RESUMEN
The sustained advancement in semiconducting core-shell nanowire technology has unlocked a tantalizing route for making next generation field effect transistor (FET). Understanding how to control carrier mobility of these nanowire channels by applying a gate field is the key to developing a high performance FET. Herein, we have identified the switching mechanism responsible for the superior performance of a Si-Ge core-shell nanowire quantum dot FET over its homogeneous Si counterpart. A quantum transport approach is used to investigate the gate-field modulated switching behavior in electronic current for ultranarrow Si and Si-Ge core-shell nanowire quantum dot FETs. Our calculations reveal that for the ON state, the gate-field induced transverse localization of the wave function restricts the carrier transport to the outer (shell) layer with the pz orbitals providing the pathway for tunneling of electrons in the channels. The higher ON state current in the Si-Ge core-shell nanowire FET is attributed to the pz orbitals that are distributed over the entire channel; in the case of Si nanowire, the participating pz orbital is restricted to a few Si atoms in the channel resulting in a smaller tunneling current. Within the gate bias range considered here, the transconductance is found to be substantially higher in the case of a Si-Ge core-shell nanowire FET than in a Si nanowire FET, which suggests a much higher mobility in the Si-Ge nanowire device.
RESUMEN
The family of monolayered Si2BN structures constitute a new class of 2D materials exhibiting metallic character with remarkable stability. Topologically, these structures are very similar to graphene, forming a slightly distorted honeycomb lattice generated by a union of two basic motifs with AA and AB stacking. In the present work we study in detail the structural and electronic properties of these structures in order to understand the factors which are responsible for their structural differences as well as those which are responsible for their metallic behavior and bonding. Their high temperature stability is demonstrated by the calculations of finite temperature phonon modes which show no negative contributions up to and beyond 1000 K. Presence of the negative thermal expansion coefficient, a common feature of one-atom thick 2D structures, is also seen. Comparison of the two motifs reveal the main structural differences to be the differences in their bond angles, which are affected by the third nearest neighbor interactions ofcis-transtype. On the other hand, the electronic properties of these two structures are very similar, including the charge transfers occurring between orbitals and between atoms. Their metallicity is mainly due to thepzorbitals of Si with a minor contribution from thepzorbitals of B, while the contribution from thepzorbitals of N atoms is negligible. There is almost no contributions from the Npzelectrons to the energy states near the Fermi level, and they form a band well below it. I.e., thepzelectrons of N are localized mostly at the N atoms and therefore cannot be considered as mobile electrons of thepzcloud. Moreover, we show that due to the relative positions in the energy axis of the atomic energies of thepzorbitals of B, N and Si atoms, the density of states (DOS) of Si2BN can be considered qualitatively as a combination of the DOS of planar hexagonal BN (h-BN) and hypothetically planar silicene (ph-Si). As a result, the Si2BN behaves electronically at the Fermi level as slightly perturbed ph-Si, having very similar electronic properties as silicene, but with the advantage of having kinetic stability in planar form. As for the bonding, the Si-Si bonds are covalent, while theπback donation mechanism occurs for the B-N bonding, in accordance with the B-N bonding in h-BN.
RESUMEN
Two near-infrared luminescent probes with Stokes-shift and single-photon anti-Stokes-shift fluorescence properties for sensitive determination of pH variance in lysosomes have been synthesized. A morpholine residue in probe A which serves as a targeting group for lysosomes in viable cells was attached to the fluorophores via a spirolactam moiety while a mannose residue was ligated to probe B resulting in increased biocompatibility and solubility in water. Probes A and B contain closed spirolactam moieties, and show no Stokes-shift or anti-Stokes-shift fluorescence under neutral or alkali conditions. However, the probes incrementally react to pH variance from 7.22 to 2.76 with measurable increases in both Stokes-shift and anti-Stokes-shift fluorescence at 699 nm and 693 nm under 645 nm and 800 nm excitation, respectively. This acid-activated fluorescence is produced by the breaking of the probe spirolactam moiety, which greatly increased overall π-conjugation in the probes. These probes possess upconversion near-infrared fluorescence imaging advantages including minimum cellular photo-damage, tissue penetration, and minimum biological fluorescence background. They display excellent photostability with low dye photobleaching and show good biocompatibility. They are selective and capable of detecting pH variances in lysosomes at excitation with two different wavelengths, i.e., 645 and 800 nm.
RESUMEN
Catching the electron in action in real space inside a semiconductor Ge-Si core-shell nanowire field effect transistor (FET), which has been demonstrated (J. Xiang, W. Lu, Y. Hu, Y. Wu, H. Yan and C. M. Lieber, Nature, 2006, 441, 489) to outperform the state-of-the-art metal oxide semiconductor FET, is central to gaining unfathomable access into the origin of its functionality. Here, using a quantum transport approach that does not make any assumptions on electronic structure, charge, and potential profile of the device, we unravel the most probable tunneling pathway for electrons in a Ge-Si core-shell nanowire FET with orbital level spatial resolution, which demonstrates gate bias induced decoupling of electron transport between the core and the shell region. Our calculation yields excellent transistor characteristics as noticed in the experiment. Upon increasing the gate bias beyond a threshold value, we observe a rapid drop in drain current resulting in a gate bias driven negative differential resistance behavior and switching in the sign of trans-conductance. We attribute this anomalous behavior in drain current to the gate bias induced modification of the carrier transport pathway from the Ge core to the Si shell region of the nanowire channel. A new experiment involving a four probe junction is proposed to confirm our prediction on gate bias induced decoupling.
RESUMEN
We report two new near-infrared fluorescent probes based on Rhodol counterpart fluorophore platforms functionalized with dipicolylamine Zn(II)-binding groups. The combinations of the pendant amines and fluorophores provide the probes with an effective three-nitrogen-atom and one-oxygen-atom binding motif. The fluorescent probes with large Stokes shifts offer sensitive and selective florescent responses to Zn(II) ions over other metal ions, allowing a reversible monitoring of Zn(II) concentration changes in living cells, and detecting intracellular Zn(II) ions released from intracellular metalloproteins.