Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Brain ; 147(8): 2745-2760, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38758090

RESUMEN

Autoantibodies directed against the N-methyl-D-aspartate receptor (NMDAR-Ab) are pathogenic immunoglobulins detected in patients suffering from NMDAR encephalitis. NMDAR-Ab alter the receptor membrane trafficking, synaptic transmission and neuronal network properties, leading to neurological and psychiatric symptoms in patients. Patients often have very little neuronal damage but rapid and massive (treatment-responsive) brain dysfunctions related to an unknown early mechanism of NMDAR-Ab. Our understanding of this early molecular cascade remains surprisingly fragmented. Here, we used a combination of single molecule-based imaging of membrane proteins to unveil the spatiotemporal action of NMDAR-Ab on live hippocampal neurons. We first demonstrate that different clones of NMDAR-Ab primarily affect extrasynaptic (and not synaptic) NMDARs. In the first minutes, NMDAR-Ab increase extrasynaptic NMDAR membrane dynamics, declustering its surface interactome. NMDAR-Ab also rapidly reshuffle all membrane proteins located in the extrasynaptic compartment. Consistent with this alteration of multiple proteins, effects of NMDAR-Ab were not mediated through the sole interaction between the NMDAR and EphB2 receptor. In the long term, NMDAR-Ab reduce the NMDAR synaptic pool by slowing down receptor membrane dynamics in a cross-linking-independent manner. Remarkably, exposing only extrasynaptic NMDARs to NMDAR-Ab was sufficient to produce their full-blown effect on synaptic receptors. Collectively, we demonstrate that NMDAR-Ab initially impair extrasynaptic proteins, then the synaptic ones. These data thus shed new and unsuspected light on the mode of action of NMDAR-Ab and, probably, our understanding of (extra)synaptopathies.


Asunto(s)
Autoanticuerpos , Hipocampo , Neuronas , Receptores de N-Metil-D-Aspartato , Receptores de N-Metil-D-Aspartato/inmunología , Receptores de N-Metil-D-Aspartato/metabolismo , Autoanticuerpos/inmunología , Autoanticuerpos/farmacología , Animales , Hipocampo/metabolismo , Neuronas/metabolismo , Ratas , Sinapsis/metabolismo , Humanos , Células Cultivadas , Receptor EphB2/metabolismo , Ratones , Encefalitis Antirreceptor N-Metil-D-Aspartato/inmunología
2.
Neurobiol Dis ; 147: 105161, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33166697

RESUMEN

Over the past decades, the identification of autoimmune encephalitis in which patients express autoantibodies directed against neurotransmitter receptors has generated great hope to shed new light on the molecular mechanisms underpinning neurological and psychiatric conditions. Among these autoimmune encephalitides, the discovery of autoantibodies directed against the glutamatergic NMDA receptor (NMDAR-Ab), in the anti-NMDAR encephalitis, has provided some key information on how complex neuropsychiatric symptoms can be caused by a deficit in NMDAR signalling. Yet, NMDAR-Abs have also been detected in several neurological and psychiatric conditions, as well as in healthy individuals. In addition, these various NMDAR-Abs appear to have different molecular properties and pathogenicities onto receptors and synaptic functions. Here, we discuss the current view on the variety of NMDAR-Abs and, in particular, how these autoantibodies can lead to receptor dysfunction in neuronal networks. Since our mechanistic understanding on patients' NMDAR-Abs is still in its infancy, several complementary processes can be proposed and further in-depth molecular and cellular investigations will surely reveal key insights. Autoantibodies represent a great opportunity to gain knowledge on the etiology of neuropsychiatric disorders and pave the way for innovative therapeutic strategies. ONE SENTENCE SUMMARY: Current view on patients' autoantibody against NMDAR.


Asunto(s)
Encefalitis Antirreceptor N-Metil-D-Aspartato/inmunología , Autoanticuerpos/inmunología , Autoinmunidad/inmunología , Animales , Autoantígenos/inmunología , Humanos
3.
Neurol Neuroimmunol Neuroinflamm ; 11(4): e200261, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38771989

RESUMEN

OBJECTIVES: A positive allosteric modulator of the NMDAR, SGE-301, has been shown to reverse the alterations caused by the antibodies of patients with anti-NMDAR encephalitis (NMDARe). However, the mechanisms involved beyond receptor modulation are unclear. In this study, we aimed to investigate how this modulator affects NMDAR membrane dynamics. METHODS: Cultured hippocampal neurons were treated with SGE-301 or vehicle, alongside with immunoglobulins G (IgG) from patients with NMDARe or healthy controls. NMDAR surface dynamics were assessed with single-molecule imaging by photoactivated localization microscopy. RESULTS: NMDAR trajectories from neurons treated with SGE-301 were less confinement, with increased diffusion coefficients. This effect mainly occurred at synapses because extrasynaptic diffusion and confinement were minimally affected by SGE-301. Treatment with patients' IgG reduced NMDAR surface dynamics and increased their confinement. Remarkably, SGE-301 incubation antagonized patients' IgG effects in both synaptic and extrasynaptic membrane compartments, restoring diffusion and confinement values similar to those from neurons exposed to control IgG. DISCUSSION: We demonstrate that SGE-301 upregulates NMDAR surface diffusion and antagonizes the pathogenic effects of patients' IgG on NMDAR membrane organization. These findings suggest a potential therapeutic strategy for NMDARe.


Asunto(s)
Encefalitis Antirreceptor N-Metil-D-Aspartato , Hipocampo , Inmunoglobulina G , Neuronas , Receptores de N-Metil-D-Aspartato , Humanos , Hipocampo/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/inmunología , Animales , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Inmunoglobulina G/farmacología , Regulación Alostérica/efectos de los fármacos , Células Cultivadas , Autoanticuerpos/farmacología , Femenino , Masculino , Ratas , Adulto , Imagen Individual de Molécula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA