RESUMEN
The azo dye orange II is used extensively in the textile sector for coloring fabrics. High concentrations of it are released into aqueous environments through textile effluents. Therefore, its removal from textile wastewater and effluents is necessary. Herein, initially, we tested 11 bacterial strains for their capabilities in the degradation of orange II dye. It was revealed in the preliminary data that B. subtilis can more potently degrade the selected dye, which was thus used in the subsequent experiments. To achieve maximum decolorization, the experimental conditions were optimized whereby maximum degradation was achieved at: a 25 ppm dye concentration, pH 7, a temperature of 35 °C, a 1000 mg/L concentration of glucose, a 1000 mg/L urea concentration, a 666.66 mg/L NaCl concentration, an incubation period of 3 days, and with hydroquinone as a redox mediator at a concentration of 66.66 mg/L. The effects of the interaction of the operational factors were further confirmed using response surface methodology, which revealed that at optimum conditions of pH 6.45, a dye concentration of 17.07 mg/L, and an incubation time of 9.96 h at 45.38 °C, the maximum degradation of orange II can be obtained at a desirability coefficient of 1, estimated using the central composite design (CCD). To understand the underlying principles of degradation of the metabolites in the aliquot mixture at the optimized condition, the study steps were extracted and analyzed using GC-MS(Gas Chromatography Mass Spectrometry), FTIR(Fourier Transform Infrared Spectroscopy), 1H and carbon 13 NMR(Nuclear Magnetic Resonance Spectroscopy). The GC-MS pattern revealed that the original dye was degraded into o-xylene and naphthalene. Naphthalene was even obtained in a pure state through silica gel column isolation and confirmed using 1H and 13C NMR spectroscopic analysis. Phytotoxicity tests on Vigna radiata were also conducted and the results confirmed that the dye metabolites were less toxic than the parent dye. These results emphasize that B. subtilis should be used as a potential strain for the bioremediation of textile effluents containing orange II and other toxic azo dyes.
Asunto(s)
Bacillus subtilis , Agua Carbonatada , Compuestos Azo/química , Compuestos Azo/toxicidad , Bacillus subtilis/metabolismo , Bencenosulfonatos , Biodegradación Ambiental , Carbono/análisis , Agua Carbonatada/análisis , Colorantes/química , Glucosa , Hidroquinonas , Naftalenos/análisis , Gel de Sílice , Cloruro de Sodio , Vapor/análisis , Textiles , Urea , Aguas Residuales/química , Agua/análisisRESUMEN
This study was aimed at determining the prevalence estimate and association of transfusion-transmitted infections (TTIs) with ABO and Rh blood groups among blood donors at the King Faisal Specialist Hospital and Research Center (KFSH & RC) in the western region of Saudi Arabia. A retrospective study was conducted at the blood bank center of KFSH and RC from 1 January 2013 to 31 December 2019. Data on ABO and Rh blood group testing, serological testing, molecular investigations, serological assays, nucleic acid testing (NATs), and socio-demographic information were gathered. During the study period, there were 959,431 blood donors at the KFSH and RC. The overall 7-year cumulative prevalence estimate of blood transfusion-transmitted infections among blood donors was low at 7.93%, with an average prevalence estimate of 0.66%. Donors with the O blood group, the O RhD +ve blood group, in particular, were more at risk of developing TTIs, whereas donors with the AB blood group, the AB RhD -ve blood group, in particular, were at the lowest risk of developing TTIs. In total, 96.9% of the blood donors were males (n = 916,567). Almost half of the blood donors belong to the O blood group (49.4%). A total of 861,279 (91.0%) donors were found to be RhD positive. The percentages of TTIs were found to be higher in RhD +ve donors compared with RhD -ve donors. The prevalence estimate of the hemoglobin C (HbC) infection was the most common TTI among the blood donors being 3.97%, followed by malaria being 2.21%. The least prevalence estimate of TTI in the present study was for NAT HIV being 0.02%. Significant associations were observed between RhD +ve and RhD -ve among the malaria-infected donors (A: χ2 = 26.618, p = 0.001; AB: χ2 = 23.540, p = 0.001; B: χ2 = 5.419, p = 0.020; O: χ2 = 68.701, p = 0.001). The current 7-year retrospective study showed a low level of TTIs among blood donors. However, we urge that more research encompassing the entire country be conducted in order to obtain more representative results in terms of the prevalence estimate and association of transfusion-transmitted infections with ABO and Rh blood groups in communities.
Asunto(s)
Antígenos de Grupos Sanguíneos , Reacción a la Transfusión , Donantes de Sangre , Femenino , Humanos , Masculino , Prevalencia , Estudios Retrospectivos , Arabia Saudita/epidemiología , Reacción a la Transfusión/epidemiologíaRESUMEN
Mechanisms of disulfide bond formation in the human pathogen Streptococcus pyogenes are currently unknown. To date, no disulfide bond-forming thiol-disulfide oxidoreductase (TDOR) has been described and at least one disulfide bonded protein is known in S. pyogenes. This protein is the superantigen SpeA, which contains 3 cysteine residues (Cys 87, Cys90, and Cys98) and has a disulfide bond formed between Cys87 and Cys98. In this study, candidate TDORs were identified from the genome sequence of S. pyogenes MGAS8232. Using mutational and biochemical approaches, one of the candidate proteins, SpyM18_2037 (named here SdbA), was shown to be the catalyst that introduces the disulfide bond in SpeA. SpeA in the culture supernatant remained reduced when sdbA was inactivated and restored to the oxidized state when a functional copy of sdbA was returned to the sdbA-knockout mutant. SdbA has a typical C46XXC49 active site motif commonly found in TDORs. Site-directed mutagenesis experiments showed that the cysteines in the CXXC motif were required for the disulfide bond in SpeA to form. Interactions between SdbA and SpeA were examined using cysteine variant proteins. The results showed that SdbAC49A formed a mixed disulfide with SpeAC87A, suggesting that the N-terminal Cys46 of SdbA and the C-terminal Cys98 of SpeA participated in the initial reaction. SpeA oxidized by SdbA displayed biological activities suggesting that SpeA was properly folded following oxidation by SdbA. In conclusion, formation of the disulfide bond in SpeA is catalyzed by SdbA and the findings represent the first report of disulfide bond formation in S. pyogenes. IMPORTANCE Here, we reported the first example of disulfide bond formation in Streptococcus pyogenes. The results showed that a thiol-disulfide oxidoreductase, named SdbA, is responsible for introducing the disulfide bond in the superantigen SpeA. The cysteine residues in the CXXC motif of SdbA are needed for catalyzing the disulfide bond in SpeA. The disulfide bond in SpeA and neighboring amino acids form a disulfide loop that is conserved among many superantigens, including those from Staphylococcus aureus. SpeA and staphylococcal enterotoxins lacking the disulfide bond are biologically inactive. Thus, the discovery of the enzyme that catalyzes the disulfide bond in SpeA is important for understanding the biochemistry of SpeA production and presents a target for mitigating the virulence of S. pyogenes.
Asunto(s)
Proteínas Bacterianas/metabolismo , Disulfuros/metabolismo , Exotoxinas/metabolismo , Proteínas de la Membrana/metabolismo , Proteína Disulfuro Reductasa (Glutatión)/metabolismo , Streptococcus pyogenes/enzimología , Secuencias de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biocatálisis , Dominio Catalítico , Disulfuros/química , Exotoxinas/genética , Proteínas de la Membrana/genética , Mutagénesis Sitio-Dirigida , Proteína Disulfuro Reductasa (Glutatión)/química , Proteína Disulfuro Reductasa (Glutatión)/genética , Streptococcus pyogenes/química , Streptococcus pyogenes/genéticaRESUMEN
We previously identified a novel thiol-disulfide oxidoreductase, SdbA, in Streptococcus gordonii that formed disulfide bonds in substrate proteins and played a role in multiple phenotypes. In this study, we used mutational, phenotypic, and biochemical approaches to identify and characterize the redox partners of SdbA. Unexpectedly, the results showed that SdbA has multiple redox partners, forming a complex oxidative protein-folding pathway. The primary redox partners of SdbA that maintain its active site in an oxidized state are a surface-exposed thioredoxin family lipoprotein called SdbB (Sgo_1171) and an integral membrane protein annotated as CcdA2. Inactivation of sdbB and ccdA2 simultaneously, but not individually, recapitulated the sdbA mutant phenotype. The sdbB-ccdA2 mutant had defects in a range of cellular processes, including autolysis, bacteriocin production, genetic competence, and extracellular DNA (eDNA) release. AtlS, the natural substrate of SdbA produced by the sdbB-ccdA2 mutant lacked activity and an intramolecular disulfide bond. The redox state of SdbA in the sdbB-ccdA2 mutant was found to be in a reduced form and was restored when sdbB and ccdA2 were knocked back into the mutant. In addition, we showed that SdbB formed a disulfide-linked complex with SdbA in the cell. Recombinant SdbB and CcdA2 exhibited oxidase activity and reoxidized reduced SdbA in vitro Collectively, our results demonstrate that S. gordonii uses multiple redox partners for oxidative protein folding.IMPORTANCEStreptococcus gordonii is a commensal bacterium of the human dental plaque. Previously, we identified an enzyme, SdbA, that forms disulfide bonds in substrate proteins and plays a role in a number of cellular processes in S. gordonii Here, we identified the redox partners of SdbA. We showed that SdbA has multiple redox partners, SdbB and CcdA2, forming a complex oxidative protein-folding pathway. This pathway is essential for autolysis, bacteriocin production, genetic competence, and extracellular DNA (eDNA) release in S. gordonii These cellular processes are considered to be important for the success of S. gordonii as a dental plaque organism. This is the first example of an oxidative protein-folding pathway in Gram-positive bacteria that consists of an enzyme that uses multiple redox partners to function.
Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de la Membrana/metabolismo , Proteína Disulfuro Reductasa (Glutatión)/metabolismo , Mapas de Interacción de Proteínas , Streptococcus gordonii/enzimología , Streptococcus gordonii/metabolismo , Proteínas Bacterianas/genética , Técnicas de Inactivación de Genes , Prueba de Complementación Genética , Proteínas de la Membrana/genética , Unión Proteica , Pliegue de Proteína , Streptococcus gordonii/genéticaRESUMEN
Streptococcus mutans in dental biofilms often faces life-threatening threats such as killing by antimicrobial molecules from competing species or from the host. The ability of S. mutans to cope with such threats is crucial for its survival and persistence in dental biofilms. By screening a transposon mutant library, we identified 11 transposon insertion mutants that were sensitive to bacitracin. Two of these mutants, XTn-01 and XTn-03, had an independent insertion in the same locus, SMU.244, which encoded a homologue of undecaprenyl pyrophosphate phosphatase (UppP). In this study, we describe the genetic and phenotypic characterization of SMU.244 in antibiotic resistance. The results revealed that deletion of SMU.244 results in a mutant (XTΔ244) that is highly sensitive to bacitracin, but confers more resistance to lactococcin G, a class IIb bacteriocin. Introduction of the intact SMU.244 into XTΔ244 in trans completely restores its resistance to bacitracin and the susceptibility to lactococcin G. The XTΔ244 was also defective in forming the WT biofilm, although its growth was not significantly affected. Using recombinant protein technology, we demonstrated that the SMU.244-encoded protein displays enzyme activity to catalyse dephosphorylation of the substrate. The lux transcriptional reporter assays showed that S. mutans maintains a moderate level of expression of SMU.244 in the absence of bacitracin, but bacitracin at sub-MICs can further induce its expression. We concluded that SMU.244 encodes an UppP protein that plays important roles in cell wall biosynthesis and bacitracin resistance in S. mutans. The results described here may further our understanding of the molecular mechanisms by which S. mutans copes with antibiotics such as bacitracin.
Asunto(s)
Antibacterianos/farmacología , Bacitracina/farmacología , Pared Celular/metabolismo , Farmacorresistencia Bacteriana/genética , Pirofosfatasas/genética , Pirofosfatasas/metabolismo , Streptococcus mutans/genética , Streptococcus mutans/metabolismo , Secuencia de Aminoácidos , Biopelículas , Elementos Transponibles de ADN , Orden Génico , Sitios Genéticos , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular , Mutagénesis Insercional , Regiones Promotoras Genéticas , Pirofosfatasas/química , Alineación de Secuencia , Eliminación de Secuencia , Streptococcus mutans/efectos de los fármacos , Transcripción GenéticaRESUMEN
BACKGROUND: New Delhi metallo-beta-lactamase-1 (NDM1) confers resistance to several bacterial species against a broad range of beta-lactam antibiotics and turning them into superbugs that pose a significant threat to healthcare systems worldwide. As such, it is a potentially relevant biological target for counteracting bacterial infections. Given the lack of effective treatment options against NDM1 producing bacteria, finding a reliable inhibitor for the NDM1 enzyme is crucial. METHODS: Using molecular dynamics simulations, the binding selectivities and affinities of three ligands, viz. PNK, 3S0, and N1G were investigated against NDM1. RESULTS: The results indicate that N1G binds with more affinity to NDM1 than PNK and 3S0. The binding energy decomposition analysis revealed that residues I35, W93, H189, K211, and N220 showed significant binding energies with PNK, 3S0, and N1G, and hence are crucially involved in the binding of the ligands to NDM1. Molecular dynamics trajectory analysis further elicited that the ligands influence dynamic flexibility of NDM1 morphology, which contributes to the partial selectivities of PNK, 3S0, and N1G. CONCLUSIONS: This in silico study offers a vital information for developing potential NDM1 inhibitors with high selectivity. Nevertheless, in vitro and in vivo experimental validation is mandated to extend the possible applications of these ligands as NDM1 inhibitors that succor in combating antimicrobial resistance.
Asunto(s)
Simulación de Dinámica Molecular , Inhibidores de beta-Lactamasas , beta-Lactamasas , beta-Lactamasas/metabolismo , beta-Lactamasas/química , Inhibidores de beta-Lactamasas/farmacología , Inhibidores de beta-Lactamasas/química , Antibacterianos/farmacología , Antibacterianos/química , Unión Proteica , Farmacorresistencia Bacteriana , LigandosRESUMEN
Introduction: Fabrication of plant-based metal nanoparticles has yielded promising results, establishing this approach as viable, sustainable, and non-toxic in the biomedical sector for targeted drug delivery, diagnostic imaging, biosensing, cancer therapy, and antimicrobial treatments. Methods: The present work demonstrates the suitability of Hippophae rhamnoides berries for the instant green synthesis of silver nanoparticles to check their antioxidant, lipid peroxidation, and antimicrobial potential. The preliminary characterization of Hippophae rhamnoides-mediated AgNPs was validated by monitoring the color shift in the solution from pale yellow to reddish brown, which was further confirmed by UV-vis spectroscopy and the plasmon peaks were observed at 450 nm. Field Emission Scanning Electron Microscopy (FESEM) and X-ray diffraction (XRD) were used to evaluate the surface topography and structure of AgNPs. Herein, the antioxidant potential of synthesized AgNPs was investigated using DPPH free radical assay and the antimicrobial efficacy of similar was checked against E. coli and S. aureus by following MIC (minimum inhibitory concentration) and MBC (Minimum bactericidal concentration) assay. Along with the inhibitory percentage of lipid peroxidation was analysed by following TBARS (Thiobarbituric acid reactive species) assay. Results & discussion: The results revealed that the AgNPs were spherical in shape with an average size distribution within the range of 23.5-28 nm and a crystalline structure. Negative zeta potential (-19.7 mV) revealed the physical stability of synthesized AgNPs as the repulsive force to prevent immediate aggregation. The bioactive functional moieties involved in reducing bulk AgNO3 into AgNPs were further validated by FTIR. TBARS was adapted to test lipid peroxidation, and Hippophae rhamnoides-mediated AgNPs showed a 79% inhibition in lipid peroxidation compared to Hippophae rhamnoides berries extract as 65%. Furthermore, the antibacterial tests showed 37 ± 0.01 mm and 35 ± 0.0132 mm, zones of inhibition against E. coli MTCC 1698 and S. aureus MTCC 3160 with MIC and MBC values of 1 mg/mL, respectively.
RESUMEN
Several diseases, including both noninfectious diseases and bacterial and viral diseases, are associated with the ABO and RH blood group systems. Previous studies have shown a link between blood type and the probability of coronavirus disease 2019 (COVID-19) infection. In this study, we aimed to explore the correlation between deaths caused by COVID-19 and ABO and RhD blood types in Saudi Arabia. In this cross-sectional observational study, data from COVID-19 patients were collected from 2 major hospitals treating COVID-19 in Riyadh City, Saudi Arabia, between March 2020 and November 2021. The association between ABO and RhD blood types and COVID-19 outcomes was investigated. A total of 2302 real-time polymerase chain reaction-confirmed COVID-19 patients were enrolled in this study; a chi-square test was used to determine the statistical significance of the data. Of the 2302 enrolled patients, 1008 (43.8%) had blood type O, 677 (29.41%) had blood type A, 502 (21.8%) had blood type B, and 115 (5%) had blood type AB. Of the patients, 2143 (93.1%) were RhD-positive. The O-positive blood type had the highest mortality rate among COVID-19-infected patients, whereas the AB-negative type had the lowest. However, statistical analysis revealed no significant correlation between blood type (ABO or RhD) and COVID-19-based susceptibility or mortality. In conclusion, we found no association between ABO and RhD blood types and either susceptibility to or mortality due to COVID-19 in Saudi Arabia.
Asunto(s)
Sistema del Grupo Sanguíneo ABO , COVID-19 , Sistema del Grupo Sanguíneo Rh-Hr , Humanos , COVID-19/mortalidad , COVID-19/sangre , Arabia Saudita/epidemiología , Estudios Transversales , Masculino , Sistema del Grupo Sanguíneo Rh-Hr/sangre , Femenino , Persona de Mediana Edad , SARS-CoV-2 , Adulto , AncianoRESUMEN
Malaria is a parasitic infection that may result in an acute, life-threatening illness. It is a major public health problem in the tropical world. The disease is caused by the parasites of the genus Plasmodium and is transmitted by female Anopheles mosquitoes. Saudi Arabia is in the elimination phase of malaria control. Several parts of Saudi Arabia report cases of imported malaria among travelers and visitors. The city of Makkah in Saudi Arabia has a population of about 2.3 million. Moreover, over 6 million religious visitors from different parts of the world visit Makkah annually. During the COVID-19 outbreak, travel restrictions were enforced in Makkah to contain the spread of COVID-19. We compare the total reported cases of malaria in Makkah before, during, and after COVID-19 travel restrictions in this retrospective cross-sectional study. Data on demographics, clinical data, and laboratory parameters were collected from the medical records of the Ministry of Health, Saudi Arabia. The annual malaria incidence rates in Makkah were 29.13/million people (2018), 37.82/million people (2019), 15.65/million people (2020), 12.61/million people (2021), and 48.69/million people (2022). Most of the malaria cases in Makkah were caused by Plasmodium falciparum, followed by P. vivax. Sudan, Nigeria, Yamen, Pakistan, and India are the top five countries contributing to malaria cases in Makkah. Weekly malaria case analyses revealed that COVID-19-related travel restrictions resulted in zero malaria cases in Makkah, indicating the magnitude of the travel-related malaria burden in the city.
RESUMEN
The SARS-CoV-2 lifecycle is dependent on the host metabolism machinery. It upregulates the PPARα and PPARγ genes in lipid metabolism, which supports the essential viral replication complex including lipid rafts and palmitoylation of viral protein. The use of PPAR ligands in SARS-CoV-2 infection may have positive effects by preventing cytokine storm and the ensuing inflammatory cascade. The inhibition of PPARα and PPARγ genes may alter the metabolism and may disrupt the lifecycle of SARS-CoV-2 and COVID-19 progression. In the present work, we have identified possible miRNAs targeting PPARα and PPARγ in search of modulators of PPARα and PPARγ genes expression. The identified miRNAs could possibly be viewed as new therapeutic targets against COVID-19 infection.
RESUMEN
Microorganisms have been extensively studied and used to produce a wide range of enzymes and bioactive substances for a number of uses. Cellulases have also been widely used for a variety of bioprocessing and biotransformation purposes and are acknowledged as the essential enzymes for industrial applications. Broad industrial applications and huge demand essentially require mass-scale and low-cost production of cellulase enzyme. Nevertheless, low-cost production of cellulase enzyme at industrial-level finds certain issues, and this may be mainly associated with the unavailability of cheap and effective substrate to be utilized in fermentation process. In this context, cellulosic wastes are counted as one of the suitable bioresources and have been well explored for low-cost and highly efficient cellulase enzyme productions. Further, banana peels waste is considered as the high cellulose & sugar containing food wastes which is renewable and hugely available worldwide. Therefore, the present review explores the possible utilizations of banana peels as a potential food waste to be employed as substrate to produce cellulase enzymes. Availability and compositional analysis of banana peels has been explored for the microbial cellulase production based on reported studies. Further, this review explores the applications of cellulase enzymes as antimicrobial agents. Based on the available studies and their evaluation, potential limitations and future suggestions for the production of cellulase enzymes and their applications as antibacterial agents have been provided, which have a high potential for numerous biomedical applications and may offer a new opportunity for industrial utility.
Asunto(s)
Antiinfecciosos , Celulasa , Celulasas , Musa , Eliminación de Residuos , Celulasa/metabolismo , Musa/metabolismo , Alimentos , Celulasas/metabolismo , FermentaciónRESUMEN
The ongoing COVID-19 spreads worldwide with the ability to evolve in diverse human populations. The nucleocapsid (N) protein is one of the mutational hotspots in the SARS-CoV-2 genome. The N protein is an abundant RNA-binding protein critical for viral genome packaging. It comprises two large domains including the N-terminal domain (NTD) and the C-terminal domain (CTD) linked by the centrally located linker region. Mutations in N protein have been reported to increase the severity of disease by modulating viral transmissibility, replication efficiency as well as virulence properties of the virus in different parts of the world. To study the effect of N protein missense mutations on protein stability, function, and pathogenicity, we analyzed 228 mutations from each domain of N protein. Further, we have studied the effect of mutations on local residual frustration changes in N protein. Out of 228 mutations, 11 mutations were predicted to be deleterious and destabilized. Among these mutations, R32C, R191C, and R203 M mutations fall into disordered regions and show significant change in frustration state. Overall, this work reveals that by altering the energetics and residual frustration, N protein mutations might affect the stability, function, and pathogenicity of the SARS-CoV-2.
RESUMEN
The SARS-CoV-2 spike (S) glycoprotein with its mobile receptor-binding domain (RBD), binds to the human ACE2 receptor and thus facilitates virus entry through low-pH-endosomal pathways. The high degree of SARS-CoV-2 mutability has raised concern among scientists and medical professionals because it created doubt about the effectiveness of drugs and vaccinations designed specifically for COVID-19. In this study, we used computational saturation mutagenesis approach, including structure-based free energy calculations to analyse the effects of the missense mutations on the SARS-CoV-2 S-RBD stability and the S-RBD binding affinity with ACE2 at three different pH (pH 4.5, pH 6.5, and pH 7.4). A total of 3705 mutations in the S-RBD protein were analyzed, and we discovered that most of these mutations destabilize the RBD protein. Specifically, residues G404, G431, G447, A475, and G526 were important for RBD protein stability. In addition, RBD residues Y449, Y489, Y495, Q498, and N487 were critical for the RBD-ACE2 interaction. Next, we found that the distribution of the mean stability changes and mean binding energy changes of RBD due to mutations at both serological and endosomal pH correlated well, indicating the similar effects of mutations. Overall, this computational analysis is useful for understanding the effects of missense mutations in SARS-CoV-2 pathogenesis at different pH.Communicated by Ramaswamy H. Sarma.
Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Humanos , Enzima Convertidora de Angiotensina 2/genética , Concentración de Iones de Hidrógeno , Mutación , Unión Proteica , SARS-CoV-2/genéticaRESUMEN
Streptococcus pneumoniae is one of the major precarious pathogens accountable for over 1.2 million fatalities annually. The key drivers for pneumococcal vaccine development involve high morbidity and mortality in over one million cases, especially in very young children and the elderly. In this study, immunoinformatics was integrated with subtractive proteomics to find antigenic proteins for designing a multi-epitope vaccine against S. pneumoniae. As prospective vaccine targets, the developed pipeline identified two antigenic proteins, i.e., penicillin-binding protein and ATP synthase subunit. Several immunoinformatics and bioinformatics resources were used to forecast T- and B-cell epitopes from specific proteins. By employing a mixture of five cytotoxic T-cell lymphocytes, six helper T-cell lymphocytes, and seven linear B-cell lymphocyte epitopes, a 392 amino acid-long vaccine was designed. To enhance immune responses, the designed vaccine was coupled with a cholera enterotoxin subunit B adjuvant. The designed vaccine was highly antigenic, non-allergenic, and stable for human usage. The stability of the vaccine with toll-like receptor-4 was evaluated by molecular docking and molecular dynamic simulation. In addition, immunological simulation was performed to test its real-world potency. The vaccine codon was then cloned in silico. Overall, this study paves the way for the development of a multi-epitope S. pneumoniae vaccine under laboratory conditions. Furthermore, the current findings warrant for the experimental validation of the final multi-epitope vaccine construct to demonstrate its immunological reinforcing capability and clinical applicability.
RESUMEN
The COVID-19 outbreak brought on by the SARS-CoV-2 virus continued to infect a sizable population worldwide. The SARS-CoV-2 nucleocapsid (N) protein is the most conserved RNA-binding structural protein and is a desirable target because of its involvement in viral transcription and replication. Based on this aspect, this study focused to repurpose antiviral compounds approved or in development for treating COVID-19. The inhibitors chosen are either FDA-approved or are currently being studied in clinical trials against COVID-19. Initially, they were designed to target stress granules and other RNA biology. We have utilized structure-based molecular docking and all-atom molecular dynamics (MD) simulation approach to investigate in detail the binding energy and binding modes of the different anti-N inhibitors to N protein. The result showed that five drugs including Silmitasterib, Ninetanidinb, Ternatin, Luteolin, Fedratinib, PJ34, and Zotatafin were found interacting with RNA binding sites as well as to predicted protein interface with higher binding energy. Overall, drug binding increases the stability of the complex with maximum stability found in the order, Silmitasertib > PJ34 > Zotatatafin. In addition, the frustration changes due to drug binding brings a decrease in local frustration and this decrease is mainly observed in α-helix, ß3, ß5, and ß6 strands and are important for drug binding. Our in-silico data suggest that an effective interaction occurs for some of the tested drugs and prompt their further validation to reduce the rapid outspreading of SARS-CoV-2.Communicated by Ramaswamy H. Sarma.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Simulación del Acoplamiento Molecular , Nucleocápside , Simulación de Dinámica Molecular , ARN , Inhibidores de Proteasas , Antivirales/farmacologíaRESUMEN
Background: Surgical site infections (SSIs), especially when caused by multidrug-resistant (MDR) bacteria, are a major healthcare concern worldwide. For optimal treatment and prevention of antimicrobial resistance, it is important for clinicians to be aware of local drug-resistant bacterial pathogens that cause SSIs. Objective: To determine the frequency patterns of drug-resistant bacterial strains causing SSIs at a tertiary care hospital in Saudi Arabia. Methods: This retrospective study was conducted at the Microbiology laboratory of Al-Noor Specialist Hospital, Makkah, Saudi Arabia, and included wound swab samples from all cases of SSI between January 01, 2017, and December 31, 2021. The swabs were processed for the identification of bacterial strains and their resistance pattern to antibiotics according to the Clinical and Laboratory Standards Institute. Results: A total of 5409 wound swabs were analyzed, of which 3604 samples (66.6%) were from male. Most samples were from the Department of Surgery (43.3%). A total of 14 bacterial strains were isolated, of which 9 were Gram-negative bacteria. The most common isolates were Klebsiella pneumoniae, followed by Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii, methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococci (VRE), and vancomycin-resistant S. aureus (VRSA). In terms of MDR in 2021, the highest rate of carbapenem-resistance was in A. baumannii (97%). MDR was as follows: A. baumannii, 97%; K. pneumoniae, 81%; E. coli, 71%; MRSA, 60%; P. aeruginosa, 33%; VRE, 22%; and VRSA, 2%. Conclusion: This study showed that in the city of Makkah, Saudi Arabia, the rates of MDR bacteria are high, with the majority being Gram-negative.
RESUMEN
Infectious disease is one of the greatest causes of morbidity and mortality worldwide, and with the emergence of antimicrobial resistance, the situation is worsening. In order to prevent this crisis, antimicrobial resistance needs to be monitored carefully to control the spread of multidrug-resistant bacteria. Therefore, in this study, we aimed to determine the prevalence of infection caused by Klebsiella pneumoniae and investigate the antimicrobial profile pattern of K. pneumoniae in the last eleven years. This retrospective study was conducted in a tertiary hospital in Makkah, Saudi Arabia. Data were collected from January 2011 to December 2021. From 2011 to 2021, a total of 61,027 bacterial isolates were collected from clinical samples, among which 14.7% (n = 9014) were K. pneumoniae. The antibiotic susceptibility pattern of K. pneumoniae revealed a significant increase in the resistance rate in most tested antibiotics during the study period. A marked jump in the resistance rate was seen in amoxicillin/clavulanate and piperacillin/tazobactam, from 33.6% and 13.6% in 2011 to 71.4% and 84.9% in 2021, respectively. Ceftazidime, cefotaxime, and cefepime resistance rates increased from 29.9%, 26.2%, and 53.9%, respectively, in 2011 to become 84.9%, 85.1%, and 85.8% in 2021. Moreover, a significant increase in the resistance rate was seen in both imipenem and amikacin, with an average resistance rate rise from 6.6% for imipenem and 11.9% for amikacin in 2011 to 59.9% and 62.2% in 2021, respectively. The present study showed that the prevalence and drug resistance of K. pneumoniae increased over the study period. Thus, preventing hospital-acquired infection and the reasonable use of antibiotics must be implemented to control and reduce antimicrobial resistance.
RESUMEN
High demand of bioactive molecules (food additives, antibiotics, plant growth enhancers, cosmetics, pigments and other commercial products) is the prime need for the betterment of human life where the applicability of the synthetic chemical product is on the saturation due to associated toxicity and ornamentations. It has been noticed that the discovery and productivity of such molecules in natural scenarios are limited due to low cellular yields as well as less optimized conventional methods. In this respect, microbial cell factories timely fulfilling the requirement of synthesizing bioactive molecules by improving production yield and screening more promising structural homologues of the native molecule. Where the robustness of the microbial host can be potentially achieved by taking advantage of cell engineering approaches such as tuning functional and adjustable factors, metabolic balancing, adapting cellular transcription machinery, applying high throughput OMICs tools, stability of genotype/phenotype, organelle optimizations, genome editing (CRISPER/Cas mediated system) and also by developing accurate model systems via machine-learning tools. In this article, we provide an overview from traditional to recent trends and the application of newly developed technologies, for strengthening the systemic approaches and providing future directions for enhancing the robustness of microbial cell factories to speed up the production of biomolecules for commercial purposes.
RESUMEN
Cellulases are among the most in-demand bioprocess enzymes, and the high cost of production, combined with their low enzymatic activity, is the main constraint, particularly in the biofuels industry. As a result, low-cost enzyme production modes with high activity and stability have emerged as the primary focus of research. Here, a method for producing a graphene like carbon nanostructure (GLCNs) has been investigated utilizing paddy straw (Ps), and its physicochemical characteristics have been examined using a variety of techniques including XRD, FT-IR, SEM and TEM. Further, the pretreatment of Ps feedstock for cellulase production was done using diluted waste KOH liquid collected during the preparation of the GLCNs. To increase the production and stability of the enzyme, newly prepared GLCNs is utilized as a nanocatalyst. Using 15 mg of GLCNs, 35 IU/gds FP activity was seen after 72 h, followed by 158 IU/gds EG and 114 IU/gds BGL activity in 96 h. This nanocatalyst supported enzyme was thermally stable at 70 °C up to 15 h and exhibited stability at pH 7.0 for 10 h by holding 66 % of its half-life.
Asunto(s)
Celulasa , Celulasas , Grafito , Nanoestructuras , Carbono , Espectroscopía Infrarroja por Transformada de Fourier , Celulasas/química , HidrólisisRESUMEN
Background: This research evaluated the most visible symptoms associated with coronavirus (COVID-19) vaccines among residents in Makkah of Saudi Arabia. Methods: A cross-sectional study was conducted in 2021 among a representative sample of residents receiving COVID-19 vaccination at King Abdullah Medical City, Al Ukayshiyyah, and Umm Al-Qura University vaccination centers. A total of 805 participants selected by a census sampling method were included. Data regarding characteristics, medical history, and post-vaccination symptoms were obtained with an interview-based questionnaire. Results: The participants' mean age was 25.20 ± 15.5 years. Of them, 61.7% and 38.3% received one and two doses of the COVID-19 vaccine, respectively. 2.2% have an allergic reaction to the COVID-19 vaccine. 25.3% were infected with COVID-19, 23% were infected before the first dose, and only 1.6% were infected after the first dose. Significant statistical associations were found between males and females in smoking status, age, body mass index, history of diabetes mellitus, and types of COVID-19 vaccines (P-value < 0.05). After adjustment for confounding variables, male participants had lower odds of having swelling, redness, or pain at the injection site, muscle or joint pain, headache, dizziness, and nausea compared to female participants [OR = 0.596, 95% CI = (0.388-0.916)], [OR = 0.272, 95% CI = (0.149-0.495)], [OR = 0.529, 95% CI = (0.338-0.828)], [OR = 0.263, 95% CI = (0.125-0.554)], and [OR = 0.145, 95% CI = (0.31-0.679), P < 0.05 for all], respectively. Conclusion: The female participants may have a higher risk of post-COVID-19 vaccination symptoms than males among Makkah residents of Saudi Arabia.