Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 627(8004): 540-545, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38448598

RESUMEN

The generation of ultra-low-noise microwave and mmWave in miniaturized, chip-based platforms can transform communication, radar and sensing systems1-3. Optical frequency division that leverages optical references and optical frequency combs has emerged as a powerful technique to generate microwaves with superior spectral purity than any other approaches4-7. Here we demonstrate a miniaturized optical frequency division system that can potentially transfer the approach to a complementary metal-oxide-semiconductor-compatible integrated photonic platform. Phase stability is provided by a large mode volume, planar-waveguide-based optical reference coil cavity8,9 and is divided down from optical to mmWave frequency by using soliton microcombs generated in a waveguide-coupled microresonator10-12. Besides achieving record-low phase noise for integrated photonic mmWave oscillators, these devices can be heterogeneously integrated with semiconductor lasers, amplifiers and photodiodes, holding the potential of large-volume, low-cost manufacturing for fundamental and mass-market applications13.

2.
Nat Commun ; 12(1): 4781, 2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34362920

RESUMEN

The optical microresonator-based frequency comb (microcomb) provides a versatile platform for nonlinear physics studies and has wide applications ranging from metrology to spectroscopy. The deterministic quantum regime is an unexplored aspect of microcombs, in which unconditional entanglements among hundreds of equidistant frequency modes can serve as critical ingredients to scalable universal quantum computing and quantum networking. Here, we demonstrate a deterministic quantum microcomb in a silica microresonator on a silicon chip. 40 continuous-variable quantum modes, in the form of 20 simultaneously two-mode squeezed comb pairs, are observed within 1 THz optical span at telecommunication wavelengths. A maximum raw squeezing of 1.6 dB is attained. A high-resolution spectroscopy measurement is developed to characterize the frequency equidistance of quantum microcombs. Our demonstration offers the possibility to leverage deterministically generated, frequency multiplexed quantum states and integrated photonics to open up new avenues in fields of spectroscopy, quantum metrology, and scalable, continuous-variable-based quantum information processing.

3.
Light Sci Appl ; 10(1): 4, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33386388

RESUMEN

Millimetre-wave (mmWave) technology continues to draw great interest due to its broad applications in wireless communications, radar, and spectroscopy. Compared to pure electronic solutions, photonic-based mmWave generation provides wide bandwidth, low power dissipation, and remoting through low-loss fibres. However, at high frequencies, two major challenges exist for the photonic system: the power roll-off of the photodiode, and the large signal linewidth derived directly from the lasers. Here, we demonstrate a new photonic mmWave platform combining integrated microresonator solitons and high-speed photodiodes to address the challenges in both power and coherence. The solitons, being inherently mode-locked, are measured to provide 5.8 dB additional gain through constructive interference among mmWave beatnotes, and the absolute mmWave power approaches the theoretical limit of conventional heterodyne detection at 100 GHz. In our free-running system, the soliton is capable of reducing the mmWave linewidth by two orders of magnitude from that of the pump laser. Our work leverages microresonator solitons and high-speed modified uni-traveling carrier photodiodes to provide a viable path to chip-scale, high-power, low-noise, high-frequency sources for mmWave applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA