microbiología , Actinobacillus pleuropneumoniae/genética , Actinobacillus pleuropneumoniae/fisiología , Animales , Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Hibridación Fluorescente in Situ , México , Viabilidad Microbiana , Microscopía Electrónica de Rastreo , Reacción en Cadena de la Polimerasa , Porcinos
14.
BMC Vet Res ; 9: 213, 2013 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-24139070

RESUMEN

BACKGROUND: Actinobacillus pleuropneumoniae is a Gram-negative bacterium and a member of the Pasteurellaceae family. This bacterium is the causative agent of porcine pleuropneumonia, which is a highly contagious respiratory disease causing important economical losses to the worldwide pig industry. It has been shown that A. pleuropneumoniae can form biofilms on abiotic surfaces (plastic and glass). Although in vitro models are extremely useful to gain information on biofilm formation, these models may not be representative of the conditions found at the mucosal surface of the host, which is the natural niche of A. pleuropneumoniae. RESULTS: In this paper, we describe a method to grow A. pleuropneumoniae biofilms on the SJPL cell line, which represents a biotic surface. A non-hemolytic, non-cytotoxic mutant of A. pleuropneumoniae was used in our assays and this allowed the SJPL cell monolayers to be exposed to A. pleuropneumoniae for longer periods. This resulted in the formation of biofilms on the cell monolayer after incubations of 24 and 48 h. The biofilms can be stained with fluorescent probes, such as a lectin against the polymer of N-acetyl-D-glucosamine present in the biofilm matrix, and easily observed by confocal laser scanning microscopy. CONCLUSIONS: This is the first protocol that describes the formation of an A. pleuropneumoniae biofilm on a biotic surface. The advantage of this protocol is that it can be used to study biofilm formation in a context of host-pathogen interactions. The protocol could also be adapted to evaluate biofilm inhibitors or the efficacy of antibiotics in the presence of biofilms.


Asunto(s)
Actinobacillus pleuropneumoniae/crecimiento & desarrollo , Biopelículas/crecimiento & desarrollo , Infecciones por Actinobacillus/microbiología , Infecciones por Actinobacillus/veterinaria , Actinobacillus pleuropneumoniae/ultraestructura , Animales , Línea Celular/microbiología , Colorantes , L-Lactato Deshidrogenasa/metabolismo , Microscopía Confocal/veterinaria , Neumonía Bacteriana/microbiología , Neumonía Bacteriana/veterinaria , Porcinos , Enfermedades de los Porcinos/microbiología
15.
J Dairy Sci ; 96(1): 234-46, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23141829

RESUMEN

Mastitis is the most common and detrimental infection of the mammary gland in dairy cows and has a major economic impact on the production of milk and dairy products. Bacterial mastitis is caused by several pathogens, and the most frequently isolated bacterial species are coagulase-negative staphylocci (CNS). Although CNS are considered minor mastitis pathogens, the importance of CNS has increased over the years. However, the mechanism and factors involved in CNS intramammary infection are poorly studied and defined. Biofilms have been proposed as an important component in the persistence of CNS intramammary infection. Biofilms are defined as a cluster of bacteria enclosed in a self-produced matrix. The objectives of this study were to investigate the ability of CNS to form biofilms. A total of 255 mastitis-associated CNS isolates were investigated using a standard microtiter plate biofilm assay. The biofilms of some isolates were also observed by using confocal microscopy. The presence of biofilm-associated genes icaA, bap, aap, embP, fbe, and atlE was determined by PCR in the 255 isolates. The 5 dominant species assayed were Staphylococcus chromogenes (n=111), Staphylococcus simulans (n=53), Staphylococcus xylosus (n=25), Staphylococcus haemolyticus (n=15), and Staphylococcus epidermidis (n=13), and these represented 85% of the isolates. The data gathered were analyzed to identify significant links with the data deposited in the Canadian Bovine Mastitis Research Network database. Overall, Staph. xylosus is the species with the strongest ability to form biofilm, and Staph. epidermidis is the species with the lowest ability to form biofilm. Regardless of the species, the presence of icaA, bap, or the combination of multiple genes was associated with a greater ability to form biofilm. A strong relationship between the strength of a biofilm and days in milk was also noted, and CNS isolated later in the lactation cycle appeared to have a greater ability to form biofilm than those isolated earlier in the lactation cycle. In conclusion, Staph. xylosus is the species with the strongest biofilm formation ability. Furthermore, days in milk and gene combinations are predicted to be the variables with the strongest effect on biofilm formation by CNS.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Leche/microbiología , Staphylococcus/crecimiento & desarrollo , Animales , Canadá , Bovinos , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Femenino , Mastitis Bovina/microbiología , Microscopía Confocal/veterinaria , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/veterinaria , Staphylococcus/genética , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/crecimiento & desarrollo
16.
Virol J ; 9: 267, 2012 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-23148668

RESUMEN

BACKGROUND: Airborne transmitted pathogens, such as porcine reproductive and respiratory syndrome virus (PRRSV), need to interact with host cells of the respiratory tract in order to be able to enter and disseminate in the host organism. Pulmonary alveolar macrophages (PAM) and MA104 derived monkey kidney MARC-145 cells are known to be permissive to PRRSV infection and replication and are the most studied cells in the literature. More recently, new cell lines developed to study PRRSV have been genetically modified to make them permissive to the virus. The SJPL cell line origin was initially reported to be epithelial cells of the respiratory tract of swine. Thus, the goal of this study was to determine if SJPL cells could support PRRSV infection and replication in vitro. RESULTS: The SJPL cell growth was significantly slower than MARC-145 cell growth. The SJPL cells were found to express the CD151 protein but not the CD163 and neither the sialoadhesin PRRSV receptors. During the course of the present study, the SJPL cells have been reported to be of monkey origin. Nevertheless, SJPL cells were found to be permissive to PRRSV infection and replication even if the development of the cytopathic effect was delayed compared to PRRSV-infected MARC-145 cells. Following PRRSV replication, the amount of infectious viral particles produced in SJPL and MARC-145 infected cells was similar. The SJPL cells allowed the replication of several PRRSV North American strains and were almost efficient as MARC-145 cells for virus isolation. Interestingly, PRRSV is 8 to 16 times more sensitive to IFNα antiviral effect in SJPL cell in comparison to that in MARC-145 cells. PRRSV induced an increase in IFNß mRNA and no up regulation of IFNα mRNA in both infected cell types. In addition, PRRSV induced an up regulation of IFNγ and TNF-α mRNAs only in infected MARC-145 cells. CONCLUSIONS: In conclusion, the SJPL cells are permissive to PRRSV. In addition, they are phenotypically different from MARC-145 cells and are an additional tool that could be used to study PRRSV pathogenesis mechanisms in vitro.


Asunto(s)
Línea Celular , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Replicación Viral , Animales , Apoptosis , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Citocinas/genética , Citocinas/metabolismo , Expresión Génica , Interferón-alfa/farmacología , Virus del Síndrome Respiratorio y Reproductivo Porcino/efectos de los fármacos , Virus del Síndrome Respiratorio y Reproductivo Porcino/aislamiento & purificación , ARN Mensajero/genética , Receptores Virales/metabolismo , Porcinos , Proteínas Virales/metabolismo , Tropismo Viral , Liberación del Virus , Replicación Viral/efectos de los fármacos
17.
Microbes Infect ; 24(1): 104879, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34450272

RESUMEN

Non-aureus staphylococci (NAS) and Staphylococcus aureus are pathogens that cause bovine mastitis, a costly disease for dairy farmers, however; many NAS are considered part of the normal udder microbiota. It has been suggested that through a mechanism that remains to be elucidated, NAS intramammary colonization can prevent subsequent infection with other bacterial pathogens. This study shows that in a murine mastitis model, secondary Staph. aureus intramammary colonization is reduced by exoproducts from Staph. chromogenes and Staph. simulans, both NAS, while Streptococcus spp. exoproducts have much less ability to affect the course of the infection caused by S. aureus.


Asunto(s)
Mastitis Bovina , Infecciones Estafilocócicas , Animales , Bovinos , Femenino , Glándulas Mamarias Animales/microbiología , Mastitis Bovina/microbiología , Ratones , Leche/microbiología , Infecciones Estafilocócicas/microbiología , Staphylococcus , Staphylococcus aureus
18.
Talanta ; 242: 123315, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35189413

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most devastating viruses in the swine industry and causes major economic losses. To date, there has not been an effective antiviral treatment for the disease. We have shown in previous studies that culture supernatant of Actinobacillus pleuropneumoniae (App), the causative agent of porcine pleuropneumonia, possesses antiviral activity in vitro against PRRSV, and we have clearly established that the antiviral activity was mediated by small molecular weight (i.e., <1 kDa), heat resistant metabolites present in the App supernatant ultrafiltrates. However, the identity of those metabolites remains unknown. The objective of the current study was to identify the active metabolites using untargeted and targeted mass spectrometry-based metabolomics and test their respective antiviral activity against PRRSV in the Jude Porcine Lung Epithelial Cell Line (SJPL). The results presented reveal very significant antiviral activity of App supernatant ultrafiltrates against PRRSV in SJPL cells. Consequently, we identified and quantified several adenosine nucleotide metabolites present in App supernatant ultrafiltrates using mass spectrometry-based metabolomics, and the concentrations detected were very high. SJPL cells infected with PRRSV and treated with 2'-adenosine monophosphate (2-AMP), 3'-adenosine monophosphate (3-AMP) or 5'-adenosine monophosphate (5-AMP) significantly reduced PRRSV infection. Interestingly, many antiviral drugs or prodrugs are adenosine analogs, and the mechanism of action was previously elucidated. Currently marketed nucleoside analog drugs could potentially be used to treat PRRSV infection.


Asunto(s)
Actinobacillus pleuropneumoniae , Virus del Síndrome Respiratorio y Reproductivo Porcino , Actinobacillus pleuropneumoniae/metabolismo , Adenosina/farmacología , Animales , Antivirales/farmacología , Metabolómica , Nucleótidos , Virus del Síndrome Respiratorio y Reproductivo Porcino/metabolismo , Porcinos , Replicación Viral
19.
Front Microbiol ; 12: 673484, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34149663

RESUMEN

Listeria monocytogenes (L. monocytogenes) is often associated with processed food as it can form biofilms that represent a source of contamination at all stages of the manufacturing chain. The control and prevention of biofilms in food-processing plants are of utmost importance. This study explores the efficacy of prospect molecules for counteracting bacterial mechanisms leading to biofilm formation. The compounds included the phytomolecule tomatidine, zinc chloride (ZnCl2), ethylenediaminetetraacetic acid (EDTA), and a more complexed mixture of bacterial compounds from coagulase-negative staphylococci (CNS exoproducts). Significant inhibition of L. monocytogenes biofilm formation was evidenced using a microfluidic system and confocal microscopic analyses (p < 0.001). Active molecules were effective at an early stage of biofilm development (≥50% of inhibition) but failed to disperse mature biofilms of L. monocytogenes. According to our findings, prevention of surface attachment was associated with a disruption of bacterial motility. Indeed, agar cell motility assays demonstrated the effectiveness of these molecules. Overall, results highlighted the critical role of motility in biofilm formation and allow to consider flagellum-mediated motility as a promising molecular target in control strategies against L. monocytogenes in food processing environments.

20.
BMC Genomics ; 11: 98, 2010 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-20141640

RESUMEN

BACKGROUND: Actinobacillus pleuropneumoniae is the etiological agent of porcine pleuropneumonia, a respiratory disease which causes great economic losses worldwide. Many virulence factors are involved in the pathogenesis, namely capsular polysaccharides, RTX toxins, LPS and many iron acquisition systems. In order to identify genes that are expressed in vivo during a natural infection, we undertook transcript profiling experiments with an A. pleuropneumoniae DNA microarray, after recovery of bacterial mRNAs from serotype 5b-infected porcine lungs. AppChip2 contains 2033 PCR amplicons based on the genomic sequence of App serotype 5b strain L20, representing more than 95% of ORFs greater than 160 bp in length. RESULTS: Transcriptional profiling of A. pleuropneumoniae recovered from the lung of a pig suffering from a natural infection or following growth of the bacterial isolate in BHI medium was performed. An RNA extraction protocol combining beadbeating and hot-acid-phenol was developed in order to maximize bacterial mRNA yields and quality following total RNA extraction from lung lesions. Nearly all A. pleuropneumoniae transcripts could be detected on our microarrays, and 150 genes were deemed differentially expressed in vivo during the acute phase of the infection. Our results indicate that, for example, gene apxIVA from an operon coding for RTX toxin ApxIV is highly up-regulated in vivo, and that two genes from the operon coding for type IV fimbriae (APL_0878 and APL_0879) were also up-regulated. These transcriptional profiling data, combined with previous comparative genomic hybridizations performed by our group, revealed that 66 out of the 72 up-regulated genes are conserved amongst all serotypes and that 3 of them code for products that are predicted outer membrane proteins (genes irp and APL_0959, predicted to code for a TonB-dependent receptor and a filamentous hemagglutinin/adhesin respectively) or lipoproteins (gene APL_0920). Only 4 of 72 up-regulated genes had previously been identified in controled experimental infections. CONCLUSIONS: These genes that we have identified as up-regulated in vivo, conserved across serotypes and coding for potential outer membrane proteins represent potential candidates for the development of a cross-protective vaccine against porcine pleuropneumonia.


Asunto(s)
Infecciones por Actinobacillus/veterinaria , Actinobacillus pleuropneumoniae/genética , Perfilación de la Expresión Génica , Enfermedades de los Porcinos/microbiología , Infecciones por Actinobacillus/microbiología , Actinobacillus pleuropneumoniae/crecimiento & desarrollo , Actinobacillus pleuropneumoniae/patogenicidad , Animales , Proteínas de la Membrana Bacteriana Externa/genética , Hibridación Genómica Comparativa , Biología Computacional , ADN Bacteriano/genética , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Pulmón/microbiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Operón , ARN Bacteriano/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA