Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Glia ; 72(2): 245-273, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37772368

RESUMEN

Glial cells expressing neuron-glial antigen 2 (NG2), also known as oligodendrocyte progenitor cells (OPCs), play a critical role in maintaining brain health. However, their ability to differentiate after ischemic injury is poorly understood. The aim of this study was to investigate the properties and functions of NG2 glia in the ischemic brain. Using transgenic mice, we selectively labeled NG2-expressing cells and their progeny in both healthy brain and after focal cerebral ischemia (FCI). Using single-cell RNA sequencing, we classified the labeled glial cells into five distinct subpopulations based on their gene expression patterns. Additionally, we examined the membrane properties of these cells using the patch-clamp technique. Of the identified subpopulations, three were identified as OPCs, whereas the fourth subpopulation had characteristics indicative of cells likely to develop into oligodendrocytes. The fifth subpopulation of NG2 glia showed astrocytic markers and had similarities to neural progenitor cells. Interestingly, this subpopulation was present in both healthy and post-ischemic tissue; however, its gene expression profile changed after ischemia, with increased numbers of genes related to neurogenesis. Immunohistochemical analysis confirmed the temporal expression of neurogenic genes and showed an increased presence of NG2 cells positive for Purkinje cell protein-4 at the periphery of the ischemic lesion 12 days after FCI, as well as NeuN-positive NG2 cells 28 and 60 days after injury. These results suggest the potential development of neuron-like cells arising from NG2 glia in the ischemic tissue. Our study provides insights into the plasticity of NG2 glia and their capacity for neurogenesis after stroke.


Asunto(s)
Isquemia Encefálica , Células-Madre Neurales , Ratones , Animales , Astrocitos/metabolismo , Neuroglía/metabolismo , Células-Madre Neurales/metabolismo , Oligodendroglía/metabolismo , Encéfalo/metabolismo , Ratones Transgénicos , Isquemia Encefálica/metabolismo , Antígenos/metabolismo
2.
Blood ; 136(22): 2574-2587, 2020 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-32822472

RESUMEN

The canonical Wnt signaling pathway is mediated by interaction of ß-catenin with the T-cell factor/lymphoid enhancer-binding factor (TCF/LEF) transcription factors and subsequent transcription activation of Wnt-target genes. In the hematopoietic system, the function of the pathway has been mainly investigated by rather unspecific genetic manipulations of ß-catenin that yielded contradictory results. Here, we used a mouse expressing a truncated dominant negative form of the human TCF4 transcription factor (dnTCF4) that specifically abrogates ß-catenin-TCF/LEF interaction. Disruption of the ß-catenin-TCF/LEF interaction resulted in the accumulation of immature cells and reduced granulocytic differentiation. Mechanistically, dnTCF4 progenitors exhibited downregulation of the Csf3r gene, reduced granulocyte colony-stimulating factor (G-CSF) receptor levels, attenuation of downstream Stat3 phosphorylation after G-CSF treatment, and impaired G-CSF-mediated differentiation. Chromatin immunoprecipitation assays confirmed direct binding of TCF/LEF factors to the promoter and putative enhancer regions of CSF3R. Inhibition of ß-catenin signaling compromised activation of the emergency granulopoiesis program, which requires maintenance and expansion of myeloid progenitors. Consequently, dnTCF4 mice were more susceptible to Candida albicans infection and more sensitive to 5-fluorouracil-induced granulocytic regeneration. Importantly, genetic and chemical inhibition of ß-catenin-TCF/LEF signaling in human CD34+ cells reduced granulocytic differentiation, whereas its activation enhanced myelopoiesis. Altogether, our data indicate that the ß-catenin-TCF/LEF complex directly regulates G-CSF receptor levels, and consequently controls proper differentiation of myeloid progenitors into granulocytes in steady-state and emergency granulopoiesis. Our results uncover a role for the ß-catenin signaling pathway in fine tuning the granulocytic production, opening venues for clinical intervention that require enhanced or reduced production of neutrophils.


Asunto(s)
Granulocitos/metabolismo , Mielopoyesis , Receptores del Factor Estimulante de Colonias/biosíntesis , Transducción de Señal , Factores de Transcripción TCF/metabolismo , Proteína 2 Similar al Factor de Transcripción 7/metabolismo , Regulación hacia Arriba , beta Catenina/metabolismo , Animales , Candida albicans , Candidiasis/genética , Candidiasis/metabolismo , Ratones , Ratones Transgénicos , Receptores del Factor Estimulante de Colonias/genética , Factores de Transcripción TCF/genética , beta Catenina/genética
3.
Int J Mol Sci ; 20(7)2019 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-30934845

RESUMEN

Commensal microbiota contribute to gut homeostasis by inducing transcription of mucosal genes. Analysis of the impact of various microbiota on intestinal tissue provides an important insight into the function of this organ. We used cDNA microarrays to determine the gene expression signature of mucosa isolated from the small intestine and colon of germ-free (GF) mice and animals monoassociated with two E. coli strains. The results were compared to the expression data obtained in conventionally reared (CR) mice. In addition, we analyzed gene expression in colon organoids derived from CR, GF, and monoassociated animals. The analysis revealed that the complete absence of intestinal microbiota mainly affected the mucosal immune system, which was not restored upon monoassociation. The most important expression changes observed in the colon mucosa indicated alterations in adipose tissue and lipid metabolism. In the comparison of differentially expressed genes in the mucosa or organoids obtained from GF and CR mice, only six genes were common for both types of samples. The results show that the increased expression of the angiopoietin-like 4 (Angptl4) gene encoding a secreted regulator of lipid metabolism indicates the GF status.


Asunto(s)
Perfilación de la Expresión Génica , Vida Libre de Gérmenes/genética , Mucosa Intestinal/metabolismo , Organoides/metabolismo , Animales , Biomarcadores/metabolismo , Colon/metabolismo , Escherichia coli/fisiología , Regulación de la Expresión Génica , Sistema Inmunológico/metabolismo , Inmunidad Mucosa , Ratones Endogámicos BALB C , Microbiota
4.
Genesis ; 54(3): 101-14, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26864984

RESUMEN

The Wnt pathway plays a crucial role in self-renewal and differentiation of cells in the adult gut. In the present study, we revealed the functional consequences of inhibition of canonical Wnt signaling in the intestinal epithelium. The study was based on generation of a novel transgenic mouse strain enabling inducible expression of an N-terminally truncated variant of nuclear Wnt effector T cell factor 4 (TCF4). The TCF4 variant acting as a dominant negative (dn) version of wild-type (wt) TCF4 protein decreased transcription of ß-catenin-TCF4-responsive genes. Interestingly, suppression of Wnt/ß-catenin signaling affected asymmetric division of intestinal stem cells (ISCs) rather than proliferation. ISCs expressing the transgene underwent several rounds of division but lost their clonogenic potential and migrated out of the crypt. Expression profiling of crypt cells revealed that besides ISC-specific markers, the dnTCF4 production downregulated expression levels of epithelial genes produced in other crypt cells including markers of Paneth cells. Additionally, in Apc conditional knockout mice, dnTCF activation efficiently suppressed growth of Apc-deficient tumors. In summary, the generated mouse strain represents a convenient tool to study cell-autonomous inhibition of ß-catenin-Tcf-mediated transcription.


Asunto(s)
Mucosa Intestinal/citología , Intestino Delgado/citología , Células Madre/citología , Vía de Señalización Wnt , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/química , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Diferenciación Celular , División Celular , Proliferación Celular , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Ratones , Ratones Transgénicos , Células Madre/metabolismo , Factor de Transcripción 4 , Transcripción Genética , beta Catenina/metabolismo
5.
Transl Psychiatry ; 12(1): 307, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35918311

RESUMEN

The use of low sub-perceptual doses of psychedelics ("microdosing") has gained popularity in recent years. Although anecdotal reports claim multiple benefits associated with this practice, the lack of placebo-controlled studies severely limits our knowledge of microdosing and its effects. Moreover, research conducted in standard laboratory settings could fail to capture the motivation of individuals engaged or planning to engage in microdosing protocols, thus underestimating the likelihood of positive effects on creativity and cognitive function. We recruited 34 individuals starting to microdose with psilocybin mushrooms (Psilocybe cubensis), one of the materials most frequently used for this purpose. Following a double-blind placebo-controlled experimental design, we investigated the acute and short-term effects of 0.5 g of dried mushrooms on subjective experience, behavior, creativity (divergent and convergent thinking), perception, cognition, and brain activity. The reported acute effects were significantly more intense for the active dose compared to the placebo, but only for participants who correctly identified their experimental condition. These changes were accompanied by reduced EEG power in the theta band, together with preserved levels of Lempel-Ziv broadband signal complexity. For all other measurements there was no effect of microdosing except for few small changes towards cognitive impairment. According to our findings, low doses of psilocybin mushrooms can result in noticeable subjective effects and altered EEG rhythms, but without evidence to support enhanced well-being, creativity and cognitive function. We conclude that expectation underlies at least some of the anecdotal benefits attributed to microdosing with psilocybin mushrooms.


Asunto(s)
Agaricales , Alucinógenos , Método Doble Ciego , Alucinógenos/farmacología , Humanos , Motivación , Psilocibina/farmacología
6.
Psychopharmacology (Berl) ; 239(9): 2841-2852, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35676541

RESUMEN

RATIONALE: Serotonergic psychedelics are being studied as novel treatments for mental health disorders and as facilitators of improved well-being, mental function, and creativity. Recent studies have found mixed results concerning the effects of low doses of psychedelics ("microdosing") on these domains. However, microdosing is generally investigated using instruments designed to assess larger doses of psychedelics, which might lack sensitivity and specificity for this purpose. OBJECTIVES: Determine whether unconstrained speech contains signatures capable of identifying the acute effects of psilocybin microdoses. METHODS: Natural speech under psilocybin microdoses (0.5 g of psilocybin mushrooms) was acquired from thirty-four healthy adult volunteers (11 females: 32.09 ± 3.53 years; 23 males: 30.87 ± 4.64 years) following a double-blind and placebo-controlled experimental design with two measurement weeks per participant. On Wednesdays and Fridays of each week, participants consumed either the active dose (psilocybin) or the placebo (edible mushrooms). Features of interest were defined based on variables known to be affected by higher doses: verbosity, semantic variability, and sentiment scores. Machine learning models were used to discriminate between conditions. Classifiers were trained and tested using stratified cross-validation to compute the AUC and p-values. RESULTS: Except for semantic variability, these metrics presented significant differences between a typical active microdose and the inactive placebo condition. Machine learning classifiers were capable of distinguishing between conditions with high accuracy (AUC [Formula: see text] 0.8). CONCLUSIONS: These results constitute first evidence that low doses of serotonergic psychedelics can be identified from unconstrained natural speech, with potential for widely applicable, affordable, and ecologically valid monitoring of microdosing schedules.


Asunto(s)
Alucinógenos , Trastornos Mentales , Adulto , Creatividad , Método Doble Ciego , Femenino , Alucinógenos/farmacología , Humanos , Lenguaje , Masculino , Psilocibina/farmacología
7.
Cancers (Basel) ; 14(17)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36077674

RESUMEN

Trophoblastic cell surface antigen 2 (TROP2) is a membrane glycoprotein overexpressed in many solid tumors with a poor prognosis, including intestinal neoplasms. In our study, we show that TROP2 is expressed in preneoplastic lesions, and its expression is maintained in most colorectal cancers (CRC). High TROP2 positivity correlated with lymph node metastases and poor tumor differentiation and was a negative prognostic factor. To investigate the role of TROP2 in intestinal tumors, we analyzed two mouse models with conditional disruption of the adenomatous polyposis coli (Apc) tumor-suppressor gene, human adenocarcinoma samples, patient-derived organoids, and TROP2-deficient tumor cells. We found that Trop2 is produced early after Apc inactivation and its expression is associated with the transcription of genes involved in epithelial-mesenchymal transition, the regulation of migration, invasiveness, and extracellular matrix remodeling. A functionally similar group of genes was also enriched in TROP2-positive cells from human CRC samples. To decipher the driving mechanism of TROP2 expression, we analyzed its promoter. In human cells, this promoter was activated by ß-catenin and additionally by the Yes1-associated transcriptional regulator (YAP). The regulation of TROP2 expression by active YAP was verified by YAP knockdown in CRC cells. Our results suggest a possible link between aberrantly activated Wnt/ß-catenin signaling, YAP, and TROP2 expression.

8.
J Neurosci ; 30(40): 13291-304, 2010 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-20926655

RESUMEN

Axon and synapse degeneration are common components of many neurodegenerative diseases, and their rescue is essential for effective neuroprotection. The chimeric Wallerian degeneration slow protein (Wld(S)) protects axons dose dependently, but its mechanism is still elusive. We recently showed that Wld(S) acts at a non-nuclear location and is present in axons. This and other recent reports support a model in which Wld(S) protects by extranuclear redistribution of its nuclear NMNAT1 portion. However, it remains unclear whether cytoplasmic NMNAT1 acts locally in axons and synapses or at a non-nuclear site within cell bodies. The potency of axon protection by non-nuclear NMNAT1 relative to Wld(S) also needs to be established in vivo. Because the N-terminal portion of Wld(S) (N70) localized to axons, we hypothesized that it mediates the trafficking of the NMNAT1 portion. To test this, we substituted N70 with an axonal targeting peptide derived from amyloid precursor protein, and fused this to NMNAT1 with disrupted nuclear targeting. In transgenic mice, this transformed NMNAT1 from a molecule unable to inhibit Wallerian degeneration, even at high expression levels, into a protein more potent than Wld(S), able to preserve injured axons for several weeks at undetectable expression levels. Preventing NMNAT1 axonal delivery abolished its protective effect. Axonally targeted NMNAT1 localized to vesicular structures, colocalizing with extranuclear Wld(S), and was cotransported at least partially with mitochondria. We conclude that axonal targeting of NMNAT activity is both necessary and sufficient to delay Wallerian degeneration, and that promoting axonal and synaptic delivery greatly enhances the effectiveness.


Asunto(s)
Transporte Axonal/genética , Axones/metabolismo , Fármacos Neuroprotectores/metabolismo , Nicotinamida-Nucleótido Adenililtransferasa/genética , Sinapsis/metabolismo , Degeneración Walleriana/metabolismo , Degeneración Walleriana/fisiopatología , Animales , Técnicas de Cultivo de Célula , Células Cultivadas , Marcación de Gen/métodos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Técnicas de Cultivo de Órganos , Estructura Terciaria de Proteína/genética , Proteínas Recombinantes de Fusión/genética , Degeneración Walleriana/prevención & control
9.
J Sep Sci ; 34(19): 2639-44, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21898814

RESUMEN

Cyclofructans (CFs), a new class of chiral selectors, have been recently introduced for application in liquid chromatography and capillary electrophoresis. So far, derivatized CFs have performed interesting separation possibilities for a variety of compounds. The current work is focused on characterization of three different CF-based chiral stationary phases (CF-based CSPs), i.e. isopropyl carbamate cyclofructan 6 (IP-CF6), R-naphthylethyl carbamate cyclofructan 6 (RN-CF6) and dimethylphenyl carbamate cyclofructan 7 (DMP-CF7). The linear free energy relationship (LFER) model was used to reveal the dominant interactions participating in the complex retention mechanism. A set of 44 different test solutes, with known solvation parameters, was used to determine the regression coefficients of the LFER equation under two mobile-phase compositions in normal separation mode. The LFER results showed that hydrogen bond acidity, hydrophobicity and dipolarity/polarizibility mostly affect the retention and separation process on the CF-based columns in the studied separation systems.

10.
Front Neurosci ; 15: 628983, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33716653

RESUMEN

Modulating endogenous regenerative processes may represent a suitable treatment for central nervous system (CNS) injuries, such as stroke or trauma. Neural stem/progenitor cells (NS/PCs), which naturally reside in the subventricular zone (SVZ) of the adult brain, proliferate and differentiate to other cell types, and therefore may compensate the negative consequences of ischemic injury. The fate of NS/PCs in the developing brain is largely influenced by Wingless/Integrated (Wnt) signaling; however, its role in the differentiation of adult NS/PCs under ischemic conditions is still enigmatic. In our previous study, we identified the Wnt/ß-catenin signaling pathway as a factor promoting neurogenesis at the expense of gliogenesis in neonatal mice. In this study, we used adult transgenic mice in order to assess the impact of the canonical Wnt pathway modulation (inhibition or hyper-activation) on NS/PCs derived from the SVZ, and combined it with the middle cerebral artery occlusion (MCAO) to disclose the effect of focal cerebral ischemia (FCI). Based on the electrophysiological properties of cultured cells, we first identified three cell types that represented in vitro differentiated NS/PCs - astrocytes, neuron-like cells, and precursor cells. Following FCI, we detected fewer neuron-like cells after Wnt signaling inhibition. Furthermore, the immunohistochemical analysis revealed an overall higher expression of cell-type-specific proteins after FCI, indicating increased proliferation and differentiation rates of NS/PCs in the SVZ. Remarkably, Wnt signaling hyper-activation increased the abundance of proliferating and neuron-like cells, while Wnt pathway inhibition had the opposite effect. Finally, the expression profiling at the single cell level revealed an increased proportion of neural stem cells and neuroblasts after FCI. These observations indicate that Wnt signaling enhances NS/PCs-based regeneration in the adult mouse brain following FCI, and supports neuronal differentiation in the SVZ.

11.
J Neurosci ; 29(3): 653-68, 2009 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-19158292

RESUMEN

Axon degeneration contributes widely to neurodegenerative disease but its regulation is poorly understood. The Wallerian degeneration slow (Wld(S)) protein protects axons dose-dependently in many circumstances but is paradoxically abundant in nuclei. To test the hypothesis that Wld(S) acts within nuclei in vivo, we redistributed it from nucleus to cytoplasm in transgenic mice. Surprisingly, instead of weakening the phenotype as expected, extranuclear Wld(S) significantly enhanced structural and functional preservation of transected distal axons and their synapses. In contrast to native Wld(S) mutants, distal axon stumps remained continuous and ultrastructurally intact up to 7 weeks after injury and motor nerve terminals were robustly preserved even in older mice, remaining functional for 6 d. Moreover, we detect extranuclear Wld(S) for the first time in vivo, and higher axoplasmic levels in transgenic mice with Wld(S) redistribution. Cytoplasmic Wld(S) fractionated predominantly with mitochondria and microsomes. We conclude that Wld(S) can act in one or more non-nuclear compartments to protect axons and synapses, and that molecular changes can enhance its therapeutic potential.


Asunto(s)
Axones/patología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Unión Neuromuscular/fisiopatología , Degeneración Walleriana/patología , Degeneración Walleriana/prevención & control , Factores de Edad , Alanina/genética , Precursor de Proteína beta-Amiloide/metabolismo , Análisis de Varianza , Animales , Arginina/genética , Axones/metabolismo , Axones/ultraestructura , Línea Celular Transformada , Desnervación/métodos , Modelos Animales de Enfermedad , Electromiografía , Humanos , Proteínas Luminiscentes/genética , Ratones , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Microsomas/metabolismo , Microsomas/patología , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas Mitocondriales/metabolismo , Músculo Esquelético/fisiopatología , Mutagénesis Sitio-Dirigida/métodos , Mutación , Unión Neuromuscular/patología , Unión Neuromuscular/ultraestructura , Técnicas de Cultivo de Órganos , Nervios Periféricos/fisiopatología , Transporte de Proteínas/genética , Ratas , Fracciones Subcelulares/metabolismo , Transfección/métodos , Tubulina (Proteína)/metabolismo , Degeneración Walleriana/genética
12.
Brain ; 132(Pt 2): 402-16, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19059977

RESUMEN

Synapse loss precedes cell death in Alzheimer's disease, but the timing of axon degeneration relative to these events, and the causal relationships remain unclear. Axons become so severely dystrophic near amyloid plaques that their interruption, causing permanent loss of function, extensive synapse loss, and potentially cell death appears imminent. However, it remains unclear whether axons are truly interrupted at plaques and whether cell bodies fail to support their axons and dendrites. We traced TgCRND8 mouse axons longitudinally through, distal to, and proximal from dystrophic regions. The corresponding neurons not only survived but remained morphologically unaltered, indicating absence of axonal damage signalling or a failure to respond to it. Axons, no matter how dystrophic, remained continuous and initially morphologically normal outside the plaque region, reflecting support by metabolically active cell bodies and continued axonal transport. Immunochemical and ultrastructural studies showed dystrophic axons were tightly associated with disruption of presynaptic transmission machinery, suggesting local functional impairment. Thus, we rule out long-range degeneration axons or dendrites as major contributors to early synapse loss in this model, raising the prospect of a therapeutic window for functional rescue of individual neurons lasting months or even years after their axons become highly dystrophic. We propose that multi-focal pathology has an important role in the human disease in bringing about the switch from local, and potentially recoverable, synapse loss into permanent loss of neuronal processes and eventually their cell bodies.


Asunto(s)
Enfermedad de Alzheimer/patología , Axones/patología , Degeneración Nerviosa , Neuronas/patología , Placa Amiloide/patología , Animales , Cruzamiento , Supervivencia Celular , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica , Modelos Animales , Transmisión Sináptica
13.
J Sep Sci ; 33(19): 3043-51, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21038460

RESUMEN

Separation systems with a zirconia-based polystyrene HPLC column were characterized by different approaches, which allowed the recognition of interactions participating in the separation environments. Zirconia-based HPLC columns as an alternative to silica-based ones offer unique interaction mechanism based on Lewis acid-base theory. Besides hydrophobic interactions with the modified surface of the zirconia carrier it includes ion-exchange and ligand-exchange interactions that are helpful in the separation of many bioactive compounds. Three distinct approaches were applied for description of the complex separation mechanism. General chromatographic tests by Walters, Engelhardt and Galushko were applied to evaluate the fundamental properties of the systems - hydrophobicity and polarity. The complex model of linear free energy relationship described the interactions from the qualitative and quantitative points of view more in detail. Application of a set of basic compounds revealed the contribution of ion-exchange interactions participating in the separation systems.

14.
Genes (Basel) ; 11(7)2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32708801

RESUMEN

Wnt signaling plays an important role in the self-renewal, fate-commitment and survival of the neural stem/progenitor cells (NS/PCs) of the adult central nervous system (CNS). Ischemic stroke impairs the proper functioning of the CNS and, therefore, active Wnt signaling may prevent, ameliorate, or even reverse the negative effects of ischemic brain injury. In this review, we provide the current knowledge of Wnt signaling in the adult CNS, its status in diverse cell types, and the Wnt pathway's impact on the properties of NS/PCs and glial cells in the context of ischemic injury. Finally, we summarize promising strategies that might be considered for stroke therapy, and we outline possible future directions of the field.


Asunto(s)
Isquemia Encefálica/patología , Encéfalo/fisiología , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Neuroglía/fisiología , Adulto , Animales , Encéfalo/citología , Encéfalo/patología , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/fisiopatología , Diferenciación Celular/genética , Salud , Humanos , Ataque Isquémico Transitorio/genética , Ataque Isquémico Transitorio/metabolismo , Ataque Isquémico Transitorio/patología , Ataque Isquémico Transitorio/terapia , Terapia Molecular Dirigida/métodos , Terapia Molecular Dirigida/tendencias , Células-Madre Neurales/patología , Neuroglía/patología , Vía de Señalización Wnt/genética , Vía de Señalización Wnt/fisiología
15.
Genes (Basel) ; 10(10)2019 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-31614493

RESUMEN

Colorectal cancer (CRC) is a heterogeneous disease that includes both hereditary and sporadic types of tumors. Tumor initiation and growth is driven by mutational or epigenetic changes that alter the function or expression of multiple genes. The genes predominantly encode components of various intracellular signaling cascades. In this review, we present mouse intestinal cancer models that include alterations in the Wnt, Hippo, p53, epidermal growth factor (EGF), and transforming growth factor ß (TGFß) pathways; models of impaired DNA mismatch repair and chemically induced tumorigenesis are included. Based on their molecular biology characteristics and mutational and epigenetic status, human colorectal carcinomas were divided into four so-called consensus molecular subtype (CMS) groups. It was shown subsequently that the CMS classification system could be applied to various cell lines derived from intestinal tumors and tumor-derived organoids. Although the CMS system facilitates characterization of human CRC, individual mouse models were not assigned to some of the CMS groups. Thus, we also indicate the possible assignment of described animal models to the CMS group. This might be helpful for selection of a suitable mouse strain to study a particular type of CRC.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/fisiopatología , Animales , Carcinogénesis/genética , Transformación Celular Neoplásica/genética , Neoplasias del Colon/genética , Neoplasias Colorrectales/clasificación , Reparación de la Incompatibilidad de ADN/genética , Modelos Animales de Enfermedad , Factor de Crecimiento Epidérmico/genética , Regulación Neoplásica de la Expresión Génica/genética , Genes p53/genética , Vía de Señalización Hippo , Humanos , Ratones , Proteínas Serina-Treonina Quinasas/genética , Factor de Crecimiento Transformador beta/genética , Vía de Señalización Wnt/genética
16.
Sci Rep ; 9(1): 20188, 2019 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-31874996

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

17.
Sci Rep ; 9(1): 1629, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30733598

RESUMEN

The first step in the development of human colorectal cancer is aberrant activation of the Wnt signaling pathway. Wnt signaling hyperactivation is predominantly caused by loss-of-function mutations in the adenomatous polyposis coli (APC) gene that encodes the pathway negative regulator. In order to identify genes affected by the Apc loss, we performed expression profiling of intestinal epithelium isolated from mice harboring a conditional Apc allele. The gene encoding transcriptional factor msh homeobox 1 (Msx1) displayed robust upregulation upon Apc inactivation. Histological analysis of the Apc-deficient epithelium revealed that in the small intestine, the Msx1 protein was localized exclusively in ectopic crypts, i.e., in pockets of proliferating cells abnormally positioned on the villi. Ablation of the Msx1 gene leads to the disappearance of ectopic crypts and loss of differentiated cells. Moreover, tumors arising from Msx1-deficient cells display altered morphology reminiscent of villous adenomas. In human tumor specimens, MSX1 displayed significantly increased expression in colonic neoplasia with a descending tendency during the lesion progression towards colorectal carcinoma. In summary, the results indicate that Msx1 represents a novel marker of intestinal tumorigenesis. In addition, we described the previously unknown relationship between the Msx1-dependent formation of ectopic crypts and cell differentiation.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/genética , Mucosa Intestinal/patología , Intestino Delgado/patología , Factor de Transcripción MSX1/genética , Factor de Transcripción MSX1/metabolismo , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Animales , Diferenciación Celular , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Mucosa Intestinal/metabolismo , Ratones Noqueados , Vía de Señalización Wnt , beta Catenina/metabolismo
18.
Cell Death Dis ; 10(11): 818, 2019 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-31659152

RESUMEN

Protein phosphatase magnesium-dependent 1 delta (PPM1D) terminates cell response to genotoxic stress by negatively regulating the tumor suppressor p53 and other targets at chromatin. Mutations in the exon 6 of the PPM1D result in production of a highly stable, C-terminally truncated PPM1D. These gain-of-function PPM1D mutations are present in various human cancers but their role in tumorigenesis remains unresolved. Here we show that truncated PPM1D impairs activation of the cell cycle checkpoints in human non-transformed RPE cells and allows proliferation in the presence of DNA damage. Next, we developed a mouse model by introducing a truncating mutation in the PPM1D locus and tested contribution of the oncogenic PPM1DT allele to colon tumorigenesis. We found that p53 pathway was suppressed in colon stem cells harboring PPM1DT resulting in proliferation advantage under genotoxic stress condition. In addition, truncated PPM1D promoted tumor growth in the colon in Apcmin mice and diminished survival. Moreover, tumor organoids derived from colon of the ApcminPpm1dT/+ mice were less sensitive to 5-fluorouracil when compared to ApcminPpm1d+/+and the sensitivity to 5-fluorouracil was restored by inhibition of PPM1D. Finally, we screened colorectal cancer patients and identified recurrent somatic PPM1D mutations in a fraction of colon adenocarcinomas that are p53 proficient and show defects in mismatch DNA repair. In summary, we provide the first in vivo evidence that truncated PPM1D can promote tumor growth and modulate sensitivity to chemotherapy.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/genética , Neoplasias del Colon/tratamiento farmacológico , Proteína Fosfatasa 2C/genética , Proteína p53 Supresora de Tumor/genética , Animales , Carcinogénesis/efectos de los fármacos , Puntos de Control del Ciclo Celular/genética , Proliferación Celular/efectos de los fármacos , Cromatina/efectos de los fármacos , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Daño del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Exones/genética , Fluorouracilo/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Mutación/genética
19.
Genes (Basel) ; 9(9)2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-30200414

RESUMEN

T-cell factor 4 (TCF4), together with ß-catenin coactivator, functions as the major transcriptional mediator of the canonical wingless/integrated (Wnt) signaling pathway in the intestinal epithelium. The pathway activity is essential for both intestinal homeostasis and tumorigenesis. To date, several mouse models and cellular systems have been used to analyze TCF4 function. However, some findings were conflicting, especially those that were related to the defects observed in the mouse gastrointestinal tract after Tcf4 gene deletion, or to a potential tumor suppressive role of the gene in intestinal cancer cells or tumors. Here, we present the results obtained using a newly generated conditional Tcf4 allele that allows inactivation of all potential Tcf4 isoforms in the mouse tissue or small intestinal and colon organoids. We also employed the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system to disrupt the TCF4 gene in human cells. We showed that in adult mice, epithelial expression of Tcf4 is indispensable for cell proliferation and tumor initiation. However, in human cells, the TCF4 role is redundant with the related T-cell factor 1 (TCF1) and lymphoid enhancer-binding factor 1 (LEF1) transcription factors.

20.
Brain Res ; 1651: 73-87, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27659965

RESUMEN

The canonical Wnt signaling pathway plays an important role in embryogenesis, and the establishment of neurogenic niches. It is involved in proliferation and differentiation of neural progenitors, since elevated Wnt/ß-catenin signaling promotes differentiation of neural stem/progenitor cells (NS/PCs1) towards neuroblasts. Nevertheless, it remains elusive how the differentiation program of neural progenitors is influenced by the Wnt signaling output. Using transgenic mouse models, we found that in vitro activation of Wnt signaling resulted in higher expression of ß-catenin protein and Wnt/ß-catenin target genes, while Wnt signaling inhibition resulted in the reverse effect. Within differentiated cells, we identified three electrophysiologically and immunocytochemically distinct cell types, whose incidence was markedly affected by the Wnt signaling output. Activation of the pathway suppressed gliogenesis, and promoted differentiation of NS/PCs towards a neuronal phenotype, while its inhibition led to suppressed neurogenesis and increased counts of cells of glial phenotype. Moreover, Wnt signaling hyperactivation resulted in an increased incidence of cells expressing outwardly rectifying K+ currents, together with inwardly rectifying Na+ currents, a typical current pattern of immature neurons, while blocking the pathway led to the opposite effect. Taken together, our data indicate that the Wnt signaling pathway orchestrates neonatal NS/PCs differentiation towards cells with neuronal characteristics, which might be important for nervous tissue regeneration during central nervous system disorders. Furthermore, the transgenic mouse strains used in this study may serve as a convenient tool to manipulate ß-catenin-dependent signaling in neural progenitors in the neonatal brain.


Asunto(s)
Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Neuroglía/metabolismo , Neuronas/metabolismo , Vía de Señalización Wnt/fisiología , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Encéfalo/citología , Encéfalo/metabolismo , Células Cultivadas , Inmunohistoquímica , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Potenciales de la Membrana/fisiología , Ratones Transgénicos , Células-Madre Neurales/citología , Neuroglía/citología , Neuronas/citología , Técnicas de Placa-Clamp , Factor de Transcripción 4 , beta Catenina/genética , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA