Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Euro Surveill ; 29(3)2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38240057

RESUMEN

Under International Health Regulations from 2005, a human infection caused by a novel influenza A virus variant is considered an event that has potential for high public health impact and is immediately notifiable to the World Health Organisation. We here describe the clinical, epidemiological and virological features of a confirmed human case of swine influenza A(H1N2)v in England detected through community respiratory virus surveillance. Swabbing and contact tracing helped refine public health risk assessment, following this unusual and unexpected finding.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Enfermedades de los Porcinos , Animales , Humanos , Porcinos , Subtipo H1N2 del Virus de la Influenza A , Subtipo H1N1 del Virus de la Influenza A/genética , Enfermedades de los Porcinos/diagnóstico , Enfermedades de los Porcinos/epidemiología , Gripe Humana/diagnóstico , Gripe Humana/epidemiología , Inglaterra/epidemiología
2.
Emerg Infect Dis ; 29(1): 170-174, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36573541

RESUMEN

In late 2021, highly pathogenic avian influenza A(H5N8) clade 2.3.4.4b viruses were detected in domestic ducks in poultry markets in Cambodia. Surveillance, biosafety, and biosecurity efforts should be bolstered along the poultry value chain to limit spread and infection risk at the animal-human interface.


Asunto(s)
Subtipo H5N8 del Virus de la Influenza A , Gripe Aviar , Gripe Humana , Enfermedades de las Aves de Corral , Animales , Humanos , Gripe Aviar/epidemiología , Cambodia/epidemiología , Aves , Patos , Aves de Corral , Filogenia
3.
J Gen Virol ; 104(5)2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37167079

RESUMEN

The 2021/2022 epizootic of high pathogenicity avian influenza (HPAIV) remains one of the largest ever in the UK, being caused by a clade 2.3.4.4b H5N1 HPAIV. This epizootic affected more than 145 poultry premises, most likely through independent incursion from infected wild birds, supported by more than 1700 individual detections of H5N1 from wild bird mortalities. Here an H5N1 HPAIV, representative of this epizootic (H5N1-21), was used to investigate its virulence, pathogenesis and transmission in layer chickens and Pekin ducks, two species of epidemiological importance. We inoculated both avian species with decreasing H5N1-21 doses. The virus was highly infectious in ducks, with high infection levels and accompanying shedding of viral RNA, even in ducks inoculated with the lowest dose, reflecting the strong waterfowl adaptation of the clade 2.3.4.4 HPAIVs. Duck-to-duck transmission was very efficient, coupled with high environmental contamination. H5N1-21 was frequently detected in water sources, serving as likely sources of infection for ducks, but inhalable dust and aerosols represented low transmission risks. In contrast, chickens inoculated with the highest dose exhibited lower rates of infection compared to ducks. There was no evidence for experimental H5N1-21 transmission to any naive chickens, in two stocking density scenarios, coupled with minimal and infrequent contamination being detected in the chicken environment. Systemic viral dissemination to multiple organs reflected the pathogenesis and high mortalities in both species. In summary, the H5N1-21 virus is highly infectious and transmissible in anseriformes, yet comparatively poorly adapted to galliformes, supporting strong host preferences for wild waterfowl. Key environmental matrices were also identified as being important in the epidemiological spread of this virus during the continuing epizootic.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Animales , Patos , Pollos , Subtipo H5N1 del Virus de la Influenza A/genética , Virulencia , Gripe Aviar/epidemiología , Animales Salvajes
4.
J Virol ; 96(22): e0129022, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36342296

RESUMEN

H9N2 avian influenza viruses (AIVs) have donated internal gene segments during the emergence of zoonotic AIVs, including H7N9. We used reverse genetics to generate A/Anhui/1/13 (H7N9) and three reassortant viruses (2:6 H7N9) which contained the hemagglutinin and neuraminidase from Anhui/13 (H7N9) and the six internal gene segments from H9N2 AIVs belonging to (i) G1 subgroup 2, (ii) G1 subgroup 3, or (iii) BJ94 lineages, enzootic in different regions throughout Asia. Infection of chickens with the 2:6 H7N9 containing G1-like H9N2 internal genes conferred attenuation in vivo, with reduced shedding and transmission to contact chickens. However, possession of BJ94-like H9N2 internal genes resulted in more rapid transmission and significantly elevated cloacal shedding compared to the parental Anhui/13 H7N9. In vitro analysis showed that the 2:6 H7N9 with BJ94-like internal genes had significantly increased replication compared to the Anhui/13 H7N9 in chicken cells. In vivo coinfection experiments followed, where chickens were coinfected with pairs of Anhui/13 H7N9 and a 2:6 H7N9 reassortant. During ensuing transmission events, the Anhui/13 H7N9 virus outcompeted 2:6 H7N9 AIVs with internal gene segments of BJ94-like or G1-like H9N2 viruses. Coinfection did lead to the emergence of novel reassortant genotypes that were transmitted to contact chickens. Some of the reassortant viruses had a greater replication in chicken and human cells compared to the progenitors. We demonstrated that the internal gene cassette determines the transmission fitness of H7N9 viruses in chickens, and the reassortment events can generate novel H7N9 genotypes with increased virulence in chickens and enhanced zoonotic potential. IMPORTANCE H9N2 avian influenza viruses (AIVs) are enzootic in poultry in different geographical regions. The internal genes of these viruses can be exchanged with other zoonotic AIVs, most notably the A/Anhui/1/2013-lineage H7N9, which can give rise to new virus genotypes with increased veterinary, economic and public health threats to both poultry and humans. We investigated the propensity of the internal genes of H9N2 viruses (G1 or BJ94) in the generation of novel reassortant H7N9 AIVs. We observed that the internal genes of H7N9 which were derivative of BJ94-like H9N2 virus have a fitness advantage compared to those from the G1-like H9N2 viruses for efficient transmission among chickens. We also observed the generation of novel reassortant viruses during chicken transmission which infected and replicated efficiently in human cells. Therefore, such emergent reassortant genotypes may pose an elevated zoonotic threat.


Asunto(s)
Coinfección , Subtipo H7N9 del Virus de la Influenza A , Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Gripe Humana , Animales , Humanos , Subtipo H7N9 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/genética , Pollos , Virus Reordenados/genética , Aves de Corral , Filogenia
5.
J Virol ; 96(5): e0185621, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35019727

RESUMEN

An H7N9 low-pathogenicity avian influenza virus (LPAIV) emerged in 2013 through genetic reassortment between H9N2 and other LPAIVs circulating in birds in China. This virus causes inapparent clinical disease in chickens, but zoonotic transmission results in severe and fatal disease in humans. To examine a natural reassortment scenario between H7N9 and G1 lineage H9N2 viruses predominant in the Indian subcontinent, we performed an experimental coinfection of chickens with A/Anhui/1/2013/H7N9 (Anhui/13) virus and A/Chicken/Pakistan/UDL-01/2008/H9N2 (UDL/08) virus. Plaque purification and genotyping of the reassortant viruses shed via the oropharynx of contact chickens showed H9N2 and H9N9 as predominant subtypes. The reassortant viruses shed by contact chickens also showed selective enrichment of polymerase genes from H9N2 virus. The viable "6+2" reassortant H9N9 (having nucleoprotein [NP] and neuraminidase [NA] from H7N9 and the remaining genes from H9N2) was successfully shed from the oropharynx of contact chickens, plus it showed an increased replication rate in human A549 cells and a significantly higher receptor binding to α2,6 and α2,3 sialoglycans compared to H9N2. The reassortant H9N9 virus also had a lower fusion pH, replicated in directly infected ferrets at similar levels compared to H7N9 and transmitted via direct contact. Ferrets exposed to H9N9 via aerosol contact were also found to be seropositive, compared to H7N9 aerosol contact ferrets. To the best of our knowledge, this is the first study demonstrating that cocirculation of H7N9 and G1 lineage H9N2 viruses could represent a threat for the generation of novel reassortant H9N9 viruses with greater virulence in poultry and a zoonotic potential. IMPORTANCE We evaluated the consequences of reassortment between the H7N9 and the contemporary H9N2 viruses of the G1 lineage that are enzootic in poultry across the Indian subcontinent and the Middle East. Coinfection of chickens with these viruses resulted in the emergence of novel reassortant H9N9 viruses with genes derived from both H9N2 and H7N9 viruses. The "6+2" reassortant H9N9 (having NP and NA from H7N9) virus was shed from contact chickens in a significantly higher proportion compared to most of the reassortant viruses, showed significantly increased replication fitness in human A549 cells, receptor binding toward human (α2,6) and avian (α2,3) sialic acid receptor analogues, and the potential to transmit via contact among ferrets. This study demonstrated the ability of viruses that already exist in nature to exchange genetic material, highlighting the potential emergence of viruses from these subtypes with zoonotic potential.


Asunto(s)
Coinfección , Subtipo H7N9 del Virus de la Influenza A , Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Virus Reordenados , Animales , Pollos , Coinfección/veterinaria , Hurones , Humanos , Subtipo H7N9 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/genética , Gripe Aviar/virología , Gripe Humana , Filogenia , Aves de Corral , Virus Reordenados/genética , Virus Reordenados/patogenicidad
6.
J Gen Virol ; 103(11)2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36354744

RESUMEN

Ferrets are widely used for experimental modelling of viral infections. However, background disease in ferrets could potentially confound intended experimental interpretation. Here we report the detection of a subclinical infection of ferret hepatitis E virus (FRHEV) within a colony sub-group of female laboratory ferrets that had been enrolled on an experimental viral infection study (non-hepatitis). Lymphoplasmacytic cuffing of periportal spaces was identified on histopathology but was negative for the RNA and antigens of the administered virus. Follow-up viral metagenomic analysis conducted on liver specimens revealed sequences attributed to FRHEV and these were confirmed by reverse-transcriptase polymerase chain reaction. Further genomic analysis revealed contiguous sequences spanning 79-95 % of the FRHEV genome and that the sequences were closely related to those reported previously in Europe. Using in situ hybridization by RNAScope, we confirmed the presence of HEV-specific RNA in hepatocytes. The HEV open reading frame 2 (ORF2) protein was also detected by immunohistochemistry in the hepatocytes and the biliary canaliculi. In conclusion, the results of our study provide evidence of background infection with FRHEV in laboratory ferrets. As this infection can be subclinical, we recommend routine monitoring of ferret populations using virological and liver function tests to avoid incorrect causal attribution of any liver disease detected in in vivo studies.


Asunto(s)
Virus de la Hepatitis E , Hepatitis E , Animales , Femenino , Virus de la Hepatitis E/genética , Hurones , ARN Viral/genética , ARN Viral/análisis , Hepatitis E/veterinaria , Reino Unido
7.
J Gen Virol ; 103(11)2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36748502

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19) in humans, has a wide host range, naturally infecting felids, canids, cervids, rodents and mustelids. Transmission of SARS-CoV-2 is universally accepted to occur via contact with contaminated secretions from the respiratory epithelium, either directly or indirectly. Transmission via droplet nuclei, generated from a cough or sneeze, has also been reported in several human and experimental animal scenarios. However, the role of droplet transmission at the human-animal interface remains to be fully elucidated. Here, the ferret infection model was used to investigate the routes of infection for the SARS-CoV-2 beta variant (B.1.351). Ferrets were exposed to droplets containing infectious SARS-CoV-2, ranging between 4 and 106 µm in diameter, simulating larger droplets produced by a cough from an infected person. Following exposure, viral RNA was detected on the fur of ferrets, and was deposited onto environmental surfaces, as well as the fur of ferrets placed in direct contact; SARS-CoV-2 remained infectious on the fur for at least 48 h. Low levels of viral RNA were detected in the nasal washes early post-exposure, yet none of the directly exposed, or direct-contact ferrets, became robustly infected or seroconverted to SARS-CoV-2. In comparison, ferrets intranasally inoculated with the SARS-CoV-2 beta variant became robustly infected, shedding viral RNA and infectious virus from the nasal cavity, with transmission to 75 % of naive ferrets placed in direct contact. These data suggest that larger infectious droplet nuclei and contaminated fur play minor roles in SARS-CoV-2 transmission among mustelids and potentially other companion animals.


Asunto(s)
COVID-19 , Animales , Humanos , SARS-CoV-2 , Hurones , Tos , Partículas y Gotitas de Aerosol , ARN Viral/genética
8.
Nature ; 529(7584): 101-4, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26738596

RESUMEN

Influenza pandemics occur unpredictably when zoonotic influenza viruses with novel antigenicity acquire the ability to transmit amongst humans. Host range breaches are limited by incompatibilities between avian virus components and the human host. Barriers include receptor preference, virion stability and poor activity of the avian virus RNA-dependent RNA polymerase in human cells. Mutants of the heterotrimeric viral polymerase components, particularly PB2 protein, are selected during mammalian adaptation, but their mode of action is unknown. We show that a species-specific difference in host protein ANP32A accounts for the suboptimal function of avian virus polymerase in mammalian cells. Avian ANP32A possesses an additional 33 amino acids between the leucine-rich repeats and carboxy-terminal low-complexity acidic region domains. In mammalian cells, avian ANP32A rescued the suboptimal function of avian virus polymerase to levels similar to mammalian-adapted polymerase. Deletion of the avian-specific sequence from chicken ANP32A abrogated this activity, whereas its insertion into human ANP32A, or closely related ANP32B, supported avian virus polymerase function. Substitutions, such as PB2(E627K), were rapidly selected upon infection of humans with avian H5N1 or H7N9 influenza viruses, adapting the viral polymerase for the shorter mammalian ANP32A. Thus ANP32A represents an essential host partner co-opted to support influenza virus replication and is a candidate host target for novel antivirals.


Asunto(s)
Proteínas Aviares/química , Proteínas Aviares/metabolismo , Especificidad del Huésped , Virus de la Influenza A/enzimología , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Aviares/deficiencia , Línea Celular , Pollos/virología , Cricetinae , Cricetulus , Perros , Evolución Molecular , Regulación Viral de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Subtipo H5N1 del Virus de la Influenza A/enzimología , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/fisiología , Subtipo H7N9 del Virus de la Influenza A/enzimología , Subtipo H7N9 del Virus de la Influenza A/genética , Subtipo H7N9 del Virus de la Influenza A/fisiología , Virus de la Influenza A/genética , Virus de la Influenza A/fisiología , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Proteínas Nucleares , Proteínas de Unión al ARN , ARN Polimerasa Dependiente del ARN/genética , Especificidad de la Especie , Transcripción Genética , Proteínas Virales/genética , Replicación Viral
9.
Euro Surveill ; 27(5)2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35115075

RESUMEN

On 5 January 2022, high pathogenicity avian influenza A(H5N1) was confirmed in an individual who kept a large flock of ducks at their home in England. The individual remained asymptomatic. H5N1 was confirmed in 19/20 sampled live birds on 22 December 2021. Comprehensive contact tracing (n = 11) revealed no additional primary cases or secondary transmissions. Active surveillance of exposed individuals is essential for case identification. Asymptomatic swabbing helped refine public health risk assessment and facilitated case management given changes in avian influenza epidemiology.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Gripe Humana , Animales , Aves , Patos , Humanos , Gripe Aviar/epidemiología , Gripe Humana/diagnóstico , Gripe Humana/epidemiología
10.
J Gen Virol ; 100(3): 414-430, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30672726

RESUMEN

The accessory protein, PB1-F2, of influenza A virus (IAV) functions in a chicken host to prolong infectious virus shedding and thus the transmission window. Here we show that this delay in virus clearance by PB1-F2 in chickens is accompanied by reduced transcript levels of type 1 interferon (IFN)-induced genes and NFκB-activated pro-inflammation cytokines. In vitro, two avian influenza isolate-derived PB1-F2 proteins, H9N2 UDL01 and H5N1 5092, exhibited the same antagonism of the IFN and pro-inflammation induction pathways seen in vivo, but to different extents. The two PB1-F2 proteins had different cellular localization in chicken cells, with H5N1 5092 being predominantly mitochondrial-associated and H9N2 UDL being cytoplasmic but not mitochondrial-localized. We hypothesized that PB1-F2 localization might influence the functionality of the protein during infection and that the protein sequence could alter cellular localization. We demonstrated that the sequence of the C-terminus of PB1-F2 determined cytoplasmic localization in chicken cells and this was linked with protein instability. Mitochondrial localization of PB1-F2 resulted in reduced antagonism of an NFκB-dependent promoter. In parallel, mitochondrial localization of PB1-F2 increased the potency of chicken IFN 2 induction antagonism. We suggest that mitochondrial localization of PB1-F2 restricts interaction with cytoplasmic-located IKKß, reducing NFκB-responsive promoter antagonism, but enhances antagonism of the IFN2 promoter through interaction with the mitochondrial adaptor MAVS. Our study highlights the differential mechanisms by which IAV PB1-F2 protein can dampen the avian host innate signalling response.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A/metabolismo , Subtipo H9N2 del Virus de la Influenza A/metabolismo , Gripe Aviar/inmunología , Interferón beta/genética , FN-kappa B/genética , Enfermedades de las Aves de Corral/genética , Proteínas Virales/metabolismo , Animales , Pollos , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/genética , Gripe Aviar/genética , Gripe Aviar/virología , Interferón beta/inmunología , FN-kappa B/inmunología , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/virología , Regiones Promotoras Genéticas , Proteínas Virales/genética
12.
J Virol ; 91(14)2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28468875

RESUMEN

H9N2 avian influenza viruses are enzootic in poultry across Asia and North Africa, where they pose a threat to human health as both zoonotic agents and potential pandemic candidates. Poultry vaccination against H9N2 viruses has been employed in many regions; however, vaccine effectiveness is frequently compromised due to antigenic drift arising from amino acid substitutions in the major influenza virus antigen hemagglutinin (HA). Using selection with HA-specific monoclonal antibodies, we previously identified H9N2 antibody escape mutants that contained deletions of amino acids in the 220 loop of the HA receptor binding sites (RBSs). Here we analyzed the impact of these deletions on virus zoonotic infection characteristics and fitness. We demonstrated that mutant viruses with RBS deletions are able to escape polyclonal antiserum binding and are able to infect and be transmitted between chickens. We showed that the deletion mutants have increased binding to human-like receptors and greater replication in primary human airway cells; however, the mutant HAs also displayed reduced pH and thermal stability. In summary, we infer that variant influenza viruses with deletions in the 220 loop could arise in the field due to immune selection pressure; however, due to reduced HA stability, we conclude that these viruses are unlikely to be transmitted from human to human by the airborne route, a prerequisite for pandemic emergence. Our findings underscore the complex interplay between antigenic drift and viral fitness for avian influenza viruses as well as the challenges of predicting which viral variants may pose the greatest threats for zoonotic and pandemic emergence.IMPORTANCE Avian influenza viruses, such as H9N2, cause disease in poultry as well as occasionally infecting humans and are therefore considered viruses with pandemic potential. Many countries have introduced vaccination of poultry to try to control the disease burden; however, influenza viruses are able to rapidly evolve to escape immune pressure in a process known as "antigenic drift." Previously, we experimentally generated antigenic-drift variants in the laboratory, and here, we test our "drifted" viruses to assess their zoonotic infection characteristics and transmissibility in chickens. We found that the drifted viruses were able to infect and be transmitted between chickens and showed increased binding to human-like receptors. However, the drift mutant viruses displayed reduced stability, and we predict that they are unlikely to be transmitted from human to human and cause an influenza pandemic. These results demonstrate the complex relationship between antigenic drift and the potential of avian influenza viruses to infect humans.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Evasión Inmune , Subtipo H9N2 del Virus de la Influenza A/inmunología , Subtipo H9N2 del Virus de la Influenza A/fisiología , Gripe Aviar/virología , Mutación , Replicación Viral , Animales , Sitios de Unión , Células Cultivadas , Pollos , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Subtipo H9N2 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/transmisión , Eliminación de Secuencia , Virulencia , Acoplamiento Viral
13.
J Assoc Physicians India ; 65(12): 97-99, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31556282

RESUMEN

Lemierres syndrome (LS) refers to suppurative thrombophlebitis of internal jugular vein (IJV) secondary to oropharyngeal infection. It is caused by the anaerobic bacteria Fusobacterium necrophorum. Here we report a case of LS secondary to retropharyngeal abscess in a pregnant lady with possible underlying connective tissue disorder. A 19-year old primigravida at 6-weeks of gestation, presented with fever, cough, dyspnea, right sided neck pain and swelling. Imaging showed right lower lobe pneumonia with bilateral pulmonary infiltrates and pleural effusion. Ultrasound of the neck showed right IJV thrombosis. Magnetic resonance imaging of the neck revealed a retropharyngeal abscess extending from C1 to C4 vertebral level. She had positive ANA, SS-A and Ro-52 titres. She was treated with piperacillin-tazobactam, metronidazole, enoxaparin and short course steroids. Even though she improved initially, fever recurred and she had a massive hemoptysis with hemothorax and expired.

14.
Indian J Crit Care Med ; 21(12): 869-871, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29307971

RESUMEN

A common misconception is that immune thrombocytopenic purpura (ITP) causes only bleeding diathesis. From this case vignette of a young male with ITP who had cerebral venous thrombosis, we highlight the importance of considering venous thrombosis in such patients when they present with focal cerebral signs.

15.
J Gen Virol ; 97(10): 2516-2527, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27558742

RESUMEN

Avian influenza is a significant economic burden on the poultry industry in geographical regions where it is enzootic. It also poses a public health concern when avian influenza subtypes infect humans, often with high mortality. Understanding viral genetic factors which positively contribute to influenza A virus (IAV) fitness - infectivity, spread and pathogenesis - is of great importance both for human and livestock health. PB1-F2 is a small accessory protein encoded by IAV and in mammalian hosts has been implicated in a wide range of functions that contribute to increased pathogenesis. In the avian host, the protein has been understudied despite high-level full-length conservation in avian IAV isolates, which is in contrast to the truncations of the PB1-F2 length frequently found in mammalian host isolates. Here we report that the presence of a full-length PB1-F2 protein, from a low pathogenicity H9N2 avian influenza virus, prolongs infectious virus shedding from directly inoculated chickens, thereby enhancing transmission of the virus by lengthening the transmission window to contact birds. As well as extending transmission, the presence of a full-length PB1-F2 suppresses pathogenicity evidenced by an increased minimum lethal dose in embryonated chicken eggs and increasing survival in directly infected birds when compared to a virus lacking an ORF for PB1-F2. We propose that there is a positive pressure to maintain a full-length functional PB1-F2 protein upon infection of avian hosts as it contributes to the effective transmission of IAV in the field.


Asunto(s)
Subtipo H9N2 del Virus de la Influenza A/fisiología , Gripe Aviar/virología , Enfermedades de las Aves de Corral/virología , Proteínas Virales/metabolismo , Esparcimiento de Virus , Animales , Pollos , Humanos , Subtipo H9N2 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/transmisión , Gripe Humana/virología , Enfermedades de las Aves de Corral/transmisión , Proteínas Virales/genética
16.
Vaccine ; 42(3): 653-661, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38143198

RESUMEN

Although commercial vaccines against Newcastle Disease have been available for decades, outbreaks still occur in the face of vaccination Further vaccination may accelerate viral evolution resulting in a further reduction in vaccine efficacy. A key question is whether genotype-matched vaccines can confer better protection against contemporary type 1 Avian Paramyxoviruses. To assess this, an in vivo vaccine-challenge study was undertaken to assess protection afforded by 'genotype-matched' and commercial vaccine formulations. Groups of chickens were vaccinated twice (prime-boost) with an inactivated preparation of either La Sota Clone 30, AV632-chicken-Cyprus-13 (genotype VII.2), or mock vaccine, and later challenged with virulent AV632-chicken-Cyprus-13. Post vaccinal serological responses differed, although both vaccination/challenge groups showed similar levels of clinical protection compared to the unvaccinated group, where 100 % mortality was observed. Shedding was significantly reduced in the vaccinated groups compared to the unvaccinated group. Virus dissemination in the tissues of vaccinated birds was comparable, but onset of infection was delayed. Two mutations were observed in the HN gene of the heterologous vaccine group; H199N and I192M, the latter thought to be associated with increased fusogenic potential. These data demonstrate that existing vaccine formulations confer similar levels of clinical protection to contemporary strains and that the antigenic heterogeneity of circulating strains does not impact upon shedding profiles in immunised birds. In conclusion, the ability of virulent APMV-1 to cause disease in vaccinated flocks is unlikely to be the result of antigenic mismatch alone, and other factors likely contribute to vaccination failure and breakthrough.


Asunto(s)
Enfermedad de Newcastle , Enfermedades de las Aves de Corral , Vacunas Virales , Animales , Pollos , Virus de la Enfermedad de Newcastle/genética , Enfermedad de Newcastle/prevención & control , Vacunación/veterinaria , Genotipo , Proyectos de Investigación , Esparcimiento de Virus , Anticuerpos Antivirales , Enfermedades de las Aves de Corral/prevención & control
17.
Res Vet Sci ; 173: 105279, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38704977

RESUMEN

Emerging pathogens can threaten human and animal health, necessitating reliable surveillance schemes to enable preparedness. We evaluated the repeatability and reproducibility of a method developed previously during a single year at one study site. Hunter-harvested ducks and geese were sampled for avian influenza virus at three discrete locations in the UK. H5N1 highly pathogenic avian influenza (HPAIV) was detected in four species (mallard [Anas platyrhynchos], Eurasian teal [Anas crecca], Eurasian wigeon [Mareca penelope] and pink-footed goose [Anser brachyrhynchus]) across all three locations and two non-HPAIV H5N1, influenza A positive detections were made from a mallard and Eurasian wigeon at two locations. Virus was detected within 1-to-4 days of sampling at every location. Application of rapid diagnostic methods to samples collected from hunter-harvested waterfowl offers potential as an early warning system for the surveillance and monitoring of emerging and existing strains of avian influenza A viruses in key avian species.


Asunto(s)
Patos , Gansos , Gripe Aviar , Animales , Gripe Aviar/virología , Gripe Aviar/epidemiología , Reino Unido/epidemiología , Patos/virología , Reproducibilidad de los Resultados , Gansos/virología , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación
18.
Viruses ; 16(4)2024 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-38675958

RESUMEN

Reverse zoonotic transmission events of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been described since the start of the pandemic, and the World Organisation for Animal Health (WOAH) designated the detection of SARS-CoV-2 in animals a reportable disease. Eighteen domestic and zoo animals in Great Britain and Jersey were tested by APHA for SARS-CoV-2 during 2020-2023. One domestic cat (Felis catus), three domestic dogs (Canis lupus familiaris), and three Amur tigers (Panthera tigris altaica) from a zoo were confirmed positive during 2020-2021 and reported to the WOAH. All seven positive animals were linked with known SARS-CoV-2 positive human contacts. Characterisation of the SARS-CoV-2 variants by genome sequencing indicated that the cat was infected with an early SARS-CoV-2 lineage. The three dogs and three tigers were infected with the SARS-CoV-2 Delta variant of concern (B.1.617.2). The role of non-human species in the onward transmission and emergence of new variants of SARS-CoV-2 remain poorly defined. Continued surveillance of SARS-CoV-2 in relevant domestic and captive animal species with high levels of human contact is important to monitor transmission at the human-animal interface and to assess their role as potential animal reservoirs.


Asunto(s)
Animales de Zoológico , COVID-19 , SARS-CoV-2 , Tigres , Animales , Perros , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/clasificación , COVID-19/transmisión , COVID-19/epidemiología , COVID-19/veterinaria , COVID-19/virología , Tigres/virología , Gatos , Animales de Zoológico/virología , Inglaterra/epidemiología , Humanos , Filogenia , Enfermedades de los Perros/virología , Enfermedades de los Perros/epidemiología , Enfermedades de los Perros/transmisión , Zoonosis/virología , Zoonosis/transmisión , Zoonosis/epidemiología
19.
Emerg Microbes Infect ; 13(1): 2348521, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38686548

RESUMEN

A free-range organic broiler (Gallus gallus domesticus) premises in Staffordshire was infected by high pathogenicity avian influenza virus (HPAIV) H5N8 during the 2020-2021 epizootic in the United Kingdom (UK). Following initial confirmation of the infection in poultry, multiple wild bird species were seen scavenging on chicken carcasses. Detected dead wild birds were subsequently demonstrated to have been infected and succumbed to HPAIV H5N8. Initially, scavenging species, magpie (Pica pica) and raven (Corvus corax) were found dead on the premises but over the following days, buzzards (Buteo buteo) were also found dead within the local area with positive detection of HPAIV in submitted carcasses. The subacute nature of microscopic lesions within a buzzard was consistent with the timeframe of infection. Finally, a considerable number of free-living pheasants (Phasianus colchicus) were also found dead in the surrounding area, with carcasses having higher viral antigen loads compared to infected chickens. Limited virus dissemination was observed in the carcasses of the magpie, raven, and buzzard. Further, an avirulent avian paramyxovirus type 1 (APMV-1) was detected within poultry samples as well as in the viscera of a magpie infected with HPAIV. Immunohistochemistry did not reveal colocalization of avian paramyxovirus antigens with lesions, supporting an avirulent APMV-1 infection. Overall, this case highlights scenarios in which bi-directional transmission of avian viral diseases between commercial and wild bird species may occur. It also underlines the importance of bio separation and reduced access when infection pressure from HPAIV is high.


Asunto(s)
Animales Salvajes , Pollos , Brotes de Enfermedades , Subtipo H5N8 del Virus de la Influenza A , Gripe Aviar , Enfermedades de las Aves de Corral , Animales , Gripe Aviar/transmisión , Gripe Aviar/virología , Gripe Aviar/epidemiología , Pollos/virología , Animales Salvajes/virología , Brotes de Enfermedades/veterinaria , Subtipo H5N8 del Virus de la Influenza A/aislamiento & purificación , Subtipo H5N8 del Virus de la Influenza A/patogenicidad , Subtipo H5N8 del Virus de la Influenza A/genética , Reino Unido/epidemiología , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/transmisión , Enfermedades de las Aves de Corral/epidemiología , Aves de Corral/virología , Cuervos/virología , Aves/virología
20.
Emerg Microbes Infect ; 13(1): 2361792, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38828793

RESUMEN

Europe has suffered unprecedented epizootics of high pathogenicity avian influenza (HPAI) clade 2.3.4.4b H5N1 since Autumn 2021. As well as impacting upon commercial and wild avian species, the virus has also infected mammalian species more than ever observed previously. Mammalian species involved in spill over events have primarily been scavenging terrestrial carnivores and farmed mammalian species although marine mammals have also been affected. Alongside reports of detections of mammalian species found dead through different surveillance schemes, several mass mortality events have been reported in farmed and wild animals. In November 2022, an unusual mortality event was reported in captive bush dogs (Speothos venaticus) with clade 2.3.4.4b H5N1 HPAIV of avian origin being the causative agent. The event involved an enclosure of 15 bush dogs, 10 of which succumbed during a nine-day period with some dogs exhibiting neurological disease. Ingestion of infected meat is proposed as the most likely infection route.


Asunto(s)
Animales Salvajes , Subtipo H5N1 del Virus de la Influenza A , Infecciones por Orthomyxoviridae , Animales , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Reino Unido/epidemiología , Animales Salvajes/virología , Infecciones por Orthomyxoviridae/veterinaria , Infecciones por Orthomyxoviridae/virología , Infecciones por Orthomyxoviridae/mortalidad , Infecciones por Orthomyxoviridae/transmisión , Canidae , Gripe Aviar/virología , Gripe Aviar/mortalidad , Gripe Aviar/transmisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA