Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS Biol ; 22(2): e3002465, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38300945

RESUMEN

The breadth of pathogens to which T cells can respond is determined by the T cell receptors (TCRs) present in an individual's repertoire. Although more than 90% of the sequence diversity among TCRs is generated by terminal deoxynucleotidyl transferase (TdT)-mediated N-nucleotide addition during V(D)J recombination, the benefit of TdT-altered TCRs remains unclear. Here, we computationally and experimentally investigated whether TCRs with higher N-nucleotide diversity via TdT make distinct contributions to acute or chronic pathogen control specifically through the inclusion of TCRs with lower antigen binding strengths (i.e., lower reactivity to peptide-major histocompatibility complex (pMHC)). When T cells with high pMHC reactivity have a greater propensity to become functionally exhausted than those of low pMHC reactivity, our computational model predicts a shift toward T cells with low pMHC reactivity over time during chronic, but not acute, infections. This TCR-affinity shift is critical, as the elimination of T cells with lower pMHC reactivity in silico substantially increased the time to clear a chronic infection, while acute infection control remained largely unchanged. Corroborating an affinity-centric benefit for TCR diversification via TdT, we found evidence that TdT-deficient TCR repertoires possess fewer T cells with weaker pMHC binding strengths in vivo and showed that TdT-deficient mice infected with a chronic, but not an acute, viral pathogen led to protracted viral clearance. In contrast, in the case of a chronic fungal pathogen where T cells fail to clear the infection, both our computational model and experimental data showed that TdT-diversified TCR repertoires conferred no additional protection to the hosts. Taken together, our in silico and in vivo data suggest that TdT-mediated TCR diversity is of particular benefit for the eventual resolution of prolonged pathogen replication through the inclusion of TCRs with lower foreign antigen binding strengths.


Asunto(s)
Infección Persistente , Linfocitos T , Animales , Ratones , Nucleótidos , Receptores de Antígenos de Linfocitos T , Péptidos , Control de Infecciones
2.
Immunology ; 161(3): 209-229, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32687611

RESUMEN

Nanoparticles (NPs) displaying autoimmune disease-relevant peptide-major histocompatibility complex class II molecules (pMHCII-NPs) trigger cognate T-regulatory type 1 (Tr1)-cell formation and expansion, capable of reversing organ-specific autoimmune responses. These pMHCII-NPs that display epitopes from mitochondrial protein can blunt the progression of both autoimmune hepatitis (AIH) and experimental autoimmune encephalomyelitis (EAE) in mice carrying either disease. However, with co-morbid mice having both diseases, these pMHCII-NPs selectively treat AIH. In contrast, pMHCII-NPs displaying central nervous system (CNS)-specific epitopes can efficiently treat CNS autoimmunity, both in the absence and presence of AIH, without having any effects on the progression of the latter. Here, we develop a compartmentalized population model of T-cells in co-morbid mice to identify the mechanisms by which Tr1 cells mediate organ-specific immunoregulation. We perform time-series simulations and bifurcation analyses to study how varying physiological parameters, including local cognate antigenic load and rates of Tr1-cell recruitment and retention, affect T-cell allocation and Tr1-mediated immunoregulation. Various regimes of behaviour, including 'competitive autoimmunity' where pMHCII-NP-treatment fails against both diseases, are identified and compared with experimental observations. Our results reveal that a transient delay in Tr1-cell recruitment to the CNS, resulting from inflammation-dependent Tr1-cell allocation, accounts for the liver-centric effects of AIH-specific pMHCII-NPs in co-morbid mice as compared with mice exclusively having EAE. They also suggest that cognate autoantigen expression and local Tr1-cell retention are key determinants of effective regulatory-cell function. These results thus provide new insights into the rules that govern Tr1-cell recruitment and their autoregulatory function.


Asunto(s)
Encefalomielitis Autoinmune Experimental/inmunología , Hepatitis Autoinmune/inmunología , Modelos Inmunológicos , Modelos Teóricos , Esclerosis Múltiple/inmunología , Nanomedicina/métodos , Linfocitos T Reguladores/inmunología , Animales , Presentación de Antígeno , Autoantígenos/inmunología , Compartimento Celular , Encefalomielitis Autoinmune Experimental/complicaciones , Hepatitis Autoinmune/complicaciones , Humanos , Inmunomodulación , Activación de Linfocitos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA