Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Chem Theory Comput ; 19(24): 9457-9467, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-37937823

RESUMEN

Peptoids, or N-substituted glycines, are peptide-like materials that form a wide variety of secondary structures owing to their enhanced flexibility and a diverse collection of possible side chains. Compared to that of peptides, peptoids have a substantially more complex conformational landscape. This is mainly due to the ability of the peptoid amide bond to exist in both cis- and trans-conformations. This makes conventional molecular dynamics simulations and even some enhanced sampling approaches unable to sample the complete energy landscapes. In this article, we present an extension to the CGenFF-NTOID peptoid atomistic forcefield by adding parameters for four side chains to the previously available collection. We employ explicit solvent well-tempered metadynamics simulations to optimize our forcefield parameters and parallel bias metadynamics to study the cis-trans isomerism for SN1-phenylethyl (s1pe) and SN1-naphthylethyl (s1ne) peptoid monomers, the free energy minima generated from which are validated with available experimental data. In the absence of experimental data, we supported our atomistic simulations with ab initio calculations. This work represents an important step toward the computational design of peptoid-based materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA