Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Angew Chem Int Ed Engl ; 63(5): e202306503, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-37466922

RESUMEN

Electrochemical energy conversion devices are considered key in reducing CO2 emissions and significant efforts are being applied to accelerate device development. Unlike other technologies, low temperature electrolyzers have the ability to directly convert CO2 into a range of value-added chemicals. To make them commercially viable, however, device efficiency and durability must be increased. Although their design is similar to more mature water electrolyzers and fuel cells, new cell concepts and components are needed. Due to the complexity of the system, singular component optimization is common. As a result, the component interplay is often overlooked. The influence of Fe-species clearly shows that the cell must be considered holistically during optimization, to avoid future issues due to component interference or cross-contamination. Fe-impurities are ubiquitous, and their influence on single components is well-researched. The activity of non-noble anodes has been increased through the deliberate addition of iron. At the same time, however, Fe-species accelerate cathode and membrane degradation. Here, we interpret literature on single components to gain an understanding of how Fe-species influence low temperature CO2 electrolyzers holistically. The role of Fe-species serves to highlight the need for considerations regarding component interplay in general.

2.
Inorg Chem ; 62(23): 8903-8913, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37260199

RESUMEN

Magnesium vanadate (MgV2O6) and its alloys with copper vanadate were synthesized via the solution combustion technique. Phase purity and solid solution formation were confirmed by a variety of experimental techniques, supported by electronic structure simulations based on density functional theory (DFT). Powder X-ray diffraction combined with Rietveld refinement, laser Raman spectroscopy, diffuse reflectance spectroscopy, and high-resolution transmission electron microscopy showed single-phase alloy formation despite the MgV2O6 and CuV2O6 end members exhibiting monoclinic and triclinic crystal systems, respectively. DFT-calculated optical band gaps showed close agreement in the computed optical bandgaps with experimentally derived values. Surface photovoltage spectroscopy, ambient-pressure photoemission spectroscopy, and Kelvin probe contact potential difference (work function) measurements confirmed a systematic variation in the optical bandgap modification and band alignment as a function of stoichiometry in the alloy composition. These data indicated n-type semiconductor behavior for all the samples which was confirmed by photoelectrochemical measurements.

3.
Angew Chem Int Ed Engl ; 62(28): e202302789, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-36971005

RESUMEN

Electrocatalytic CO2 reduction reaction (CO2 RR) in membrane electrode assembly (MEA) systems is a promising technology. Gaseous CO2 can be directly transported to the cathode catalyst layer, leading to enhanced reaction rate. Meanwhile, there is no liquid electrolyte between the cathode and the anode, which can help to improve the energy efficiency of the whole system. The remarkable progress achieved recently points out the way to realize industrially relevant performance. In this review, we focus on the principles in MEA for CO2 RR, focusing on gas diffusion electrodes and ion exchange membranes. Furthermore, anode processes beyond the oxidation of water are considered. Besides, the voltage distribution is scrutinized to identify the specific losses related to the individual components. We also summarize the progress on the generation of different reduced products together with the corresponding catalysts. Finally, the challenges and opportunities are highlighted for future research.

4.
Anal Chem ; 94(41): 14118-14125, 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36190777

RESUMEN

Different environmental and industrial technologies seek for fast and automatic ammonia detection systems, capable of the selective measurement of the concentration of its isotopes at sub-ppm levels, without any interference with the common contaminants. In this work, we report the quasi-simultaneous measurement of 14NH3 and 15NH3 concentrations based on a near-infrared diode laser-based photoacoustic system. Using a widely tunable external cavity diode laser, four nearby wavelengths within the range of 1531.3-1531.8 nm were optimal circumstances for sensitive detection, while avoiding interference with water vapor. Subsequently, a more robust distributed feedback diode laser was employed to tune the laser wavelength on the sub-second timescale by varying its driving current rather than using much slower temperature tuning. The detection limit of our system is 0.15 and 0.73 ppm for 14NH3 and 15NH3 (with an accuracy below 0.1%), respectively, and the response time is 3.5 s.


Asunto(s)
Amoníaco , Vapor , Rayos Láser , Análisis Espectral
5.
J Am Chem Soc ; 142(52): 21595-21614, 2020 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-33337148

RESUMEN

Metal-halide perovskites transformed optoelectronics research and development during the past decade. They have also gained a foothold in photocatalytic and photoelectrochemical processes recently, but their sensitivity to the most commonly applied solvents and electrolytes together with their susceptibility to photocorrosion hinders such applications. Understanding the elementary steps of photocorrosion of these materials can aid the endeavor of realizing stable devices. In this Perspective, we discuss both thermodynamic and kinetic aspects of photocorrosion processes occurring at the interface of perovskite photocatalysts and photoelectrodes with different electrolytes. We show how combined in situ and operando electrochemical techniques can reveal the underlying mechanisms. Finally, we also discuss emerging strategies to mitigate photocorrosion (such as surface protection, materials and electrolyte engineering, etc.).

6.
Adv Funct Mater ; 30(31): 2002124, 2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32774199

RESUMEN

In this study, the photoelectrochemical behavior of electrodeposited FeNiOOH/Fe2O3/graphene nanohybrid electrodes is investigated, which has precisely controlled structure and composition. The photoelectrode assembly is designed in a bioinspired manner where each component has its own function: Fe2O3 is responsible for the absorption of light, the graphene framework for proper charge carrier transport, while the FeNiOOH overlayer for facile water oxidation. The effect of each component on the photoelectrochemical behavior is studied by linear sweep photovoltammetry, incident photon-to-charge carrier conversion efficiency measurements, and long-term photoelectrolysis. 2.6 times higher photocurrents are obtained for the best-performing FeNiOOH/Fe2O3/graphene system compared to its pristine Fe2O3 counterpart. Transient absorption spectroscopy measurements reveal an increased hole-lifetime in the case of the Fe2O3/graphene samples. Long-term photoelectrolysis measurements in combination with Raman spectroscopy, however, prove that the underlying nanocarbon framework is corroded by the photogenerated holes. This issue is tackled by the electrodeposition of a thin FeNiOOH overlayer, which rapidly accepts the photogenerated holes from Fe2O3, thus eliminating the pathway leading to the corrosion of graphene.

7.
J Org Chem ; 85(8): 5158-5172, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32189503

RESUMEN

According to the currently accepted structure-property relationships, aceno-pentalenes with an angular shape (fused to the 1,2-bond of the acene) exhibit higher antiaromaticity than those with a linear shape (fused to the 2,3-bond of the acene). To explore and expand the current view, we designed and synthesized molecules where two isomeric, yet, different, 8π antiaromatic subunits, a benzocyclobutadiene (BCB) and a pentalene, are combined into, respectively, an angular and a linear topology via an unsaturated six-membered ring. The antiaromatic character of the molecules is supported experimentally by 1H NMR, UV-vis, and cyclic voltammetry measurements and X-ray crystallography. The experimental results are further confirmed by theoretical studies including the calculation of several aromaticity indices (NICS, ACID, HOMA, FLU, MCI). In the case of the angular molecule, double bond-localization within the connecting six-membered ring resulted in reduced antiaromaticity of both the BCB and pentalene subunits, while the linear structure provided a competitive situation for the two unequal [4n]π subunits. We found that in the latter case the BCB unit alleviated its unfavorable antiaromaticity more efficiently, leaving the pentalene with strong antiaromaticity. Thus, a reversed structure-antiaromaticity relationship when compared to aceno-pentalenes was achieved.

8.
J Am Chem Soc ; 141(27): 10812-10820, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31259546

RESUMEN

Halide ion mobility in metal halide perovskites remains an intriguing phenomenon, influencing their optical and photovoltaic properties. Selective injection of holes through electrochemical anodic bias has allowed us to probe the effect of hole trapping at iodide (0.9 V) and bromide (1.15 V) in mixed halide perovskite (CH3NH3PbBr1.5I1.5) films. Upon trapping holes at the iodide site, the iodide gradually gets expelled from the mixed halide film (as iodine and/or triiodide ion), leaving behind re-formed CH3NH3PbBr3 domains. The weakening of the Pb-I bond following the hole trapping (oxidation of the iodide site) and its expulsion from the lattice in the form of iodine provided further insight into the photoinduced segregation of halide ions in mixed halide perovskite films. Transient absorption spectroscopy revealed that the iodide expulsion process leaves a defect-rich perovskite lattice behind as charge carrier recombination in the re-formed lattice is greatly accelerated. The selective mobility of iodide species provides insight into the photoinduced phase segregation and its implication in the stable operation of perovskite solar cells.

9.
Chemphyschem ; 20(20): 2635-2646, 2019 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-31410949

RESUMEN

Two polymorphs of AgVO3 , namely the α- and ß- forms, were prepared and their physical, structural, optical, electrochemical, and photoelectrochemical characteristics were compared using a battery of experimental and theoretical tools. A two-step method, previously developed in the our laboratory for the electrodeposition of inorganic semiconductor films, was applied to the electrosynthesis of silver vanadate (AgVO3 ) films on transparent, conducting oxide surfaces. In the first step, silver was cathodically deposited from a non-aqueous bath containing silver nitrate. In the second step, the silver film was anodically stripped in an aqueous medium containing ammonium metavanadate. The anodically generated silver ions at the interface underwent a precipitation reaction with the vanadate species to generate the desired product in situ. Each of these steps were mechanistically corroborated via the use of electrochemical quartz crystal microgravimetry, used in conjunction with voltammetry and coulometry. As-deposited films were crystalline and showed p-type semiconductor behavior. Theoretical insights are provided for the electronic origin of the αâ†’ß phase transformation in AgVO3 and the disparate optical band gaps of the two polymorphs. Finally, implications for the application of this material in solar cells are provided.

10.
Inorg Chem ; 58(7): 4553-4560, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30888802

RESUMEN

This study focuses on a solid solution series, Ca(La1- xCe x)2S4 (0 ≤ x ≤ 1), where the f electron density is absent in CaLa2S4 and is progressively increased until it is maximized in CaCe2S4. Correspondingly, these samples, synthesized by a sealed ampule method, showed progressive variations in color ranging from gray for CaLa2S4 to orange-red for CaCe2S4. The crystal structural nuances of both the end members and three solid solutions with x = 0.25, 0.50, and 0.75 were established with the complementary use of synchrotron X-ray diffraction and neutron scattering. Interestingly, these data were consistent with a two-phase composition centered around each nominal solid solution stoichiometry. Optical characterization via diffuse reflectance spectroscopy and Tauc analyses showed a shrinking of the energy band gap (from the UV to vis range) when Ce was progressively introduced into the host CaLa2S4 structure. These data were in concert with electronic band structure calculations, using density functional theory, which showed the progressive formation of an intermediate f band when Ce was introduced intro the structure. Photoelectrochemical measurements in an aqueous redox electrolyte, as well as surface photovoltage and Kelvin probe measurements, revealed all samples to be n-type semiconductors. The valence and conduction band edge positions of the end members and the three solid solutions could be mapped, on both the redox and vacuum reference energy scales, by combining these measurements with the optical data.

11.
J Am Chem Soc ; 140(1): 86-89, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29129051

RESUMEN

The charging of a mesoscopic TiO2 layer in a metal halide perovskite solar cell can influence the overall power conversion efficiency. By employing CsPbBr3 films deposited on a mesoscopic TiO2 film, we have succeeded in probing the influence of electrochemical bias on the charge carrier recombination process. The transient absorption spectroscopy experiments conducted at different applied potentials indicate a decrease in the charge carrier lifetimes of CsPbBr3 as we increase the potential from -0.6 to +0.6 V vs Ag/AgCl. The charge carrier lifetime increased upon reversing the applied bias, thus indicating the reversibility of the photoresponse to charging effects. The ultrafast spectroelectrochemical experiments described here offer a convenient approach to probe the charging effects in perovskite solar cells.

12.
J Am Chem Soc ; 139(19): 6682-6692, 2017 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-28460518

RESUMEN

Combination of an oxide semiconductor with a highly conductive nanocarbon framework (such as graphene or carbon nanotubes) is an attractive avenue to assemble efficient photoelectrodes for solar fuel generation. To fully exploit the possible synergies of the hybrid formation, however, precise knowledge of these systems is required to allow rational design and morphological engineering. In this paper, we present the controlled electrochemical deposition of nanocrystalline p-Cu2O on the surface of different graphene substrates. The developed synthetic protocol allowed tuning of the morphological features of the hybrids as deduced from electron microscopy. (Photo)electrochemical measurements (including photovoltammetry, electrochemical impedance spectroscopy, photocurrent transient analysis) demonstrated better performance for the 2D graphene containing photoelectrodes, compared to the bare Cu2O films, the enhanced performance being rooted in suppressed charge carrier recombination. To elucidate the precise role of graphene, comparative studies were performed with carbon nanotube (CNT) films and 3D graphene foams. These studies revealed, after allowing for the effect of increased surface area, that the 3D graphene substrate outperformed the other two nanocarbons. Its interconnected structure facilitated effective charge separation and transport, leading to better harvesting of the generated photoelectrons. These hybrid assemblies are shown to be potentially attractive candidates in photoelectrochemical energy conversion schemes, namely CO2 reduction.

13.
Chemistry ; 22(27): 9209-17, 2016 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-27243969

RESUMEN

This study establishes structure-property relationships for four synthetic flavin molecules as bioinspired redox mediators in electro- and photocatalysis applications. The studied flavin compounds were disubstituted with polar substituents at the N1 and N3 positions (alloxazine) or at the N3 and N10 positions (isoalloxazines). The electrochemical behavior of one such synthetic flavin analogue was examined in detail in aqueous solutions of varying pH in the range from 1 to 10. Cyclic voltammetry, used in conjunction with hydrodynamic (rotating disk electrode) voltammetry, showed quasi-reversible behavior consistent with freely diffusing molecules and an overall global 2e(-) , 2H(+) proton-coupled electron transfer scheme. UV/Vis spectroelectrochemical data was also employed to study the pH-dependent electrochemical behavior of this derivative. Substituent effects on the redox behavior were compared and contrasted for all the four compounds, and visualized within a scatter plot framework to afford comparison with prior knowledge on mostly natural flavins in aqueous media. Finally, a preliminary assessment of one of the synthetic flavins was performed of its electrocatalytic activity toward dioxygen reduction as a prelude to further (quantitative) studies of both freely diffusing and tethered molecules on various electrode surfaces.


Asunto(s)
Flavinas/química , Catálisis , Técnicas Electroquímicas , Electrodos , Transporte de Electrón , Flavinas/síntesis química , Hidrodinámica , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Oxígeno/química , Espectrofotometría Ultravioleta , Relación Estructura-Actividad
14.
ACS Catal ; 14(9): 6503-6512, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38721372

RESUMEN

Despite the considerable efforts made by the community, the high operation cell voltage of CO2 electrolyzers is still to be decreased to move toward commercialization. This is mostly due to the high energy need of the oxygen evolution reaction (OER), which is the most often used anodic pair for CO2 reduction. In this study, OER was replaced by the electrocatalytic oxidation of glycerol using carbon-supported Pt nanoparticles as an anode catalyst. In parallel, the reduction of CO2 to CO was performed at the Ag cathode catalyst using a membraneless microfluidic flow electrolyzer cell. Several parameters were optimized, starting from the catalyst layer composition (ionomer quality and quantity), through operating conditions (glycerol concentration, applied electrolyte flow rate, etc.), to the applied electrochemical protocol. By identifying the optimal conditions, a 75-85% Faradaic efficiency (FE) toward glycerol oxidation products (oxalate, glycerate, tartronate, lactate, glycolate, and formate) was achieved at 200 mA cm-2 total current density while the cathodic CO formation proceeded with close to 100% FE. With static protocols (potentio- or galvanostatic), a rapid loss of glycerol oxidation activity was observed during the long-term measurements. The anode catalyst was reactivated by applying a dynamic potential step protocol. This allowed the periodic reduction, hence, refreshing of Pt, ensuring stable, continuous operation for 5 h.

15.
ACS Energy Lett ; 9(6): 3187-3203, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38911533

RESUMEN

Understanding photophysical processes in lead halide perovskites is an important aspect of optimizing the performance of optoelectronic devices. The determination of exact charge carrier extraction rate constants remains elusive, as there is a large and persistent discrepancy in the reported absolute values. In this review, we concentrate on experimental procedures adopted in the literature to obtain kinetic estimates of charge transfer processes and limitations imposed by the spectroscopy technique employed. Time-resolved techniques (e.g., transient absorption-reflection and time-resolved photoluminescence spectroscopy) are commonly employed to probe charge transfer at perovskite/transport layer interfaces. The variation in sample preparation and measurement conditions can produce a wide dispersion of the measured kinetic parameters. The selected time window and the kinetic fitting model employed introduce additional uncertainty. We discuss here evaluation strategies that rely on multiexponential fitting protocols (regular or stretched) and show how the dispersion in the reported values for carrier transfer rate constants can be resolved.

16.
ACS Energy Lett ; 9(1): 288-297, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38239720

RESUMEN

The production of syngas (i.e., a mixture of CO and H2) via the electrochemical reduction of CO2 and water can contribute to the green transition of various industrial sectors. Here we provide a joint academic-industrial perspective on the key technical and economical differences of the concurrent (i.e., CO and H2 are generated in the same electrolyzer cell) and separated (i.e., CO and H2 are electrogenerated in different electrolyzers) production of syngas. Using a combination of literature analysis, experimental data, and techno-economic analysis, we demonstrate that the production of synthesis gas is notably less expensive if we operate a CO2 electrolyzer in a CO-selective mode and combine it with a separate PEM electrolyzer for H2 generation. We also conclude that by the further decrease of the cost of renewable electricity and the increase of CO2 emission taxes, such prepared renewable syngas will become cost competitive.

17.
J Phys Chem Lett ; 15(7): 2057-2065, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38357864

RESUMEN

The kinetics of electron extraction at the electron transfer layer/perovskite interface strongly affects the efficiency of a perovskite solar cell. By combining transient absorption and time-resolved photoluminescence spectroscopy, the electron extraction process between FA0.83Cs0.17Pb(I0.83Br0.17)3 and TiO2 single crystals with different orientations of (100), (110), and (111) were probed from subpicosecond to several hundred nanoseconds. It was revealed that the band alignment between the constituents influenced the relative electron extraction process. TiO2(100) showed the fastest overall and hot electron transfer, owing to the largest conduction band and Fermi level offset compared to FA0.83Cs0.17Pb(I0.83Br0.17)3. It was found that an early electron accumulation in these systems can have an influence on the following electron extraction on the several nanosecond time scale. Furthermore, the existence of a potential barrier at the TiO2/perovskite interface was also revealed by performing excitation fluence-dependent measurements.

18.
EES Catal ; 2(2): 664-674, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38464594

RESUMEN

Photoelectrodes with FTO/Au/Sb2Se3/TiO2/Au architecture were studied in photoelectrochemical CO2 reduction reaction (PEC CO2RR). The preparation is based on a simple spin coating technique, where nanorod-like structures were obtained for Sb2Se3, as confirmed by SEM images. A thin conformal layer of TiO2 was coated on the Sb2Se3 nanorods via ALD, which acted as both an electron transfer layer and a protective coating. Au nanoparticles were deposited as co-catalysts via photo-assisted electrodeposition at different applied potentials to control their growth and morphology. The use of such architectures has not been explored in CO2RR yet. The photoelectrochemical performance for CO2RR was investigated with different Au catalyst loadings. A photocurrent density of ∼7.5 mA cm-2 at -0.57 V vs. RHE for syngas generation was achieved, with an average Faradaic efficiency of 25 ± 6% for CO and 63 ± 12% for H2. The presented results point toward the use of Sb2Se3-based photoelectrodes in solar CO2 conversion applications.

19.
Chemphyschem ; 14(10): 2251-9, 2013 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-23712877

RESUMEN

Solar photoelectrochemical reduction of carbon dioxide to methanol in aqueous media was driven on hybrid CuO/Cu2O semiconductor nanorod arrays for the first time. A two-step synthesis was designed and demonstrated for the preparation of these hybrid copper oxide one-dimensional nanostructures on copper substrates. The first step consisted in the growth of CuO nanorods by thermal oxidation of a copper foil at 400 °C. In the second step, controlled electrodeposition of p-type Cu2O crystallites on the CuO walls was performed. The resulting nanorod morphology with controllable wall thickness by adjusting the Cu2O electrodeposition time as well as their surface/bulk chemical composition were probed by scanning electron microscopy, X-ray diffraction and Raman spectroscopy. Photoelectrosynthesis of methanol from carbon dioxide was demonstrated at -0.2 V vs SHE under simulated AM1.5 solar irradiation on optimized hybrid CuO/Cu2O nanorod electrodes and without assistance of any homogeneous catalyst (such as pyridine or imidazole) in the electrolyte. The hybrid composition, ensuring double pathway for photoelectron injection to CO2, along with high surface area were found to be crucial for efficient performance in methanol generation under solar illumination. Methanol formation, tracked by gas chromatography/mass spectrometry, indicated Faradaic efficiencies of ~95%.


Asunto(s)
Dióxido de Carbono/química , Cobre/química , Técnicas Electroquímicas , Metanol/síntesis química , Nanotubos/química , Metanol/química , Oxidación-Reducción , Procesos Fotoquímicos , Semiconductores
20.
Anal Bioanal Chem ; 405(11): 3489-511, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23341002

RESUMEN

In this topical review, progress achieved in amperometric sensing of different analytes over conducting polymer-based hybrid electrocatalysts is summarized. We report a variety of synthetic methods and the resulting hybrid assemblies, with the effectiveness of such strategies, for designing conjugated polymer-based hybrids as robust sensors for amperometric detection. Beyond incorporation of metal nanoparticles, metal-oxide and non-oxide semiconductors, carbon-based nanomaterials (nanotubes, graphene, and graphene oxide), and special dopant ions are also discussed. Moreover, some particularly interesting miscellaneous approaches, for example photo-amperometric sensing or use of overoxidized polymers, are also emphasized. Determination of dissolved gases (for example O2, NO, and NO2), ions (sulfite, nitrite, nitrate, chlorate, bromate, and iodate) and smaller and larger molecules (for example H2O2, ascorbic acid (AA), dopamine (DA), urea (UA), amino acids, hydrazine, NADH, serotonin, and epinephrine) is discussed. These achievements are reviewed from the materials perspective, addressing both synthetic and electrocatalytic aspects of the polymer-based modified electrodes. Beyond simple or more sophisticated mixing, a wide range of methods of preparation is presented, including chemical (one-pot polymerization, impregnation), electrochemical (co-deposition, doping type inclusion, etc.) and combined strategies. Classification of such synthetic routes is also included. However, it is important to note that we omit studies in which conducting polymers alone were used for determination of different species. Furthermore, because excellent reviews--cited in this work also--are available on immobilization of biomolecules (for example enzymes) for biosensing purposes, this topic, also, is excluded.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA