Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 32(3): 3647-3659, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38297581

RESUMEN

We propose a new holographic interferometric technique of phase interrogation for nanophotonic sensors, allowing to reach low phase noise and fluctuation by using a digital micromirror device spatial light modulator. With the spatial light modulator, both beam shaping and phase shifting interferometry can be simultaneously managed, hence enabling the interrogation of nanophotonic devices with a common-path heterodyne Young's interference experiment. The efficiency of the technique is illustrated in the particular case of temperature sensing using Tamm plasmon photonic crystals. The hologram sensor allows to probe resonant structures with deep attenuation at resonance, such as resonant structures at critical coupling or with phase singularities.

2.
Sensors (Basel) ; 21(9)2021 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-34063656

RESUMEN

Our latest advances in the field of miniaturized optical PM sensors are presented. This sensor combines a hybrid fluidic-optronic CMOS (holed retina) that is able to record a specific irradiance pattern scattered by an illuminated particle (scattering signature), while enabling the circulation of particles toward the sensing area. The holed retina is optically coupled with a monolithic, millimeter-sized, refracto-reflective optical system. The latter notably performs an optical pre-processing of signatures, with a very wide field of view of scattering angles. This improves the sensitivity of the sensors, and simplifies image processing. We report the precise design methodology for such a sensor, as well as its fabrication and characterization using calibrated polystyrene beads. Finally, we discuss its ability to characterize particles and its potential for further miniaturization and integration.

3.
Opt Express ; 23(24): 31085-97, 2015 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-26698737

RESUMEN

In this paper, we present a simple approach to study the coupling mechanisms between a plasmonic system consisting of bowtie nanoantennas and a photonic structure based on a Fabry-Perot interferometer. The nanoantenna array is represented by an equivalent homogeneous layer placed at the interferometer surface and yielding the effective dielectric function of the NA resonance. A phase matching model based on thin film interference is developed to describe the multi-layer interferences in the device and to analyze the fringe variations induced by the introduction of the plasmonic layer. The general model is validated by an experimental system consisting of a bowtie nanoantenna array and a porous-silicon-based interferometer. The optical response of this hybrid device exhibits both the enhancement induced by the nanoantenna resonance and the fringe pattern of the interferometer. Using the phase matching model, we demonstrate that strong coupling can occur in such a system, leading to fringe splitting. A study of the splitting strength and of the coupling behavior is given. The model study performed in this work enables to gain deeper understanding of the optical behavior of plasmonic/photonic hybrid devices.

4.
Nanotechnology ; 25(31): 315201, 2014 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-25030432

RESUMEN

We propose and demonstrate a hybrid photonic-plasmonic nanolaser that combines the light harvesting features of a dielectric photonic crystal cavity with the extraordinary confining properties of an optical nano-antenna. For this purpose, we developed a novel fabrication method based on multi-step electron-beam lithography. We show that it enables the robust and reproducible production of hybrid structures, using a fully top-down approach to accurately position the antenna. Coherent coupling of the photonic and plasmonic modes is highlighted and opens up a broad range of new hybrid nanophotonic devices.

5.
ACS Omega ; 8(31): 28898-28909, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37576693

RESUMEN

Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-ToF MS) is a promising strategy for clinical diagnosis based on metabolite detection. However, several bottlenecks (such as the lack of reproducibility in analysis, the presence of an important background in low-mass range, and the lack of organic matrix for some molecules) prevent its transfer to clinical cases. These limitations can be addressed by using nanoporous silicon surfaces chemically functionalized with silane monolayers. In the present study, sepsis metabolite biomarkers were used to investigate the effects of silane monolayers and porous silicon substrates on MALDI-ToF MS analysis (signal-to-noise value (S/N), relative standard deviation of the S/N of triplicate samples (STDmean), and intra-substrates uniformity). Also, the impact of the physicochemical properties of metabolites, with different isoelectric points and hydrophobic-hydrophilic balances, was assessed. Four different silane molecules, with various alkyl chain lengths and head-group charges, were self-assembled in monolayers on plane and porous silicon surfaces. Their surface coverage and conformity were investigated by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The seven metabolites detected on the stainless-steel target plate (lysophosphatidylcholine, caffeine, phenylalanine, creatinine, valine, arginine, and glycerophosphocholine) are also detected on the silanized and bare, plane and porous silicon surfaces. Moreover, two metabolites, glycine and alanine, which are not detected on the stainless-steel target plate, are detected on all silanized surfaces, except glycine which is not detected on CH3 short-modified porous silicon and on the bare plane silicon substrate. In addition, whatever the metabolites (except phenylalanine and valine), at least one of the silicon surfaces allows to increase the S/N value in comparison with the stainless-steel target plate. Also, the heterogeneity of matrix crystallization features is linked to the STDmean which is poor on the NH3+ monolayer on plane substrate and better on the NH3+ monolayer on porous substrate, for most of the metabolites. Nevertheless, matrix crystallization features are not sufficient to systematically get high STDmean and uniformity in MALDI-ToF MS analysis. Indeed, the physicochemical properties of metabolites and surfaces, limitations in metabolite extraction from the pores, and improvement in metabolite desorption due to the pores are shown to significantly impact MS analysis. In particular, in the case of the most hydrophobic metabolites studied, the highest S/N values and the best STDmean and uniformity (the lowest values) are reached by using porous substrates, while in the case of the most hydrophilic metabolites studied, plane substrates demonstrated the highest S/N and the lowest STDmean. No clear trend of surface chemistry was evidenced.

6.
Opt Express ; 20 Suppl 4: A465-75, 2012 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-22828615

RESUMEN

In this paper, we present the integration of an absorbing photonic crystal within a monocrystalline silicon thin film photovoltaic stack fabricated without epitaxy. Finite difference time domain optical simulations are performed in order to design one- and two-dimensional photonic crystals to assist crystalline silicon solar cells. The simulations show that the 1D and 2D patterned solar cell stacks would have an increased integrated absorption in the crystalline silicon layer would increase of respectively 38% and 50%, when compared to a similar but unpatterned stack, in the whole wavelength range between 300 nm and 1100 nm. In order to fabricate such patterned stacks, we developed an effective set of processes based on laser holographic lithography, reactive ion etching and inductively coupled plasma etching. Optical measurements performed on the patterned stacks highlight the significant absorption increase achieved in the whole wavelength range of interest, as expected by simulation. Moreover, we show that with this design, the angle of incidence has almost no influence on the absorption for angles as high as around 60°.

7.
Langmuir ; 26(7): 5141-6, 2010 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-20000761

RESUMEN

The control of surface wetting properties to produce robust and strong hydrophobic and oleophobic effects on intrinsically oleophilic surfaces is at the heart of many technological applications. In this paper, we explore the conditions to observe such effects when the roughness of the substrate is of fractal nature and consists of nanofeatures obtained by the ion track etching technique. The wetting properties were investigated using eight different liquids with surface tensions gamma varying from 18 to 72 mN m(-1). While it is observed that all the tested oils readily wet the flat substrates, it is found that the contact angles are systematically exalted on the rough surfaces even for the liquids with very low surface tension. For liquids with gamma > or = 25 mN m(-1) an oleophobic behavior is clearly induced by the nanostructuration. For liquids with gamma < 25 mN m(-1), although the contact angle is enhanced on the nanorough surfaces, it conserves its oleophilic character (theta* lower than 90 degrees). Moreover, our experiments show that even in the case of hexane, liquid having the lowest surface tension, the homogeneous wetting (Wenzel state) is never reached. This high resistance to liquid impregnation is discussed within the framework of recent approaches explaining the wetting properties of superoleophobic surfaces.

8.
Nanoscale ; 7(3): 1181-92, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25488835

RESUMEN

In this article, we show for the first time, both theoretically and empirically, that plasmonic coupling can be used to generate Localized Surface Plasmon Resonances (LSPRs) in transition metal dimeric nano-antennas (NAs) over a broad spectral range (from the visible to the near infrared) and that the spectral position of the resonance can be controlled through morphological variation of the NAs (size, shape, interparticle distance). First, accurate calculations using the generalized Mie theory on spherical dimers demonstrate that we can take advantage of the plasmonic coupling to enhance LSPRs over a broad spectral range for many transition metals (Pt, Pd, Cr, Ni etc.). The LSPR remains broad for low interparticle distances and masks the various hybridized modes within the overall resonance. However, an analysis of the charge distribution on the surface of the nanoparticles reveals these modes and their respective contributions to the observed LSPR. In the case of spherical dimers, the transfer of the oscillator strengths from the "dipolar" mode to higher orders involves a maximum extinction cross-section for intermediate interparticle distances of a few nanometers. The emergence of the LSPR has been then experimentally illustrated with parallelepipedal NAs (monomers and dimers) made of various transition metals (Pt, Pd and Cr) and elaborated by nanolithography. Absolute extinction cross-sections have been measured with the spatial modulation spectroscopy technique over a broad spectral range (300-900 nm) for individual NAs, the morphology of which has been independently characterized by electron microscopy imaging. A clear enhancement of the LSPR has been revealed for a longitudinal excitation and plasmonic coupling has been clearly evidenced in dimers by an induced redshift and broadening of the LSPR compared to monomers. Furthermore, the LSPR has been shown to be highly sensitive to slight modifications of the interparticle distance. All the experimental results are well in agreement with finite element method (FEM) calculations in which the main geometrical parameters characterizing the NAs have been derived from electron microscopy imaging analysis. The main advantage of dimers as compared to monomers lies in the generation of a well-defined and highly enhanced electromagnetic field (the so-called "hot spots") within the interparticle gap that can be exploited in photo-catalysis, magneto-plasmonics or nano-sensing.

9.
Nanotechnology ; 19(48): 485103, 2008 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-21836293

RESUMEN

The paper shows the different methods to attach a molecule to detect streptavidin to a dielectric particle made of a rare-earth oxide core and a polysiloxane shell containing fluorescein. First, the detection of streptavidin binding on a biotinylated gold substrate can be achieved in three ways: the shift of the surface plasmon resonance of the substrate and the double luminescence (organic and inorganic) of the core/shell particle. Second, these detections are efficient even after elimination upon thermal annealing of all the undesired molecules that skew the assays. Finally, the particle that ballasts the protein enhances its binding kinetics and increases the localized surface plasmon resonance shift that detects the binding.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA