Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Environ Sci (China) ; 40: 105-13, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26969550

RESUMEN

NitroMAC (French acronym for continuous atmospheric measurements of nitrogenous compounds) is an instrument which has been developed for the semi-continuous measurement of atmospheric nitrous acid (HONO). This instrument relies on wet chemical sampling and detection using high performance liquid chromatography (HPLC)-visible absorption at 540 nm. Sampling proceeds by dissolution of gaseous HONO in a phosphate buffer solution followed by derivatization with sulfanilamide/N-(1-naphthyl)-ethylenediamine. The performance of this instrument was found to be as follows: a detection limit of around 3 ppt with measurement uncertainty of 10% over an analysis time of 10 min. Intercomparison was made between the instrument and a long-path absorption photometer (LOPAP) during two experiments in different environments. First, air was sampled in a smog chamber with concentrations up to 18 ppb of nitrous acid. NitroMAC and LOPAP measurements showed very good agreement. Then, in a second experiment, ambient air with HONO concentrations below 250 ppt was sampled. While NitroMAC showed its capability of measuring HONO in moderate and highly polluted environments, the intercomparison results in ambient air highlighted that corrections must be made for minor interferences when low concentrations are measured.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/instrumentación , Monitoreo del Ambiente/métodos , Ácido Nitroso/análisis , Atmósfera , Diseño de Equipo , Francia , Límite de Detección , Fotometría/instrumentación , Fotometría/métodos
2.
Sci Data ; 9(1): 174, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35422487

RESUMEN

As part of the Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) project, extensive in-situ measurements of the southern West African atmospheric boundary layer (ABL) have been performed at three supersites Kumasi (Ghana), Savè (Benin) and Ile-Ife (Nigeria) during the 2016 monsoon period (June and July). The measurements were designed to provide data for advancing our understanding of the relevant processes governing the formation, persistence and dissolution of nocturnal low-level stratus clouds and their influence on the daytime ABL in southern West Africa. An extensive low-level cloud deck often forms during the night and persists long into the following day strongly influencing the ABL diurnal cycle. Although the clouds are of a high significance for the regional climate, the dearth of observations in this region has hindered process understanding. Here, an overview of the measurements ranging from near-surface observations, cloud characteristics, aerosol and precipitation to the dynamics and thermodynamics in the ABL and above, and data processing is given. So-far achieved scientific findings, based on the dataset analyses, are briefly overviewed.

3.
Anal Bioanal Chem ; 392(5): 865-76, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18751685

RESUMEN

New off-line instrumentation was developed to implement measurements of non-methane hydrocarbons (NMHC) on (French) research aircraft. NMHC are collected on multisorbent tubes by AMOVOC (Airborne Measurements Of Volatile Organic Compounds), a new automatic sampler. AMOVOC is a versatile and portable sampler targeting a wide range of NMHC at high frequency (sampling time of 10 min). Multisorbent tubes are analyzed on the ground by short-path thermal desorption coupled with gas chromatography and mass spectrometry. The development and optimization of both NMHC sampling and analysis are reported here. On the one hand, the paper points out technical choices that were made according to aircraft constraints and avoiding sample loss or contamination. On the other hand, it describes analytical optimization, tube storage stability, and moisture removal. The method shows high selectivity, sensitivity (limit of detection less than 10 ppt) and precision (less than 24%). Finally, NMHC data collected on French aircraft during the African Monsoon Multidisciplinary Analysis campaign are reported for the first time. The results highlight instrumentation validity and protocol efficiency for NMHC measurements in the lower and upper troposphere.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA