Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 25(7): 1144-1157, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38918609

RESUMEN

Over the past decade, it has become clear that the stimulator of interferon genes (STING) pathway is critical for a variety of immune responses. This endoplasmic reticulum-anchored adaptor protein has regulatory functions in host immunity across a spectrum of conditions, including infectious diseases, autoimmunity, neurobiology and cancer. In this Review, we outline the central importance of STING in immunological processes driven by expression of type I and III interferons, as well as inflammatory cytokines, and we look at therapeutic options for targeting STING. We also examine evidence that challenges the prevailing notion that STING activation is predominantly beneficial in combating cancer. Further exploration is imperative to discern whether STING activation in the tumor microenvironment confers true benefits or has detrimental effects. Research in this field is at a crossroads, as a clearer understanding of the nuanced functions of STING activation in cancer is required for the development of next-generation therapies.


Asunto(s)
Proteínas de la Membrana , Neoplasias , Transducción de Señal , Microambiente Tumoral , Humanos , Neoplasias/inmunología , Neoplasias/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/inmunología , Transducción de Señal/inmunología , Animales , Microambiente Tumoral/inmunología
2.
EMBO J ; 41(10): e109622, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35178710

RESUMEN

Understanding the molecular pathways driving the acute antiviral and inflammatory response to SARS-CoV-2 infection is critical for developing treatments for severe COVID-19. Here, we find decreasing number of circulating plasmacytoid dendritic cells (pDCs) in COVID-19 patients early after symptom onset, correlating with disease severity. pDC depletion is transient and coincides with decreased expression of antiviral type I IFNα and of systemic inflammatory cytokines CXCL10 and IL-6. Using an in vitro stem cell-based human pDC model, we further demonstrate that pDCs, while not supporting SARS-CoV-2 replication, directly sense the virus and in response produce multiple antiviral (interferons: IFNα and IFNλ1) and inflammatory (IL-6, IL-8, CXCL10) cytokines that protect epithelial cells from de novo SARS-CoV-2 infection. Via targeted deletion of virus-recognition innate immune pathways, we identify TLR7-MyD88 signaling as crucial for production of antiviral interferons (IFNs), whereas Toll-like receptor (TLR)2 is responsible for the inflammatory IL-6 response. We further show that SARS-CoV-2 engages the receptor neuropilin-1 on pDCs to selectively mitigate the antiviral interferon response, but not the IL-6 response, suggesting neuropilin-1 as potential therapeutic target for stimulation of TLR7-mediated antiviral protection.


Asunto(s)
COVID-19 , Células Dendríticas , Receptor Toll-Like 2 , Receptor Toll-Like 7 , COVID-19/inmunología , COVID-19/patología , Citocinas/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/patología , Humanos , Interferón Tipo I/inmunología , Interferón-alfa/inmunología , Interleucina-6/inmunología , Neuropilina-1/inmunología , SARS-CoV-2 , Receptor Toll-Like 2/inmunología , Receptor Toll-Like 7/inmunología
3.
Mol Cell ; 71(5): 745-760.e5, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30193098

RESUMEN

DNA damage can be sensed as a danger-associated molecular pattern by the innate immune system. Here we find that keratinocytes and other human cells mount an innate immune response within hours of etoposide-induced DNA damage, which involves the DNA sensing adaptor STING but is independent of the cytosolic DNA receptor cGAS. This non-canonical activation of STING is mediated by the DNA binding protein IFI16, together with the DNA damage response factors ATM and PARP-1, resulting in the assembly of an alternative STING signaling complex that includes the tumor suppressor p53 and the E3 ubiquitin ligase TRAF6. TRAF6 catalyzes the formation of K63-linked ubiquitin chains on STING, leading to the activation of the transcription factor NF-κB and the induction of an alternative STING-dependent gene expression program. We propose that STING acts as a signaling hub that coordinates a transcriptional response depending on its mode of activation.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Núcleo Celular/genética , Daño del ADN/genética , Proteínas de la Membrana/genética , FN-kappa B/genética , Proteínas Nucleares/genética , Fosfoproteínas/genética , Transducción de Señal/genética , Línea Celular , Citosol/metabolismo , ADN/genética , Células HEK293 , Humanos , Inmunidad Innata/genética , Queratinocitos/fisiología , Poli(ADP-Ribosa) Polimerasa-1/genética , Proteína p53 Supresora de Tumor/genética , Ubiquitina/genética , Ubiquitina-Proteína Ligasas/genética
5.
Nat Immunol ; 13(8): 737-43, 2012 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-22706339

RESUMEN

The innate immune system senses infection by detecting either evolutionarily conserved molecules essential for the survival of microbes or the abnormal location of molecules. Here we demonstrate the existence of a previously unknown innate detection mechanism induced by fusion between viral envelopes and target cells. Virus-cell fusion specifically stimulated a type I interferon response with expression of interferon-stimulated genes, in vivo recruitment of leukocytes and potentiation of signaling via Toll-like receptor 7 (TLR7) and TLR9. The fusion-dependent response was dependent on the stimulator of interferon genes STING but was independent of DNA, RNA and viral capsid. We suggest that membrane fusion is sensed as a danger signal with potential implications for defense against enveloped viruses and various conditions of giant-cell formation.


Asunto(s)
Fusión Celular , Herpesvirus Humano 1/inmunología , Herpesvirus Humano 1/fisiología , Inmunidad Innata , Interferón Tipo I/biosíntesis , Fusión de Membrana , Proteínas de la Membrana/metabolismo , Animales , Quimiocina CXCL10/metabolismo , Células HEK293 , Células HeLa , Humanos , Leucocitos/inmunología , Leucocitos/metabolismo , Activación de Linfocitos , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Transducción de Señal , Receptor Toll-Like 7/metabolismo , Receptor Toll-Like 9/metabolismo , Internalización del Virus
6.
EMBO J ; 37(8)2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29496741

RESUMEN

Negative regulation of immune pathways is essential to achieve resolution of immune responses and to avoid excess inflammation. DNA stimulates type I IFN expression through the DNA sensor cGAS, the second messenger cGAMP, and the adaptor molecule STING Here, we report that STING degradation following activation of the pathway occurs through autophagy and is mediated by p62/SQSTM1, which is phosphorylated by TBK1 to direct ubiquitinated STING to autophagosomes. Degradation of STING was impaired in p62-deficient cells, which responded with elevated IFN production to foreign DNA and DNA pathogens. In the absence of p62, STING failed to traffic to autophagy-associated vesicles. Thus, DNA sensing induces the cGAS-STING pathway to activate TBK1, which phosphorylates IRF3 to induce IFN expression, but also phosphorylates p62 to stimulate STING degradation and attenuation of the response.


Asunto(s)
Nucleotidiltransferasas/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Proteína Sequestosoma-1/fisiología , Animales , Autofagia , Línea Celular , ADN/metabolismo , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal
7.
PLoS Pathog ; 16(2): e1008151, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32109259

RESUMEN

HIV latency is the major barrier to a cure for people living with HIV (PLWH) on antiretroviral therapy (ART) because the virus persists in long-lived non-proliferating and proliferating latently infected CD4+ T cells. Latently infected CD4+ T cells do not express viral proteins and are therefore not visible to immune mediated clearance. Therefore, identifying interventions that can reverse latency and also enhance immune mediated clearance is of high interest. Interferons (IFNs) have multiple immune enhancing effects and can inhibit HIV replication in activated CD4+ T cells. However, the effects of IFNs on the establishment and reversal of HIV latency is not understood. Using an in vitro model of latency, we demonstrated that plasmacytoid dendritic cells (pDC) inhibit the establishment of HIV latency through secretion of type I IFNα, IFNß and IFNω but not IFNε or type III IFNλ1 and IFNλ3. However, once latency was established, IFNα but no other IFNs were able to efficiently reverse latency in both an in vitro model of latency and CD4+ T cells collected from PLWH on suppressive ART. Binding of IFNα to its receptor expressed on primary CD4+ T cells did not induce activation of the canonical or non-canonical NFκB pathway but did induce phosphorylation of STAT1, 3 and 5 proteins. STAT5 has been previously demonstrated to bind to the HIV long terminal repeat and activate HIV transcription. We demonstrate diverse effects of interferons on HIV latency with type I IFNα; inhibiting the establishment of latency but also reversing HIV latency once latency is established.


Asunto(s)
Linfocitos T CD4-Positivos , Duplicado del Terminal Largo de VIH/inmunología , VIH-1/fisiología , Interferón-alfa/inmunología , Transcripción Genética/inmunología , Latencia del Virus/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/patología , Linfocitos T CD4-Positivos/virología , Células Dendríticas/inmunología , Células Dendríticas/patología , Células Dendríticas/virología , Células HEK293 , Humanos , FN-kappa B/inmunología , Factores de Transcripción STAT/inmunología
8.
Int J Mol Sci ; 23(19)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36232698

RESUMEN

Plasmacytoid dendritic cells (pDCs) are multifaceted immune cells with a wide range of innate and adaptive immunological functions. They constitute the first line of defence against multiple viral infections and have also been reported to actively participate in antitumor immune responses. The clinical implication of the presence of pDCs in the tumor microenvironment (TME) is still ambiguous, but it is clear that pDCs possess the ability to modulate tumor-specific T cell responses and direct cytotoxic functions. Therapeutic strategies designed to exploit these qualities of pDCs to boost tumor-specific immune responses could represent an attractive alternative compared to conventional therapeutic approaches in the future, and promising antitumor effects have already been reported in phase I/II clinical trials. Here, we review the many roles of pDCs in cancer and present current advances in developing pDC-based immunotherapeutic approaches for treating cancer.


Asunto(s)
Células Dendríticas , Neoplasias , Humanos , Inmunoterapia , Neoplasias/tratamiento farmacológico , Linfocitos T , Microambiente Tumoral
9.
Phys Rev Lett ; 127(1): 017701, 2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34270309

RESUMEN

We report generic and tunable crossed Andreev reflection (CAR) in a superconductor sandwiched between two antiferromagnetic layers. We consider recent examples of two-dimensional magnets with hexagonal lattices, where gate voltages control the carrier type and density, and predict a robust signature of perfect CAR in the nonlocal differential conductance with one electron-doped and one hole-doped antiferromagnetic lead. The magnetic field-free and spin-degenerate CAR signal is electrically controlled and visible over a large voltage range, showing promise for solid-state quantum entanglement applications.

10.
Proc Natl Acad Sci U S A ; 115(33): E7768-E7775, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30061387

RESUMEN

The adaptor molecule stimulator of IFN genes (STING) is central to production of type I IFNs in response to infection with DNA viruses and to presence of host DNA in the cytosol. Excessive release of type I IFNs through STING-dependent mechanisms has emerged as a central driver of several interferonopathies, including systemic lupus erythematosus (SLE), Aicardi-Goutières syndrome (AGS), and stimulator of IFN genes-associated vasculopathy with onset in infancy (SAVI). The involvement of STING in these diseases points to an unmet need for the development of agents that inhibit STING signaling. Here, we report that endogenously formed nitro-fatty acids can covalently modify STING by nitro-alkylation. These nitro-alkylations inhibit STING palmitoylation, STING signaling, and subsequently, the release of type I IFN in both human and murine cells. Furthermore, treatment with nitro-fatty acids was sufficient to inhibit production of type I IFN in fibroblasts derived from SAVI patients with a gain-of-function mutation in STING. In conclusion, we have identified nitro-fatty acids as endogenously formed inhibitors of STING signaling and propose for these lipids to be considered in the treatment of STING-dependent inflammatory diseases.


Asunto(s)
Ácidos Grasos/metabolismo , Herpes Simple/metabolismo , Herpesvirus Humano 2/metabolismo , Proteínas de la Membrana/metabolismo , Transducción de Señal , Animales , Enfermedades Autoinmunes del Sistema Nervioso/genética , Enfermedades Autoinmunes del Sistema Nervioso/metabolismo , Enfermedades Autoinmunes del Sistema Nervioso/patología , Herpes Simple/genética , Herpes Simple/patología , Humanos , Interferón Tipo I/genética , Interferón Tipo I/metabolismo , Lipoilación , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/metabolismo , Lupus Eritematoso Sistémico/patología , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Malformaciones del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/metabolismo , Malformaciones del Sistema Nervioso/patología , Células RAW 264.7
11.
Angew Chem Int Ed Engl ; 60(34): 18734-18741, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34124819

RESUMEN

The development of new immunomodulatory agents can impact various areas of medicine. In particular, compounds with the ability to modulate innate immunological pathways hold significant unexplored potential. Herein, we report a modular synthetic approach to the macrodiolide natural product (-)-vermiculine, an agent previously shown to possess diverse biological effects, including cytotoxic and immunosuppressive activity. The synthesis allows for a high degree of flexibility in modifying the macrocyclic framework, including the formation of all possible stereoisomers. In total, 18 analogues were prepared. Two analogues with minor structural modifications showed clearly enhanced cancer cell line selectivity and reduced toxicity. Moreover, these compounds possessed broad inhibitory activity against innate immunological pathways in human PBMCs, including the DNA-sensing cGAS-STING pathway. Initial mechanistic characterization suggests a surprising impairment of the STING-TBK1 interaction.


Asunto(s)
Factores Inmunológicos/farmacología , Proteínas de la Membrana/antagonistas & inhibidores , Nucleotidiltransferasas/antagonistas & inhibidores , ADN/efectos de los fármacos , ADN/metabolismo , Humanos , Factores Inmunológicos/síntesis química , Factores Inmunológicos/química , Lactonas/síntesis química , Lactonas/química , Lactonas/farmacología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Proteínas de la Membrana/metabolismo , Conformación Molecular , Nucleotidiltransferasas/metabolismo
12.
Hum Reprod ; 35(3): 617-640, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32219408

RESUMEN

STUDY QUESTION: Do seminal plasma (SP) and its constituents affect the decidualization capacity and transcriptome of human primary endometrial stromal fibroblasts (eSFs)? SUMMARY ANSWER: SP promotes decidualization of eSFs from women with and without inflammatory disorders (polycystic ovary syndrome (PCOS), endometriosis) in a manner that is not mediated through semen amyloids and that is associated with a potent transcriptional response, including the induction of interleukin (IL)-11, a cytokine important for SP-induced decidualization. WHAT IS KNOWN ALREADY: Clinical studies have suggested that SP can promote implantation, and studies in vitro have demonstrated that SP can promote decidualization, a steroid hormone-driven program of eSF differentiation that is essential for embryo implantation and that is compromised in women with the inflammatory disorders PCOS and endometriosis. STUDY DESIGN, SIZE, DURATION: This is a cross-sectional study involving samples treated with vehicle alone versus treatment with SP or SP constituents. SP was tested for the ability to promote decidualization in vitro in eSFs from women with or without PCOS or endometriosis (n = 9). The role of semen amyloids and fractionated SP in mediating this effect and in eliciting transcriptional changes in eSFs was then studied. Finally, the role of IL-11, a cytokine with a key role in implantation and decidualization, was assessed as a mediator of the SP-facilitated decidualization. PARTICIPANTS/MATERIALS, SETTING, METHODS: eSFs and endometrial epithelial cells (eECs) were isolated from endometrial biopsies from women of reproductive age undergoing benign gynecologic procedures and maintained in vitro. Assays were conducted to assess whether the treatment of eSFs with SP or SP constituents affects the rate and extent of decidualization in women with and without inflammatory disorders. To characterize the response of the endometrium to SP and SP constituents, RNA was isolated from treated eSFs or eECs and analyzed by RNA sequencing (RNAseq). Secreted factors in conditioned media from treated cells were analyzed by Luminex and ELISA. The role of IL-11 in SP-induced decidualization was assessed through Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas-9-mediated knockout experiments in primary eSFs. MAIN RESULTS AND THE ROLE OF CHANCE: SP promoted decidualization both in the absence and presence of steroid hormones (P < 0.05 versus vehicle) in a manner that required seminal proteins. Semen amyloids did not promote decidualization and induced weak transcriptomic and secretomic responses in eSFs. In contrast, fractionated SP enriched for seminal microvesicles (MVs) promoted decidualization. IL-11 was one of the most potently SP-induced genes in eSFs and was important for SP-facilitated decidualization. LARGE SCALE DATA: RNAseq data were deposited in the Gene Expression Omnibus repository under series accession number GSE135640. LIMITATIONS, REASONS FOR CAUTION: This study is limited to in vitro analyses. WIDER IMPLICATIONS OF THE FINDINGS: Our results support the notion that SP promotes decidualization, including within eSFs from women with inflammatory disorders. Despite the general ability of amyloids to induce cytokines known to be important for implantation, semen amyloids poorly signaled to eSFs and did not promote their decidualization. In contrast, fractionated SP enriched for MVs promoted decidualization and induced a transcriptional response in eSFs that overlapped with that of SP. Our results suggest that SP constituents, possibly those associated with MVs, can promote decidualization of eSFs in an IL-11-dependent manner in preparation for implantation. STUDY FUNDING/COMPETING INTEREST(S): This project was supported by NIH (R21AI116252, R21AI122821 and R01AI127219) to N.R.R. and (P50HD055764) to L.C.G. The authors declare no conflict of interest.


Asunto(s)
Decidua , Fibroblastos/citología , Interleucina-11/fisiología , Semen , Estudios Transversales , Decidua/fisiología , Endometriosis , Endometrio/citología , Femenino , Humanos , Interleucina-11/genética , Síndrome del Ovario Poliquístico
13.
J Immunol ; 200(10): 3372-3382, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29632140

RESUMEN

Among HIV-infected individuals, long-term nonprogressor (LTNP) patients experience slow CD4 T cell decline and almost undetectable viral load for several years after primary acquisition of HIV. Type I IFN has been suggested to play a pathogenic role in HIV pathogenesis, and therefore diminished IFN responses may underlie the LTNP phenotype. In this study, we examined the presence and possible immunological role of multiple homozygous single-nucleotide polymorphisms in the stimulator of IFN genes (STING) encoding gene TMEM173 involved in IFN induction and T cell proliferation in HIV LTNP patients. We identified LTNPs through the Danish HIV Cohort and performed genetic analysis by Sanger sequencing, covering the R71H-G230A-R293Q (HAQ) single-nucleotide polymorphisms in TMEM173 This was followed by investigation of STING mRNA and protein accumulation as well as innate immune responses and proliferation following STING stimulation and infection with replication-competent HIV in human blood-derived cells. We identified G230A-R293Q/G230A-R293Q and HAQ/HAQ homozygous TMEM173 variants in 2 out of 11 LTNP patients. None of the 11 noncontrollers on antiretroviral treatment were homozygous for these variants. We found decreased innate immune responses to DNA and HIV as well as reduced STING-dependent inhibition of CD4 T cell proliferation, particularly in the HAQ/HAQ HIV LTNP patients, compared with the age- and gender-matched noncontrollers on antiretroviral treatment. These findings suggest that homozygous HAQ STING variants contribute to reduced inhibition of CD4 T cell proliferation and a reduced immune response toward DNA and HIV, which might result in reduced levels of constitutive IFN production. Consequently, the HAQ/HAQ TMEM173 genotype may contribute to the slower disease progression characteristic of LTNPs.


Asunto(s)
Infecciones por VIH/genética , Proteínas de la Membrana/genética , Polimorfismo de Nucleótido Simple/genética , Adulto , Anciano , Antirretrovirales/uso terapéutico , Línea Celular , Estudios de Cohortes , Estudios Transversales , Femenino , Genotipo , Células HEK293 , Infecciones por VIH/tratamiento farmacológico , Sobrevivientes de VIH a Largo Plazo , VIH-1/efectos de los fármacos , Homocigoto , Humanos , Inmunidad Innata/genética , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/genética , Masculino , Persona de Mediana Edad , Carga Viral/efectos de los fármacos
14.
Immunology ; 157(2): 163-172, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30919991

RESUMEN

It is well understood that the STING signalling pathway is critical for generating a robust innate immune response to pathogens. Human and mouse STING signalling pathways are not identical, however. For example, mice lack IFI16, which has been proven important for the human STING pathway. Therefore, we investigated whether humanized mice are an appropriate experimental platform for exploring the human STING signalling cascade in vivo. We found that NOG mice reconstituted with human cord blood haematopoietic stem cells (humanized NOG mice) exhibit human STING signalling responses to an analogue of the cyclic di-nucleotide cGAMP. There was an increase in the proportions of monocytes in the lungs of mice receiving cGAMP analogue. The most robust levels of STING expression and STING-induced responses were observed in mice exhibiting the highest levels of human chimerization. Notably, differential levels of STING in lung versus spleen following cGAMP analogue treatment suggest that there are tissue-specific kinetics of STING activation and/or degradation in effector versus inductive sites. We also examined the mouse innate immune response to cGAMP analogue treatment. We detected that mouse cells in the immunodeficient NOG mice responded to the cGAMP analogue and they do so with distinct kinetics from the human response. In conclusion, humanized NOG mice represent a valuable experimental model for examining in vivo human STING responses.


Asunto(s)
Proteínas de la Membrana/inmunología , Nucleótidos Cíclicos/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Femenino , Humanos , Ratones , Ratones Endogámicos NOD , Proteínas Nucleares/inmunología , Fosfoproteínas/inmunología
15.
Cancer Immunol Immunother ; 68(9): 1479-1492, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31463653

RESUMEN

RIG-I is a cytosolic RNA sensor that recognizes short 5' triphosphate RNA, commonly generated during virus infection. Upon activation, RIG-I initiates antiviral immunity, and in some circumstances, induces cell death. Because of this dual capacity, RIG-I has emerged as a promising target for cancer immunotherapy. Previously, a sequence-optimized RIG-I agonist (termed M8) was generated and shown to stimulate a robust immune response capable of blocking viral infection and to function as an adjuvant in vaccination strategies. Here, we investigated the potential of M8 as an anti-cancer agent by analyzing its ability to induce cell death and activate the immune response. In multiple cancer cell lines, M8 treatment strongly activated caspase 3-dependent apoptosis, that relied on an intrinsic NOXA and PUMA-driven pathway that was dependent on IFN-I signaling. Additionally, cell death induced by M8 was characterized by the expression of markers of immunogenic cell death-related damage-associated molecular patterns (ICD-DAMP)-calreticulin, HMGB1 and ATP-and high levels of ICD-related cytokines CXCL10, IFNß, CCL2 and CXCL1. Moreover, M8 increased the levels of HLA-ABC expression on the tumor cell surface, as well as up-regulation of genes involved in antigen processing and presentation. M8 induction of the RIG-I pathway in cancer cells favored dendritic cell phagocytosis and induction of co-stimulatory molecules CD80 and CD86, together with increased expression of IL12 and CXCL10. Altogether, these results highlight the potential of M8 in cancer immunotherapy, with the capacity to induce ICD-DAMP on tumor cells and activate immunostimulatory signals that synergize with current therapies.


Asunto(s)
Antineoplásicos/uso terapéutico , Células Dendríticas/inmunología , Melanoma/tratamiento farmacológico , Nelfinavir/análogos & derivados , Alarminas/inmunología , Presentación de Antígeno/efectos de los fármacos , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/metabolismo , Calreticulina/metabolismo , Caspasa 3/metabolismo , Diferenciación Celular , Línea Celular Tumoral , Proteína 58 DEAD Box/antagonistas & inhibidores , Proteína HMGB1/metabolismo , Humanos , Inmunización , Interferones/metabolismo , Terapia Molecular Dirigida , Nelfinavir/farmacología , Nelfinavir/uso terapéutico , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Receptores Inmunológicos , Transducción de Señal
16.
J Virol ; 92(6)2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29263269

RESUMEN

The innate immune response plays a pivotal role during human cytomegalovirus (HCMV) primary infection. Indeed, HCMV infection of primary fibroblasts rapidly triggers strong induction of type I interferons (IFN-I), accompanied by proinflammatory cytokine release. Here, we show that primary human foreskin fibroblasts (HFFs) infected with a mutant HCMV TB40/E strain unable to express UL83-encoded pp65 (v65Stop) produce significantly higher IFN-ß levels than HFFs infected with the wild-type TB40/E strain or the pp65 revertant (v65Rev), suggesting that the tegument protein pp65 may dampen IFN-ß production. To clarify the mechanisms through which pp65 inhibits IFN-ß production, we analyzed the activation of the cGAS/STING/IRF3 axis in HFFs infected with either the wild type, the revertant v65Rev, or the pp65-deficient mutant v65Stop. We found that pp65 selectively binds to cGAS and prevents its interaction with STING, thus inactivating the signaling pathway through the cGAS/STING/IRF3 axis. Consistently, addition of exogenous cGAMP to v65Rev-infected cells triggered the production of IFN-ß levels similar to those observed with v65Stop-infected cells, confirming that pp65 inactivation of IFN-ß production occurs at the cGAS level. Notably, within the first 24 h of HCMV infection, STING undergoes proteasome degradation independently of the presence or absence of pp65. Collectively, our data provide mechanistic insights into the interplay between HCMV pp65 and cGAS, leading to subsequent immune evasion by this prominent DNA virus.IMPORTANCE Primary human foreskin fibroblasts (HFFs) produce type I IFN (IFN-I) when infected with HCMV. However, we observed significantly higher IFN-ß levels when HFFs were infected with HCMV that was unable to express UL83-encoded pp65 (v65Stop), suggesting that pp65 (pUL83) may constitute a viral evasion factor. This study demonstrates that the HCMV tegument protein pp65 inhibits IFN-ß production by binding and inactivating cGAS early during infection. In addition, this inhibitory activity specifically targets cGAS, since it can be bypassed via the addition of exogenous cGAMP, even in the presence of pp65. Notably, STING proteasome-mediated degradation was observed in both the presence and absence of pp65. Collectively, our data underscore the important role of the tegument protein pp65 as a critical molecular hub in HCMV's evasion strategy against the innate immune response.


Asunto(s)
Infecciones por Citomegalovirus/inmunología , Citomegalovirus/inmunología , Evasión Inmune/inmunología , Interferón Tipo I/inmunología , Proteínas de la Membrana/inmunología , Nucleotidiltransferasas/inmunología , Fosfoproteínas/inmunología , Transducción de Señal/inmunología , Proteínas de la Matriz Viral/inmunología , Citomegalovirus/genética , Infecciones por Citomegalovirus/genética , Infecciones por Citomegalovirus/patología , Células HEK293 , Humanos , Evasión Inmune/genética , Inmunidad Innata/genética , Interferón Tipo I/genética , Proteínas de la Membrana/genética , Nucleotidiltransferasas/genética , Fosfoproteínas/genética , Unión Proteica , Transducción de Señal/genética , Proteínas de la Matriz Viral/genética
17.
PLoS Pathog ; 13(2): e1006163, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28207890

RESUMEN

Understanding early events of HIV transmission within mucosal tissues is vital for developing effective prevention strategies. Here, we report that primary stromal fibroblasts isolated from endometrium, cervix, foreskin, male urethra, and intestines significantly increase HIV infection of CD4+ T cells-by up to 37-fold for R5-tropic HIV and 100-fold for X4-tropic HIV-without themselves becoming infected. Fibroblasts were more efficient than dendritic cells at trans-infection and mediate this response in the absence of the DC-SIGN and Siglec-1 receptors. In comparison, mucosal epithelial cells secrete antivirals and inhibit HIV infection. These data suggest that breaches in the epithelium allow external or luminal HIV to escape an antiviral environment to access the infection-favorable environment of the stromal fibroblasts, and suggest that resident fibroblasts have a central, but previously unrecognized, role in HIV acquisition at mucosal sites. Inhibiting fibroblast-mediated enhancement of HIV infection should be considered as a novel prevention strategy.


Asunto(s)
Linfocitos T CD4-Positivos/virología , Fibroblastos/citología , Infecciones por VIH/transmisión , VIH-1/patogenicidad , Membrana Mucosa/virología , Técnicas de Cocultivo , Endometrio/citología , Endometrio/virología , Femenino , Citometría de Flujo , Prepucio/citología , Prepucio/virología , Humanos , Mucosa Intestinal/citología , Mucosa Intestinal/virología , Masculino , Membrana Mucosa/citología , Análisis de Secuencia por Matrices de Oligonucleótidos , Uretra/citología , Uretra/virología
18.
EMBO Rep ; 18(10): 1707-1715, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28801534

RESUMEN

Cytosolic DNA stimulates innate immune responses, including type I interferons (IFN), which have antiviral and immunomodulatory activities. Cyclic GMP-AMP synthase (cGAS) recognizes cytoplasmic DNA and signals via STING to induce IFN production. Despite the importance of DNA in innate immunity, the nature of the DNA that stimulates IFN production is not well described. Using low DNA concentrations, we show that dsDNA induces IFN in a length-dependent manner. This is observed over a wide length-span of DNA, ranging from the minimal stimulatory length to several kilobases, and is fully dependent on cGAS irrespective of DNA length. Importantly, in vitro studies reveal that long DNA activates recombinant human cGAS more efficiently than short DNA, showing that length-dependent DNA recognition is an intrinsic property of cGAS independent of accessory proteins. Collectively, this work identifies long DNA as the molecular entity stimulating the cGAS pathway upon cytosolic DNA challenge such as viral infections.


Asunto(s)
ADN/química , ADN/inmunología , Interferón Tipo I/biosíntesis , Nucleotidiltransferasas/metabolismo , Línea Celular , Citosol/inmunología , Citosol/metabolismo , ADN/genética , ADN/metabolismo , Activación Enzimática , Humanos , Inmunidad Innata , Interferón Tipo I/genética , Interferón Tipo I/inmunología , Proteínas de la Membrana/metabolismo , Nucleotidiltransferasas/genética , Transducción de Señal
19.
EMBO J ; 33(15): 1654-66, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24970844

RESUMEN

Listeria monocytogenes is a gram-positive facultative intracellular bacterium, which replicates in the cytoplasm of myeloid cells. Interferon ß (IFNß) has been reported to play an important role in the mechanisms underlying Listeria disease. Although studies in murine cells have proposed the bacteria-derived cyclic-di-AMP to be the key bacterial immunostimulatory molecule, the mechanism for IFNß expression during L. monocytogenes infection in human myeloid cells remains unknown. Here we report that in human macrophages, Listeria DNA rather than cyclic-di-AMP is stimulating the IFN response via a pathway dependent on the DNA sensors IFI16 and cGAS as well as the signalling adaptor molecule STING. Thus, Listeria DNA is a major trigger of IFNß expression in human myeloid cells and is sensed to activate a pathway dependent on IFI16, cGAS and STING.


Asunto(s)
Interacciones Huésped-Patógeno , Interferón beta/metabolismo , Listeria monocytogenes/patogenicidad , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Nucleotidiltransferasas/metabolismo , Fosfoproteínas/metabolismo , Animales , Células Cultivadas , Citosol/metabolismo , ADN Bacteriano/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Listeriosis/metabolismo , Listeriosis/microbiología , Macrófagos/metabolismo , Macrófagos/microbiología , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Proteínas Nucleares/genética , Nucleotidiltransferasas/genética , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal
20.
J Immunol ; 194(4): 1819-31, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25595793

RESUMEN

Herpesviruses are DNA viruses harboring the capacity to establish lifelong latent-recurrent infections. There is limited knowledge about viruses targeting the innate DNA-sensing pathway, as well as how the innate system impacts on the latent reservoir of herpesvirus infections. In this article, we report that murine gammaherpesvirus 68 (MHV68), in contrast to α- and ß-herpesviruses, induces very limited innate immune responses through DNA-stimulated pathways, which correspondingly played only a minor role in the control of MHV68 infections in vivo. Similarly, Kaposi's sarcoma-associated herpesvirus also did not stimulate immune signaling through the DNA-sensing pathways. Interestingly, an MHV68 mutant lacking deubiquitinase (DUB) activity, embedded within the large tegument protein open reading frame (ORF)64, gained the capacity to stimulate the DNA-activated stimulator of IFN genes (STING) pathway. We found that ORF64 targeted a step in the DNA-activated pathways upstream of the bifurcation into the STING and absent in melanoma 2 pathways, and lack of the ORF64 DUB was associated with impaired delivery of viral DNA to the nucleus, which, instead, localized to the cytoplasm. Correspondingly, the ORF64 DUB active site mutant virus exhibited impaired ability to establish latent infection in wild-type, but not STING-deficient, mice. Thus, gammaherpesviruses evade immune activation by the cytosolic DNA-sensing pathway, which, in the MHV68 model, facilitates establishment of infections.


Asunto(s)
ADN Viral/inmunología , Gammaherpesvirinae/inmunología , Infecciones por Herpesviridae/inmunología , Inmunidad Innata/inmunología , Latencia del Virus/inmunología , Animales , Citosol/inmunología , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Humanos , Macrófagos/inmunología , Macrófagos/virología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA