Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(29): e2200553119, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35858317

RESUMEN

Loss of activity of the lysosomal glycosidase ß-glucocerebrosidase (GCase) causes the lysosomal storage disease Gaucher disease (GD) and has emerged as the greatest genetic risk factor for the development of both Parkinson disease (PD) and dementia with Lewy bodies. There is significant interest into how GCase dysfunction contributes to these diseases, however, progress toward a full understanding is complicated by presence of endogenous cellular factors that influence lysosomal GCase activity. Indeed, such factors are thought to contribute to the high degree of variable penetrance of GBA mutations among patients. Robust methods to quantitatively measure GCase activity within lysosomes are therefore needed to advance research in this area, as well as to develop clinical assays to monitor disease progression and assess GCase-directed therapeutics. Here, we report a selective fluorescence-quenched substrate, LysoFQ-GBA, which enables measuring endogenous levels of lysosomal GCase activity within living cells. LysoFQ-GBA is a sensitive tool for studying chemical or genetic perturbations of GCase activity using either fluorescence microscopy or flow cytometry. We validate the quantitative nature of measurements made with LysoFQ-GBA using various cell types and demonstrate that it accurately reports on both target engagement by GCase inhibitors and the GBA allele status of cells. Furthermore, through comparisons of GD, PD, and control patient-derived tissues, we show there is a close correlation in the lysosomal GCase activity within monocytes, neuronal progenitor cells, and neurons. Accordingly, analysis of clinical blood samples using LysoFQ-GBA may provide a surrogate marker of lysosomal GCase activity in neuronal tissue.


Asunto(s)
Enfermedad de Gaucher , Glucosilceramidasa , Enfermedad de Parkinson , Enfermedad de Gaucher/enzimología , Enfermedad de Gaucher/genética , Glucosilceramidasa/análisis , Glucosilceramidasa/genética , Humanos , Cuerpos de Lewy/enzimología , Enfermedad por Cuerpos de Lewy/enzimología , Lisosomas/enzimología , Mutación , Enfermedad de Parkinson/enzimología , Enfermedad de Parkinson/genética , Especificidad por Sustrato , alfa-Sinucleína/metabolismo
2.
Acta Neuropathol ; 147(1): 67, 2024 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-38581586

RESUMEN

Transcription factor EB (TFEB) is a master regulator of genes involved in the maintenance of autophagic and lysosomal homeostasis, processes which have been implicated in the pathogenesis of GBA-related and sporadic Parkinson's disease (PD), and dementia with Lewy bodies (DLB). TFEB activation results in its translocation from the cytosol to the nucleus. Here, we investigated TFEB subcellular localization and its relation to intracellular alpha-synuclein (aSyn) accumulation in post-mortem human brain of individuals with either incidental Lewy body disease (iLBD), GBA-related PD/DLB (GBA-PD/DLB) or sporadic PD/DLB (sPD/DLB), compared to control subjects. We analyzed nigral dopaminergic neurons using high-resolution confocal and stimulated emission depletion (STED) microscopy and semi-quantitatively scored the TFEB subcellular localization patterns. We observed reduced nuclear TFEB immunoreactivity in PD/DLB patients compared to controls, both in sporadic and GBA-related cases, as well as in iLBD cases. Nuclear depletion of TFEB was more pronounced in neurons with Ser129-phosphorylated (pSer129) aSyn accumulation in all groups. Importantly, we observed previously-unidentified TFEB-immunopositive perinuclear clusters in human dopaminergic neurons, which localized at the Golgi apparatus. These TFEB clusters were more frequently observed and more severe in iLBD, sPD/DLB and GBA-PD/DLB compared to controls, particularly in pSer129 aSyn-positive neurons, but also in neurons lacking detectable aSyn accumulation. In aSyn-negative cells, cytoplasmic TFEB clusters were more frequently observed in GBA-PD/DLB and iLBD patients, and correlated with reduced GBA enzymatic activity as well as increased Braak LB stage. Altered TFEB distribution was accompanied by a reduction in overall mRNA expression levels of selected TFEB-regulated genes, indicating a possible early dysfunction of lysosomal regulation. Overall, we observed cytoplasmic TFEB retention and accumulation at the Golgi in cells without apparent pSer129 aSyn accumulation in iLBD and PD/DLB patients. This suggests potential TFEB impairment at the early stages of cellular disease and underscores TFEB as a promising therapeutic target for synucleinopathies.


Asunto(s)
Enfermedad por Cuerpos de Lewy , Humanos , alfa-Sinucleína/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Encéfalo/patología , Neuronas Dopaminérgicas/metabolismo , Cuerpos de Lewy/patología , Enfermedad por Cuerpos de Lewy/patología
3.
Mol Psychiatry ; 27(5): 2590-2601, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35264729

RESUMEN

Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by the loss of neuronal E3 ligase UBE3A. Restoring UBE3A levels is a potential disease-modifying therapy for AS and has recently entered clinical trials. There is paucity of data regarding the molecular changes downstream of UBE3A hampering elucidation of disease therapeutics and biomarkers. Notably, UBE3A plays an important role in the nucleus but its targets have yet to be elucidated. Using proteomics, we assessed changes during postnatal cortical development in an AS mouse model. Pathway analysis revealed dysregulation of proteasomal and tRNA synthetase pathways at all postnatal brain developmental stages, while synaptic proteins were altered in adults. We confirmed pathway alterations in an adult AS rat model across multiple brain regions and highlighted region-specific differences. UBE3A reinstatement in AS model mice resulted in near complete and partial rescue of the proteome alterations in adolescence and adults, respectively, supporting the notion that restoration of UBE3A expression provides a promising therapeutic option. We show that the nuclear enriched transketolase (TKT), one of the most abundantly altered proteins, is a novel direct UBE3A substrate and is elevated in the neuronal nucleus of rat brains and human iPSC-derived neurons. Taken together, our study provides a comprehensive map of UBE3A-driven proteome remodeling in AS across development and species, and corroborates an early UBE3A reinstatement as a viable therapeutic option. To support future disease and biomarker research, we present an accessible large-scale multi-species proteomic resource for the AS community ( https://www.angelman-proteome-project.org/ ).


Asunto(s)
Síndrome de Angelman , Proteómica , Síndrome de Angelman/tratamiento farmacológico , Síndrome de Angelman/genética , Síndrome de Angelman/metabolismo , Animales , Modelos Animales de Enfermedad , Ratones , Proteoma , Ratas , Transducción de Señal , Ubiquitina-Proteína Ligasas/genética
4.
MRS Bull ; 47(6): 530-544, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36120104

RESUMEN

Abstract: Studies have provided evidence that human cerebral organoids (hCOs) recapitulate fundamental milestones of early brain development, but many important questions regarding their functionality and electrophysiological properties persist. High-density microelectrode arrays (HD-MEAs) represent an attractive analysis platform to perform functional studies of neuronal networks at the cellular and network scale. Here, we use HD-MEAs to derive large-scale electrophysiological recordings from sliced hCOs. We record the activity of hCO slices over several weeks and probe observed neuronal dynamics pharmacologically. Moreover, we present results on how the obtained recordings can be spike-sorted and subsequently studied across scales. For example, we show how to track single neurons across several days on the HD-MEA and how to infer axonal action potential velocities. We also infer putative functional connectivity from hCO recordings. The introduced methodology will contribute to a better understanding of developing neuronal networks in brain organoids and provide new means for their functional characterization. Impact statement: Human cerebral organoids (hCOs) represent an attractive in vitro model system to study key physiological mechanisms underlying early neuronal network formation in tissue with healthy or disease-related genetic backgrounds. Despite remarkable advances in the generation of brain organoids, knowledge on the functionality of their neuronal circuits is still scarce. Here, we used complementary metal-oxide-semiconductor (CMOS)-based high-density microelectrode arrays (HD-MEAs) to perform large-scale recordings from sliced hCOs over several weeks and quantified their activity across scales. Using single-cell and network metrics, we were able to probe aspects of hCO neurophysiology that are more difficult to obtain with other techniques, such as patch clamping (lower yield) and calcium imaging (lower temporal resolution). These metrics included, for example, extracellular action potential (AP) waveform features and axonal AP velocity at the cellular level, as well as functional connectivity at the network level. Analysis was enabled by the large sensing area and the high spatiotemporal resolution provided by HD-MEAs, which allowed recordings from hundreds of neurons and spike sorting of their activity. Our results demonstrate that HD-MEAs provide a multi-purpose platform for the functional characterization of hCOs, which will be key in improving our understanding of this model system and assessing its relevance for translational research. Supplementary Information: The online version contains supplementary material available at 10.1557/s43577-022-00282-w.

5.
Angew Chem Int Ed Engl ; 60(10): 5436-5442, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33238058

RESUMEN

Genetic, preclinical and clinical data link Parkinson's disease and Gaucher's disease and provide a rational entry point to disease modification therapy via enhancement of ß-Glucocerebrosidase (GCase) activity. We discovered a new class of pyrrolo[2,3-b]pyrazine activators effecting both Vmax and Km. They bind to human GCase and increase substrate metabolism in the lysosome in a cellular assay. We obtained the first crystal structure for an activator and identified a novel non-inhibitory binding mode at the interface of a dimer, rationalizing the observed structure-activity relationship (SAR). The compound binds GCase inducing formation of a dimeric state at both endoplasmic reticulum (ER) and lysosomal pHs, as confirmed by analytical ultracentrifugation. Importantly, the pyrrolo[2,3-b]pyrazines have central nervous system (CNS) drug-like properties. Our findings are important for future drug discovery efforts in the field of GCase activation and provide a deeper mechanistic understanding of the requirements for enzymatic activation, pointing to the relevance of dimerization.


Asunto(s)
Activadores de Enzimas/metabolismo , Glucosilceramidasa/metabolismo , Multimerización de Proteína/efectos de los fármacos , Pirazinas/metabolismo , Pirroles/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Activadores de Enzimas/química , Glucosilceramidasa/química , Humanos , Cinética , Estructura Molecular , Unión Proteica , Pirazinas/química , Pirroles/química , Relación Estructura-Actividad
6.
Neurobiol Dis ; 121: 205-213, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30236861

RESUMEN

Synucleinopathies including Parkinson's disease (PD) and Dementia with Lewy bodies (DLB) are characterized by the accumulation of abnormal α-synuclein in intraneuronal inclusions, named Lewy bodies. Mutations in GBA1, the gene encoding the lysosomal hydrolase glucocerebrosidase, have been identified as the most common genetic risk factor for PD and DLB. However, despite extensive research, the mechanism by which glucocerebrosidase dysfunction increases the risk for PD or DLB still remains elusive. In our study we expand the toolbox for PD-DLB post-mortem studies by introducing new quantitative biochemical assays for glucocerebrosidase and α-synuclein. Applying causal modelling, we determine how these parameters are interrelated and ultimately impact disease manifestation. We developed quantitative immuno-based assays for glucocerebrosidase and α-synuclein (total and phosphorylated at Serine 129) protein levels, as well as a liquid chromatography-mass spectrometry method for the detection of the glucocerebrosidase lipid substrate glucosylsphingosine. These assays were applied on tissue samples from frontal cortex, putamen and substantia nigra of PD (n = 15) and DLB (n = 15) patients and age-matched non-demented controls (n = 15). Our results confirm elevated p-129 over total α-synuclein levels in the insoluble fraction of PD and DLB post-mortem brain tissue and we found significantly increased α-synuclein levels in the soluble fractions in PD and DLB. Furthermore, we identified an inverse correlation between reduced glucocerebrosidase enzyme activity and protein levels with increased glucosylsphingosine levels. In the substantia nigra, a brain region particularly vulnerable in Parkinson's disease, we found a significant correlation between glucocerebrosidase protein reduction and increased p129/total α-synuclein ratios. We assessed the direction and strength of the interrelation between all measured parameters by confirmatory path analysis. Interestingly, we found that glucocerebrosidase dysfunction impacts the PD-DLB status by increasing α-synuclein ratios in the substantia nigra, which was partly mediated by increasing glucosylsphingosine levels. In conclusion, we show that the introduced immuno-based assays enable the quantitative assessment of glucocerebrosidase and α-synuclein parameters in post-mortem brain. In the substantia nigra, reduced glucocerebrosidase levels contribute to the increase in α-synuclein levels and to PD-DLB disease manifestation partly by increasing its glycolipid substrate glucosylsphingosine. This interrelation between glucocerebrosidase, glucosylsphingosine and α-synuclein parameters supports the hypothesis that glucocerebrosidase acts as a modulator of PD-DLB.


Asunto(s)
Encéfalo/metabolismo , Glucosilceramidasa/metabolismo , Enfermedad por Cuerpos de Lewy/metabolismo , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Anciano , Anciano de 80 o más Años , Cromatografía Liquida/métodos , Interpretación Estadística de Datos , Femenino , Glucosilceramidasa/análisis , Humanos , Inmunoensayo/métodos , Masculino , Espectrometría de Masas/métodos , alfa-Sinucleína/análisis
7.
J Neurosci ; 34(19): 6624-33, 2014 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-24806687

RESUMEN

Neural stem cells in the adult mammalian hippocampus continuously generate new functional neurons, which modify the hippocampal network and significantly contribute to cognitive processes and mood regulation. Here, we show that the development of new neurons from stem cells in adult mice is paralleled by extensive changes to mitochondrial mass, distribution, and shape. Moreover, exercise-a strong modifier of adult hippocampal neurogenesis-accelerates neuronal maturation and induces a profound increase in mitochondrial content and the presence of mitochondria in dendritic segments. Genetic inhibition of the activity of the mitochondrial fission factor dynamin-related protein 1 (Drp1) inhibits neurogenesis under basal and exercise conditions. Conversely, enhanced Drp1 activity furthers exercise-induced acceleration of neuronal maturation. Collectively, these results indicate that adult hippocampal neurogenesis requires adaptation of the mitochondrial compartment and suggest that mitochondria are targets for enhancing neurogenesis-dependent hippocampal plasticity.


Asunto(s)
Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Mitocondrias/fisiología , Células-Madre Neurales/fisiología , Condicionamiento Físico Animal/fisiología , Animales , Recuento de Células , Diferenciación Celular/fisiología , Dendritas/fisiología , Dendritas/ultraestructura , Espinas Dendríticas/fisiología , Espinas Dendríticas/ultraestructura , Dinaminas/biosíntesis , Dinaminas/genética , Femenino , Hipocampo/citología , Hipocampo/crecimiento & desarrollo , Hipocampo/fisiología , Ratones , Ratones Endogámicos C57BL , Neurogénesis/genética , Neurogénesis/fisiología , Técnicas Estereotáxicas
8.
Handb Exp Pharmacol ; 228: 99-155, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25977081

RESUMEN

Adult hippocampal neurogenesis is a remarkable form of brain structural plasticity by which new functional neurons are generated from adult neural stem cells/precursors. Although the precise role of this process remains elusive, adult hippocampal neurogenesis is important for learning and memory and it is affected in disease conditions associated with cognitive impairment, depression, and anxiety. Immature neurons in the adult brain exhibit an enhanced structural and synaptic plasticity during their maturation representing a unique population of neurons to mediate specific hippocampal function. Compelling preclinical evidence suggests that hippocampal neurogenesis is modulated by a broad range of physiological stimuli which are relevant in cognitive and emotional states. Moreover, multiple pharmacological interventions targeting cognition modulate adult hippocampal neurogenesis. In addition, recent genetic approaches have shown that promoting neurogenesis can positively modulate cognition associated with both physiology and disease. Thus the discovery of signaling pathways that enhance adult neurogenesis may lead to therapeutic strategies for improving memory loss due to aging or disease. This chapter endeavors to review the literature in the field, with particular focus on (1) the role of hippocampal neurogenesis in cognition in physiology and disease; (2) extrinsic and intrinsic signals that modulate hippocampal neurogenesis with a focus on pharmacological targets; and (3) efforts toward novel strategies pharmacologically targeting neurogenesis and identification of biomarkers of human neurogenesis.


Asunto(s)
Biomarcadores/metabolismo , Cognición/efectos de los fármacos , Hipocampo/efectos de los fármacos , Trastornos Mentales/tratamiento farmacológico , Neurogénesis/efectos de los fármacos , Nootrópicos/uso terapéutico , Animales , Trastornos del Conocimiento/tratamiento farmacológico , Trastornos del Conocimiento/fisiopatología , Trastornos del Conocimiento/psicología , Diseño de Fármacos , Regulación de la Expresión Génica , Hipocampo/fisiopatología , Humanos , Trastornos Mentales/genética , Trastornos Mentales/metabolismo , Trastornos Mentales/fisiopatología , Trastornos Mentales/psicología , Terapia Molecular Dirigida , Transducción de Señal/efectos de los fármacos
9.
Development ; 138(8): 1459-69, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21367818

RESUMEN

Neurogenesis is widespread in the zebrafish adult brain through the maintenance of active germinal niches. To characterize which progenitor properties correlate with this extensive neurogenic potential, we set up a method that allows progenitor cell transduction and tracing in the adult zebrafish brain using GFP-encoding retro- and lentiviruses. The telencephalic germinal zone of the zebrafish comprises quiescent radial glial progenitors and actively dividing neuroblasts. Making use of the power of clonal viral vector-based analysis, we demonstrate that these progenitors follow different division modes and fates: neuroblasts primarily undergo a limited amplification phase followed by symmetric neurogenic divisions; by contrast, radial glia are capable at the single cell level of both self-renewing and generating different cell types, and hence exhibit bona fide neural stem cell (NSC) properties in vivo. We also show that radial glial cells predominantly undergo symmetric gliogenic divisions, which amplify this NSC pool and may account for its long-lasting maintenance. We further demonstrate that blocking Notch signaling results in a significant increase in proliferating cells and in the numbers of clones, but does not affect clone composition, demonstrating that Notch primarily controls proliferation rather than cell fate. Finally, through long-term tracing, we illustrate the functional integration of newborn neurons in forebrain adult circuitries. These results characterize fundamental aspects of adult progenitor cells and neurogenesis, and open the way to using virus-based technologies for stable genetic manipulations and clonal analyses in the zebrafish adult brain.


Asunto(s)
División Celular/fisiología , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Telencéfalo/citología , Animales , Encéfalo/citología , Encéfalo/metabolismo , División Celular/genética , Línea Celular , Electrofisiología , Citometría de Flujo , Vectores Genéticos/genética , Humanos , Inmunohistoquímica , Lentivirus/genética , Retroviridae/genética , Células Madre/citología , Telencéfalo/metabolismo , Transducción Genética , Pez Cebra
10.
Proc Natl Acad Sci U S A ; 108(14): 5807-12, 2011 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-21436036

RESUMEN

Neural stem cells (NSCs) generate new granule cells throughout life in the mammalian hippocampus. Canonical Wnt signaling regulates the differentiation of NSCs towards the neuronal lineage. Here we identified the prospero-related homeodomain transcription factor Prox1 as a target of ß-catenin-TCF/LEF signaling in vitro and in vivo. Prox1 overexpression enhanced neuronal differentiation whereas shRNA-mediated knockdown of Prox1 impaired the generation of neurons in vitro and within the hippocampal niche. In contrast, Prox1 was not required for survival of adult-generated granule cells after they had matured, suggesting a role for Prox1 in initial granule cell differentiation but not in the maintenance of mature granule cells. The data presented here characterize a molecular pathway from Wnt signaling to a transcriptional target leading to granule cell differentiation within the adult brain and identify a stage-specific function for Prox1 in the process of adult neurogenesis.


Asunto(s)
Diferenciación Celular/fisiología , Hipocampo/crecimiento & desarrollo , Proteínas de Homeodominio/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Transducción de Señal/fisiología , Proteínas Supresoras de Tumor/metabolismo , Proteínas Wnt/metabolismo , Animales , Secuencia de Bases , Western Blotting , Células Cultivadas , Inmunoprecipitación de Cromatina , Cartilla de ADN/genética , Hipocampo/citología , Proteínas de Homeodominio/genética , Inmunohistoquímica , Hibridación in Situ , Luciferasas , Ratones , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Supresoras de Tumor/genética
11.
J Parkinsons Dis ; 14(1): 65-78, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38251062

RESUMEN

BACKGROUND: Mutations in GBA1, which encodes the lysosome enzyme ß-glucocerebrosidase (also referred to as acid ß-glucosidase or GCase), are the most common genetic risk factor for Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Evidence also suggests that loss of GCase activity is implicated in PD without GBA1 mutations. Consequently, therapies targeting GCase are actively being pursued as potential strategies to modify the progression of PD and related synucleinopathies. Despite this significant interest in GCase as a therapeutic target, the lack of well-characterized GCase antibodies continues to impede progress in the development of GCase-targeted therapies. OBJECTIVE: This study aims to independently evaluate human GCase (hGCase) antibodies to provide recommendations for western blot, immunofluorescence, immunoprecipitation, and AlphaLISA (Amplified Luminescent Proximity Homogeneous Assay) assays. METHODS: Two mouse monoclonal antibodies, hGCase-1/17 and hGCase-1/23, were raised against hGCase using imiglucerase, the recombinant enzyme developed to treat patients, as the antigen. These novel antibodies, alongside commonly used antibodies in the field, underwent evaluation in a variety of assays. RESULTS: The characterization of hGCase-1/17 and hGCase-1/23 using genetic models including GBA1 loss-of-function human neuroglioma H4 line and neurons differentiated from human embryonic stem cells revealed their remarkable specificity and potency in immunofluorescence and immunoprecipitation assays. Furthermore, a hGCase AlphaLISA assay with excellent sensitivity, a broad dynamic range, and suitability for high throughput applications was developed using hGCase-1/17 and hGCase-1/23, which enabled a sandwich assay configuration. CONCLUSIONS: The hGCase immunofluorescence, immunoprecipitation, and AlphaLISA assays utilizing hGCase-1/17 and hGCase-1/23 will not only facilitate improved investigations of hGCase biology, but can also serve as tools to assess the distribution and effectiveness of GCase-targeted therapies for PD and related synucleinopathies.


Asunto(s)
Enfermedad de Parkinson , Sinucleinopatías , Animales , Ratones , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Glucosilceramidasa/genética , Sinucleinopatías/genética , Neuronas , Diferenciación Celular , Mutación , alfa-Sinucleína/genética , Lisosomas/genética
12.
bioRxiv ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38712038

RESUMEN

Glucocerebrosidase (GCase) is implicated in both a rare, monogenic disorder (Gaucher disease, GD) and a common, multifactorial condition (Parkinson's disease); hence, it is an urgent therapeutic target. To identify correctors of severe protein misfolding and trafficking obstruction manifested by the pathogenic L444P-variant of GCase, we developed a suite of quantitative, high-throughput, cell-based assays. First, we labeled GCase with a small pro-luminescent HiBiT peptide reporter tag, enabling quantitation of protein stabilization in cells while faithfully maintaining target biology. TALEN-based gene editing allowed for stable integration of a single HiBiT-GBA1 transgene into an intragenic safe-harbor locus in GBA1-knockout H4 (neuroglioma) cells. This GD cell model was amenable to lead discovery via titration-based quantitative high-throughput screening and lead optimization via structure-activity relationships. A primary screen of 10,779 compounds from the NCATS bioactive collections identified 140 stabilizers of HiBiT-GCase-L444P, including both pharmacological chaperones (ambroxol and non-inhibitory chaperone NCGC326) and proteostasis regulators (panobinostat, trans-ISRIB, and pladienolide B). Two complementary high-content imaging-based assays were deployed to triage hits: the fluorescence-quenched substrate LysoFix-GBA captured functional lysosomal GCase activity, while an immunofluorescence assay featuring antibody hGCase-1/23 provided direct visualization of GCase lysosomal translocation. NCGC326 was active in both secondary assays and completely reversed pathological glucosylsphingosine accumulation. Finally, we tested the concept of combination therapy, by demonstrating synergistic actions of NCGC326 with proteostasis regulators in enhancing GCase-L444P levels. Looking forward, these physiologically-relevant assays can facilitate the identification, pharmacological validation, and medicinal chemistry optimization of new chemical matter targeting GCase, ultimately leading to a viable therapeutic for two protein-misfolding diseases.

13.
bioRxiv ; 2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38352378

RESUMEN

BACKGROUND: Impairments in behavioral pattern separation (BPS)-the ability to distinguish between similar contexts or experiences-contribute to memory interference and overgeneralization seen in many neuropsychiatric conditions, including depression, anxiety, PTSD, dementia, and age-related cognitive decline. While BPS relies on the dentate gyrus and is sensitive to changes in adult hippocampal neurogenesis (AHN), its significance as a pharmacological target has not been tested. METHODS: In this study, we applied a human neural stem cell high-throughput screening cascade to identify compounds that increase human neurogenesis. One compound with a favorable profile, RO6871135, was then tested in BPS in mice. RESULTS: Chronic treatment with RO6871135, 7.5 mg/kg increased AHN and improved BPS in a fear discrimination task in both young and aged mice. RO6871135 treatment also lowered innate anxiety-like behavior, which was more apparent in mice exposed to chronic corticosterone. Ablation of AHN by hippocampal irradiation supported a neurogenesis-dependent mechanism for RO6871135-induced improvements in BPS. To identify possible mechanisms of action, in vitro and in vivo kinase inhibition and chemical proteomics assays were performed. These tests indicated that RO6871135 inhibited CDK8, CDK11, CaMK2a, CaMK2b, MAP2K6, and GSK3b. An analog compound also demonstrated high affinity for CDK8, CaMK2a, and GSK3b. CONCLUSIONS: These studies demonstrate a method for empirical identification and preclinical testing of novel neurogenic compounds that can improve BPS, and points to possible novel mechanisms that can be interrogated for the development of new therapies to improve specific endophenotypes such as impaired BPS.

14.
Stem Cell Reports ; 19(2): 285-298, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38278155

RESUMEN

Reproducible functional assays to study in vitro neuronal networks represent an important cornerstone in the quest to develop physiologically relevant cellular models of human diseases. Here, we introduce DeePhys, a MATLAB-based analysis tool for data-driven functional phenotyping of in vitro neuronal cultures recorded by high-density microelectrode arrays. DeePhys is a modular workflow that offers a range of techniques to extract features from spike-sorted data, allowing for the examination of functional phenotypes both at the individual cell and network levels, as well as across development. In addition, DeePhys incorporates the capability to integrate novel features and to use machine-learning-assisted approaches, which facilitates a comprehensive evaluation of pharmacological interventions. To illustrate its practical application, we apply DeePhys to human induced pluripotent stem cell-derived dopaminergic neurons obtained from both patients and healthy individuals and showcase how DeePhys enables phenotypic screenings.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Microelectrodos , Neuronas Dopaminérgicas , Fenómenos Electrofisiológicos , Potenciales de Acción/fisiología
15.
Biochim Biophys Acta ; 1823(12): 2297-310, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22917578

RESUMEN

Mitochondrial dysfunction is linked to apoptosis, aging, cancer, and a number of neurodegenerative and muscular disorders. The interplay between mitophagy and mitochondrial dynamics has been linked to the removal of dysfunctional mitochondria ensuring mitochondrial quality control. An open question is what role mitochondrial fission plays in the removal of mitochondria after mild and transient oxidative stress; conditions reported to result in moderately elevated reactive oxygen species (ROS) levels comparable to physical activity. Here we show that applying such conditions led to fragmentation of mitochondria and induction of mitophagy in mouse and human cells. These conditions increased ROS levels only slightly and neither triggered cell death nor led to a detectable induction of non-selective autophagy. Starvation led to hyperfusion of mitochondria, to high ROS levels, and to the induction of both non-selective autophagy and to a lesser extent to mitophagy. We conclude that moderate levels of ROS specifically trigger mitophagy but are insufficient to trigger non-selective autophagy. Expression of a dominant-negative variant of the fission factor DRP1 blocked mitophagy induction by mild oxidative stress as well as by starvation. Taken together, we demonstrate that in mammalian cells under mild oxidative stress a DRP1-dependent type of mitophagy is triggered while a concomitant induction of non-selective autophagy was not observed. We propose that these mild oxidative conditions resembling well physiological situations are thus very helpful for studying the molecular pathways governing the selective removal of dysfunctional mitochondria.


Asunto(s)
Autofagia , Mitocondrias/patología , Dinámicas Mitocondriales/fisiología , Mitofagia , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Animales , Proteína 5 Relacionada con la Autofagia , Western Blotting , Células Cultivadas , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Células HeLa , Humanos , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/fisiología , Mitocondrias/metabolismo
16.
bioRxiv ; 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37886493

RESUMEN

BACKGROUND: Mutations in GBA1, which encodes the lysosome enzyme ß-glucocerebrosidase (also referred to as acid ß-glucosidase or GCase), are the most common genetic risk factor for Parkinson disease (PD) and dementia with Lewy bodies (DLB). Evidence also suggests that loss of GCase activity is implicated in PD without GBA1 mutations. Consequently, therapies targeting GCase are actively being pursued as potential strategies to modify the progression of PD and related synucleinopathies. Despite this significant interest in GCase as a therapeutic target, the lack of well-characterized GCase antibodies continues to impede progress in the development of GCase-targeted therapies. OBJECTIVE: This study aims to independently evaluate human GCase (hGCase) antibodies to provide recommendations for western blot, immunofluorescence, immunoprecipitation, and AlphaLISA (Amplified Luminescent Proximity Homogeneous Assay) assays. METHODS: Two mouse monoclonal antibodies, hGCase-1/17 and hGCase-1/23, were raised against hGCase using imiglucerase, the recombinant enzyme used to treat patients, as the antigen. These novel antibodies, alongside commonly used antibodies in the field, underwent evaluation in a variety of assays. RESULTS: The characterization of hGCase-1/17 and hGCase-1/23 using genetic models including GBA1 loss-of-function human neuroglioma H4 line and neurons differentiated from human embryonic stem cells (hESCs) revealed their remarkable specificity and potency in immunofluorescence and immunoprecipitation assays. Furthermore, a hGCase AlphaLISA assay with excellent sensitivity, a broad dynamic range, and suitability for high throughput applications was developed using hGCase-1/17 and hGCase-1/23, which enabled a sandwich assay configuration. CONCLUSIONS: The hGCase immunofluorescence, immunoprecipitation, and AlphaLISA assays utilizing hGCase-1/17 and hGCase-1/23 will not only facilitate improved investigations of hGCase biology, but can also serve as tools to assess the distribution and effectiveness of GCase-targeted therapies for PD and related synucleinopathies.

17.
Neuron ; 111(17): 2660-2674.e9, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37385246

RESUMEN

Many RNA-binding proteins (RBPs), particularly those associated with RNA granules, promote pathological protein aggregation in neurodegenerative diseases. Here, we demonstrate that G3BP2, a core component of stress granules, directly interacts with Tau and inhibits Tau aggregation. In the human brain, the interaction of G3BP2 and Tau is dramatically increased in multiple tauopathies, and it is independent of neurofibrillary tangle (NFT) formation in Alzheimer's disease (AD). Surprisingly, Tau pathology is significantly elevated upon loss of G3BP2 in human neurons and brain organoids. Moreover, we found that G3BP2 masks the microtubule-binding region (MTBR) of Tau, thereby inhibiting Tau aggregation. Our study defines a novel role for RBPs as a line of defense against Tau aggregation in tauopathies.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Humanos , Proteínas tau/metabolismo , Tauopatías/metabolismo , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Neuronas/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo
18.
Nat Commun ; 14(1): 2057, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37045813

RESUMEN

Mutations in glucocerebrosidase cause the lysosomal storage disorder Gaucher's disease and are the most common risk factor for Parkinson's disease. Therapies to restore the enzyme's function in the brain hold great promise for treating the neurological implications. Thus, we developed blood-brain barrier penetrant therapeutic molecules by fusing transferrin receptor-binding moieties to ß-glucocerebrosidase (referred to as GCase-BS). We demonstrate that these fusion proteins show significantly increased uptake and lysosomal efficiency compared to the enzyme alone. In a cellular disease model, GCase-BS rapidly rescues the lysosomal proteome and lipid accumulations beyond known substrates. In a mouse disease model, intravenous injection of GCase-BS leads to a sustained reduction of glucosylsphingosine and can lower neurofilament-light chain plasma levels. Collectively, these findings demonstrate the potential of GCase-BS for treating GBA1-associated lysosomal dysfunction, provide insight into candidate biomarkers, and may ultimately open a promising treatment paradigm for lysosomal storage diseases extending beyond the central nervous system.


Asunto(s)
Enfermedad de Gaucher , Enfermedad de Parkinson , Animales , Ratones , Enfermedad de Gaucher/genética , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Encéfalo/metabolismo , Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo , Lisosomas/metabolismo , Mutación , alfa-Sinucleína/metabolismo
19.
J Clin Invest ; 132(10)2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35575087

RESUMEN

The loss of skeletal muscle mass and size, or muscle atrophy, is a common human experience, linked to disability, for which there are no widely accepted pharmacological therapies. Piezo1 is a mechanosensitive cation channel that opens upon alteration of the plasma membrane lipid bilayer, such as through increased membrane tension. In this issue of the JCI, Hirata et al. identified Piezo1 and its downstream effectors, Krüppel-like factor 15 (KLF15) and interleukin-6 (IL-6), as an important signaling pathway in a murine model of disuse atrophy. Through genetic and pharmacological modulation of the pathway, the authors demonstrated that immobilization resulted in downregulation of Piezo1 and basal intracellular calcium concentration ([Ca2+]i), increasing expression of Klf15 and its downstream target Il6 and thereby inducing muscle atrophy. Piezo1 has been considered a therapeutic target for diverse disorders, including atherosclerosis and kidney fibrosis, and with this publication should now also be considered a viable target for disuse atrophy.


Asunto(s)
Canales Iónicos , Trastornos Musculares Atróficos , Animales , Membrana Celular/metabolismo , Humanos , Interleucina-6/metabolismo , Canales Iónicos/genética , Canales Iónicos/metabolismo , Ratones , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/prevención & control , Transducción de Señal
20.
Trends Neurosci ; 45(3): 184-199, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35034773

RESUMEN

The understanding of lysosomes has come a long way since the initial discovery of their role in degrading cellular waste. The lysosome is now recognized as a highly dynamic organelle positioned at the crossroads of cell signaling, transcription, and metabolism. Underscoring its importance is the observation that, in addition to rare monogenic lysosomal storage disorders, genes regulating lysosomal function are implicated in common sporadic neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Developing therapies for these disorders is particularly challenging, largely due to gaps in knowledge of the underlying molecular and cellular processes. In this review, we discuss technological advances that have propelled deeper understanding of the lysosome in neurodegeneration, from elucidating the functions of lysosome-related disease risk variants at the level of the organelle, cell, and tissue, to the development of disease-specific biological models that recapitulate disease manifestations. Finally, we identify key questions to be addressed to successfully bridge the gap to the clinic.


Asunto(s)
Enfermedad de Alzheimer , Esclerosis Amiotrófica Lateral , Enfermedad de Parkinson , Enfermedad de Alzheimer/metabolismo , Esclerosis Amiotrófica Lateral/genética , Humanos , Lisosomas/metabolismo , Enfermedad de Parkinson/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA