Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(21): 11797-11812, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37823603

RESUMEN

The human mitochondrial ribosome contains three [2Fe-2S] clusters whose assembly pathway, role, and implications for mitochondrial and metabolic diseases are unknown. Here, structure-function correlation studies show that the clusters play a structural role during mitoribosome assembly. To uncover the assembly pathway, we have examined the effect of silencing the expression of Fe-S cluster biosynthetic and delivery factors on mitoribosome stability. We find that the mitoribosome receives its [2Fe-2S] clusters from the GLRX5-BOLA3 node. Additionally, the assembly of the small subunit depends on the mitoribosome biogenesis factor METTL17, recently reported containing a [4Fe-4S] cluster, which we propose is inserted via the ISCA1-NFU1 node. Consistently, fibroblasts from subjects suffering from 'multiple mitochondrial dysfunction' syndrome due to mutations in BOLA3 or NFU1 display previously unrecognized attenuation of mitochondrial protein synthesis that contributes to their cellular and pathophysiological phenotypes. Finally, we report that, in addition to their structural role, one of the mitoribosomal [2Fe-2S] clusters and the [4Fe-4S] cluster in mitoribosome assembly factor METTL17 sense changes in the redox environment, thus providing a way to regulate organellar protein synthesis accordingly.


Asunto(s)
Proteínas Hierro-Azufre , Enfermedades Mitocondriales , Ribosomas Mitocondriales , Humanos , Proteínas Portadoras/metabolismo , Hierro/metabolismo , Proteínas Hierro-Azufre/química , Metiltransferasas/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Ribosomas Mitocondriales/metabolismo , Azufre/metabolismo , Enfermedades Mitocondriales/metabolismo
2.
Brain ; 145(4): 1519-1534, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34788392

RESUMEN

With more than 40 causative genes identified so far, autosomal dominant cerebellar ataxias exhibit a remarkable genetic heterogeneity. Yet, half the patients are lacking a molecular diagnosis. In a large family with nine sampled affected members, we performed exome sequencing combined with whole-genome linkage analysis. We identified a missense variant in NPTX1, NM_002522.3:c.1165G>A: p.G389R, segregating with the phenotype. Further investigations with whole-exome sequencing and an amplicon-based panel identified four additional unrelated families segregating the same variant, for whom a common founder effect could be excluded. A second missense variant, NM_002522.3:c.980A>G: p.E327G, was identified in a fifth familial case. The NPTX1-associated phenotype consists of a late-onset, slowly progressive, cerebellar ataxia, with downbeat nystagmus, cognitive impairment reminiscent of cerebellar cognitive affective syndrome, myoclonic tremor and mild cerebellar vermian atrophy on brain imaging. NPTX1 encodes the neuronal pentraxin 1, a secreted protein with various cellular and synaptic functions. Both variants affect conserved amino acid residues and are extremely rare or absent from public databases. In COS7 cells, overexpression of both neuronal pentraxin 1 variants altered endoplasmic reticulum morphology and induced ATF6-mediated endoplasmic reticulum stress, associated with cytotoxicity. In addition, the p.E327G variant abolished neuronal pentraxin 1 secretion, as well as its capacity to form a high molecular weight complex with the wild-type protein. Co-immunoprecipitation experiments coupled with mass spectrometry analysis demonstrated abnormal interactions of this variant with the cytoskeleton. In agreement with these observations, in silico modelling of the neuronal pentraxin 1 complex evidenced a destabilizing effect for the p.E327G substitution, located at the interface between monomers. On the contrary, the p.G389 residue, located at the protein surface, had no predictable effect on the complex stability. Our results establish NPTX1 as a new causative gene in autosomal dominant cerebellar ataxias. We suggest that variants in NPTX1 can lead to cerebellar ataxia due to endoplasmic reticulum stress, mediated by ATF6, and associated to a destabilization of NP1 polymers in a dominant-negative manner for one of the variants.


Asunto(s)
Proteína C-Reactiva , Ataxia Cerebelosa , Estrés del Retículo Endoplásmico , Proteínas del Tejido Nervioso , Humanos , Proteína C-Reactiva/genética , Ataxia Cerebelosa/genética , Estrés del Retículo Endoplásmico/genética , Secuenciación del Exoma , Mutación , Proteínas del Tejido Nervioso/genética , Linaje
3.
Hum Mol Genet ; 27(1): 178-189, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29121267

RESUMEN

Coiled-helix coiled-helix domain containing protein 10 (CHCHD10) and its paralogue CHCHD2 belong to a family of twin CX9C motif proteins, most of which localize to the intermembrane space of mitochondria. Dominant mutations in CHCHD10 cause amyotrophic lateral sclerosis (ALS)/frontotemporal dementia, and mutations in CHCHD2 have been associated with Parkinson's disease, but the function of these proteins remains unknown. Here we show that the p.R15L CHCHD10 variant in ALS patient fibroblasts destabilizes the protein, leading to a defect in the assembly of Complex I, impaired cellular respiration, mitochondrial hyperfusion, an increase in the steady-state level of CHCHD2, and a severe proliferation defect on galactose, a substrate that forces cells to synthesize virtually all of their ATP aerobically. CHCHD10 and CHCHD2 appeared together in distinct foci by immunofluorescence analysis and could be quantitatively immunoprecipitated with antibodies against either protein. Blue native polyacrylamide gel electrophoresis analyses showed that both proteins migrated in a high molecular weight complex (220 kDa) in control cells, which was, however, absent in patient cells. CHCHD10 and CHCHD2 levels increased markedly in control cells in galactose medium, a response that was dampened in patient cells, and a new complex (40 kDa) appeared in both control and patient cells cultured in galactose. Re-entry of patient cells into the cell cycle, which occurred after prolonged culture in galactose, was associated with a marked increase in Complex I, and restoration of the oxygen consumption defect. Our results indicate that CHCHD10-CHCHD2 complexes are necessary for efficient mitochondrial respiration, and support a role for mitochondrial dysfunction in some patients with ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Respiración de la Célula/fisiología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación , Factores de Transcripción/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/fisiopatología , Línea Celular , Respiración de la Célula/genética , Proteínas de Unión al ADN , Fibroblastos/patología , Estudios de Asociación Genética , Humanos , Mitocondrias/metabolismo , Factores de Transcripción/genética
4.
Hum Mol Genet ; 24(10): 2841-7, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25652405

RESUMEN

Addition of the trinucleotide cytosine/cytosine/adenine (CCA) to the 3' end of transfer RNAs (tRNAs) is essential for translation and is catalyzed by the enzyme TRNT1 (tRNA nucleotidyl transferase), which functions in both the cytoplasm and mitochondria. Exome sequencing revealed TRNT1 mutations in two unrelated subjects with different clinical features. The first presented with acute lactic acidosis at 3 weeks of age and developed severe developmental delay, hypotonia, microcephaly, seizures, progressive cortical atrophy, neurosensorial deafness, sideroblastic anemia and renal Fanconi syndrome, dying at 21 months. The second presented at 3.5 years with gait ataxia, dysarthria, gross motor regression, hypotonia, ptosis and ophthalmoplegia and had abnormal signals in brainstem and dentate nucleus. In subject 1, muscle biopsy showed combined oxidative phosphorylation (OXPHOS) defects, but there was no OXPHOS deficiency in fibroblasts from either subject, despite a 10-fold-reduction in TRNT1 protein levels in fibroblasts of the first subject. Furthermore, in normal controls, TRNT1 protein levels are 10-fold lower in muscle than in fibroblasts. High resolution northern blots of subject fibroblast RNA suggested incomplete CCA addition to the non-canonical mitochondrial tRNA(Ser(AGY)), but no obvious qualitative differences in other mitochondrial or cytoplasmic tRNAs. Complete knockdown of TRNT1 in patient fibroblasts rendered mitochondrial tRNA(Ser(AGY)) undetectable, and markedly reduced mitochondrial translation, except polypeptides lacking Ser(AGY) codons. These data suggest that the clinical phenotypes associated with TRNT1 mutations are largely due to impaired mitochondrial translation, resulting from defective CCA addition to mitochondrial tRNA(Ser(AGY)), and that the severity of this biochemical phenotype determines the severity and tissue distribution of clinical features.


Asunto(s)
Mitocondrias/genética , Enfermedades Mitocondriales/genética , Mutación , Biosíntesis de Proteínas/genética , ARN Nucleotidiltransferasas/genética , ARN de Transferencia de Serina/metabolismo , Niño , Preescolar , Exoma , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Mitocondrias/metabolismo , ARN Nucleotidiltransferasas/metabolismo , Análisis de Secuencia de ADN , Síndrome
5.
Hum Mutat ; 37(9): 976-82, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27349184

RESUMEN

Vitamin B12 (cobalamin, Cbl) cofactors adenosylcobalamin (AdoCbl) and methylcobalamin (MeCbl) are required for the activity of the enzymes methylmalonyl-CoA mutase (MCM) and methionine synthase (MS). Inborn errors of Cbl metabolism are rare Mendelian disorders associated with hematological and neurological manifestations, and elevations of methylmalonic acid and/or homocysteine in the blood and urine. We describe a patient whose fibroblasts had decreased functional activity of MCM and MS and decreased synthesis of AdoCbl and MeCbl (3.4% and 1.0% of cellular Cbl, respectively). The defect in cultured patient fibroblasts complemented those from all known complementation groups. Patient cells accumulated transcobalamin-bound-Cbl, a complex which usually dissociates in the lysosome to release free Cbl. Whole-exome sequencing identified putative disease-causing variants c.851T>G (p.L284*) and c.1019C>T (p.T340I) in transcription factor ZNF143. Proximity biotinylation analysis confirmed the interaction between ZNF143 and HCFC1, a protein that regulates expression of the Cbl trafficking enzyme MMACHC. qRT-PCR analysis revealed low MMACHC expression levels both in patient fibroblasts, and in control fibroblasts incubated with ZNF143 siRNA.


Asunto(s)
Citoplasma/metabolismo , Errores Innatos del Metabolismo/genética , Transactivadores/genética , Transcobalaminas/metabolismo , Vitamina B 12/metabolismo , Proteínas Portadoras/metabolismo , Células Cultivadas , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Lactante , Masculino , Errores Innatos del Metabolismo/metabolismo , Errores Innatos del Metabolismo/patología , Mutación , Oxidorreductasas , Linaje
6.
Am J Hum Genet ; 91(4): 737-43, 2012 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-23022098

RESUMEN

Mutations in the genes composing the mitochondrial translation apparatus are an important cause of a heterogeneous group of oxidative phosphorylation (OXPHOS) disorders. We studied the index case in a consanguineous family in which two children presented with severe encephalopathy, lactic acidosis, and intractable seizures leading to an early fatal outcome. Blue native polyacrylamide gel electrophoretic (BN-PAGE) analysis showed assembly defects in all of the OXPHOS complexes with mtDNA-encoded structural subunits, and these defects were associated with a severe deficiency in mitochondrial translation. Immunoblot analysis showed reductions in the steady-state levels of several structural subunits of the mitochondrial ribosome. Whole-exome sequencing identified a homozygous missense mutation (c.1250G>A) in an uncharacterized gene, RMND1 (required for meiotic nuclear division 1). RMND1 localizes to mitochondria and behaves as an integral membrane protein. Retroviral expression of the wild-type RMND1 cDNA rescued the biochemical phenotype in subject cells, and siRNA-mediated knockdown of the protein recapitulated the defect. BN-PAGE, gel filtration, and mass spectrometry analyses showed that RMND1 forms a high-molecular-weight and most likely homopolymeric complex (∼240 kDa) that does not assemble in subject fibroblasts but that is rescued by expression of RMND1 cDNA. The p.Arg417Gln substitution, predicted to be in a coiled-coil domain, which is juxtaposed to a transmembrane domain at the extreme C terminus of the protein, does not alter the steady-state level of RMND1 but might prevent protein-protein interactions in this complex. Our results demonstrate that the RMND1 complex is necessary for mitochondrial translation, possibly by coordinating the assembly or maintenance of the mitochondrial ribosome.


Asunto(s)
Proteínas de Ciclo Celular/genética , Discapacidad Intelectual/genética , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Mutación Missense , Biosíntesis de Proteínas , Espasmos Infantiles/genética , Consanguinidad , ADN Mitocondrial/genética , Exoma , Femenino , Predisposición Genética a la Enfermedad , Homocigoto , Humanos , Recién Nacido , Síndrome de Lennox-Gastaut , Proteínas de la Membrana/genética , Fenotipo , Dominios y Motivos de Interacción de Proteínas/genética , Ribosomas/genética
7.
Am J Hum Genet ; 89(4): 486-95, 2011 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-21944046

RESUMEN

Severe combined deficiency of the 2-oxoacid dehydrogenases, associated with a defect in lipoate synthesis and accompanied by defects in complexes I, II, and III of the mitochondrial respiratory chain, is a rare autosomal recessive syndrome with no obvious causative gene defect. A candidate locus for this syndrome was mapped to chromosomal region 2p14 by microcell-mediated chromosome transfer in two unrelated families. Unexpectedly, analysis of genes in this area identified mutations in two different genes, both of which are involved in [Fe-S] cluster biogenesis. A homozygous missense mutation, c.545G>A, near the splice donor of exon 6 in NFU1 predicting a p.Arg182Gln substitution was found in one of the families. The mutation results in abnormal mRNA splicing of exon 6, and no mature protein could be detected in fibroblast mitochondria. A single base-pair duplication c.123dupA was identified in BOLA3 in the second family, causing a frame shift that produces a premature stop codon (p.Glu42Argfs(∗)13). Transduction of fibroblast lines with retroviral vectors expressing the mitochondrial, but not the cytosolic isoform of NFU1 and with isoform 1, but not isoform 2 of BOLA3 restored both respiratory chain function and oxoacid dehydrogenase complexes. NFU1 was previously proposed to be an alternative scaffold to ISCU for the biogenesis of [Fe-S] centers in mitochondria, and the function of BOLA3 was previously unknown. Our results demonstrate that both play essential roles in the production of [Fe-S] centers for the normal maturation of lipoate-containing 2-oxoacid dehydrogenases, and for the assembly of the respiratory chain complexes.


Asunto(s)
Proteínas Portadoras/genética , Mutación , Oxidorreductasas/metabolismo , Proteínas/genética , Citosol/metabolismo , Transporte de Electrón , Exones , Salud de la Familia , Femenino , Fibroblastos/metabolismo , Homocigoto , Humanos , Proteínas Hierro-Azufre/metabolismo , Masculino , Mitocondrias/metabolismo , Proteínas Mitocondriales , Mutación Missense
8.
Brain ; 136(Pt 6): 1732-45, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23518714

RESUMEN

We showed previously, in a cell model of spinocerebellar ataxia 7, that interferon beta induces the expression of PML protein and the formation of PML protein nuclear bodies that degrade mutant ataxin 7, suggesting that the cytokine, used to treat multiple sclerosis, might have therapeutic value in spinocerebellar ataxia 7. We now show that interferon beta also induces PML-dependent clearance of ataxin 7 in a preclinical model, SCA7(266Q/5Q) knock-in mice, and improves motor function. Interestingly, the presence of mutant ataxin 7 in the mice induces itself the expression of endogenous interferon beta and its receptor. Immunohistological studies in brains from two patients with spinocerebellar ataxia 7 confirmed that these modifications are also caused by the disease in humans. Interferon beta, administered intraperitoneally three times a week in the knock-in mice, was internalized with its receptor in Purkinje and other cells and translocated to the nucleus. The treatment induced PML protein expression and the formation of PML protein nuclear bodies and decreased mutant ataxin 7 in neuronal intranuclear inclusions, the hallmark of the disease. No reactive gliosis or other signs of toxicity were observed in the brain or internal organs. The performance of the SCA7(266Q/5Q) knock-in mice was significantly improved on two behavioural tests sensitive to cerebellar function: the Locotronic® Test of locomotor function and the Beam Walking Test of balance, motor coordination and fine movements, which are affected in patients with spinocerebellar ataxia 7. In addition to motor dysfunction, SCA7(266Q/5Q) mice present abnormalities in the retina as in patients: ataxin 7-positive neuronal intranuclear inclusions that were reduced by interferon beta treatment. Finally, since neuronal death does not occur in the cerebellum of SCA7(266Q/5Q) mice, we showed in primary cell cultures expressing mutant ataxin 7 that interferon beta treatment improves Purkinje cell survival.


Asunto(s)
Interferón beta/uso terapéutico , Actividad Motora/genética , Mutación/genética , Proteínas del Tejido Nervioso/genética , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/fisiopatología , Adulto , Anciano , Animales , Ataxina-7 , Células Cultivadas , Niño , Técnicas de Sustitución del Gen , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Ratas , Ratas Wistar , Ataxias Espinocerebelosas/tratamiento farmacológico
9.
Life Sci Alliance ; 7(1)2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37931956

RESUMEN

Mitochondria interact with the ER at structurally and functionally specialized membrane contact sites known as mitochondria-ER contact sites (MERCs). Combining proximity labelling (BioID), co-immunoprecipitation, confocal microscopy and subcellular fractionation, we found that the ER resident SMP-domain protein ESYT1 was enriched at MERCs, where it forms a complex with the outer mitochondrial membrane protein SYNJ2BP. BioID analyses using ER-targeted, outer mitochondrial membrane-targeted, and MERC-targeted baits, confirmed the presence of this complex at MERCs and the specificity of the interaction. Deletion of ESYT1 or SYNJ2BP reduced the number and length of MERCs. Loss of the ESYT1-SYNJ2BP complex impaired ER to mitochondria calcium flux and provoked a significant alteration of the mitochondrial lipidome, most prominently a reduction of cardiolipins and phosphatidylethanolamines. Both phenotypes were rescued by reexpression of WT ESYT1 and an artificial mitochondria-ER tether. Together, these results reveal a novel function for ESYT1 in mitochondrial and cellular homeostasis through its role in the regulation of MERCs.


Asunto(s)
Calcio , Retículo Endoplásmico , Mitocondrias , Sinaptotagminas , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Homeostasis , Lípidos , Mitocondrias/metabolismo , Sinaptotagminas/metabolismo
10.
Mol Genet Metab ; 108(2): 112-8, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23270877

RESUMEN

MMACHC and MMADHC are the genes responsible for cblC and cblD defects of vitamin B(12) metabolism, respectively. Patients with cblC and cblD defects present with various combinations of methylmalonic aciduria (MMA) and homocystinuria (HC). Those with cblC mutations have both MMA and HC whereas cblD patients can present with one of three distinct biochemical phenotypes: isolated MMA, isolated HC, or combined MMA and HC. Based on the subcellular localization of these enzymatic pathways it is thought that MMACHC functions in the cytoplasm while MMADHC functions downstream of MMACHC in both the cytoplasm and the mitochondrion. In this study we determined the subcellular location of MMACHC and MMADHC by immunofluorescence and subcellular fractionation. We show that MMACHC is cytoplasmic while MMADHC is both mitochondrial and cytoplasmic, consistent with the proposal that MMADHC acts as a branch point for vitamin B(12) delivery to the cytoplasm and mitochondria. The factors that determine the distribution of MMADHC between the cytoplasm and mitochondria remain unknown. Functional complementation experiments showed that retroviral expression of the GFP tagged constructs rescued all biochemical defects in cblC and cblD fibroblasts except propionate incorporation in cblD-MMA cells, suggesting that the endogenous mutant protein interferes with the function of the transduced wild type construct.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Vitamina B 12/metabolismo , Proteínas Portadoras/genética , Línea Celular , Humanos , Péptidos y Proteínas de Señalización Intracelular , Espacio Intracelular/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Oxidorreductasas , Unión Proteica , Isoformas de Proteínas , Transporte de Proteínas
11.
Life Sci Alliance ; 6(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36977595

RESUMEN

Mutations in SLC25A46 underlie a wide spectrum of neurodegenerative diseases associated with alterations in mitochondrial morphology. We established an SLC25A46 knock-out cell line in human fibroblasts and studied the pathogenicity of three variants (p.T142I, p.R257Q, and p.E335D). Mitochondria were fragmented in the knock-out cell line and hyperfused in all pathogenic variants. The loss of SLC25A46 led to abnormalities in the mitochondrial cristae ultrastructure that were not rescued by the expression of the variants. SLC25A46 was present in discrete puncta at mitochondrial branch points and tips of mitochondrial tubules, co-localizing with DRP1 and OPA1. Virtually, all fission/fusion events were demarcated by a SLC25A46 focus. SLC25A46 co-immunoprecipitated with the fusion machinery, and loss of function altered the oligomerization state of OPA1 and MFN2. Proximity interaction mapping identified components of the ER membrane, lipid transfer proteins, and mitochondrial outer membrane proteins, indicating that it is present at interorganellar contact sites. SLC25A46 loss of function led to altered mitochondrial lipid composition, suggesting that it may facilitate interorganellar lipid flux or play a role in membrane remodeling associated with mitochondrial fusion and fission.


Asunto(s)
Dinámicas Mitocondriales , Proteínas Mitocondriales , Humanos , Dinámicas Mitocondriales/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Lípidos , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo
12.
Dev Neurobiol ; 83(1-2): 54-69, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36799027

RESUMEN

Mutations in CHCHD10 and CHCHD2, encoding two paralogous mitochondrial proteins, have been identified in cases of amyotrophic lateral sclerosis, frontotemporal lobar degeneration, and Parkinson's disease. Their role in disease is unclear, though both have been linked to mitochondrial respiration and mitochondrial stress responses. Here, we investigated the biological roles of these proteins during vertebrate development using knockout (KO) models in zebrafish. We demonstrate that loss of either or both proteins leads to motor impairment, reduced survival and compromised neuromuscular junction integrity in larval zebrafish. Compensation by Chchd10 was observed in the chchd2-/- model, but not by Chchd2 in the chchd10-/- model. The assembly of mitochondrial respiratory chain Complex I was impaired in chchd10-/- and chchd2-/- zebrafish larvae, but unexpectedly not in a double chchd10-/- and chchd2-/- model, suggesting that reduced mitochondrial Complex I cannot be solely responsible for the observed phenotypes, which are generally more severe in the double KO. We observed transcriptional activation markers of the mitochondrial integrated stress response (mt-ISR) in the double chchd10-/- and chchd2-/- KO model, suggesting that this pathway is involved in the restoration of Complex I assembly in our double KO model. The data presented here demonstrates that the Complex I assembly defect in our single KO models arises independently of the mt-ISR. Furthermore, this study provides evidence that both proteins are required for normal vertebrate development.


Asunto(s)
Factores de Transcripción , Animales , Proteínas de Unión al ADN/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación , Fenotipo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Pez Cebra/metabolismo
13.
Hum Mol Genet ; 19(1): 181-95, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19843541

RESUMEN

Post-translational modification by SUMO (small ubiquitin-like modifier) was proposed to modulate the pathogenesis of several neurodegenerative diseases. Spinocerebellar ataxia type 7 (SCA7) is a neurodegenerative disorder, whose pathology is caused by an expansion of a polyglutamine stretch in the protein ataxin-7 (ATXN7). Here, we identified ATXN7 as new target for SUMOylation in vitro and in vivo. The major SUMO acceptor site was mapped to lysine 257, which is part of an evolutionarily conserved consensus SUMOylation motif. SUMOylation did not influence the subcellular localization of ATXN7 nor its interaction with components of the TFTC/STAGA complex. Expansion of the polyglutamine stretch did not impair the SUMOylation of ATXN7. Furthermore, SUMO1 and SUMO2 colocalized with ATXN7 in a subset of neuronal intranuclear inclusions in the brain of SCA7 patients and SCA7 knock-in mice. In a COS-7 cellular model of SCA7, in addition to diffuse nucleoplasmic staining we identified two populations of nuclear inclusions: homogenous or non-homogenous. Non-homogenous inclusions showed significantly reduced colocalization with SUMO1 and SUMO2, but were highly enriched in Hsp70, 19S proteasome and ubiquitin. Interestingly, they were characterized by increased staining with the apoptotic marker caspase-3 and by disruption of PML nuclear bodies. Importantly, preventing the SUMOylation of expanded ATXN7 by mutating the SUMO site increased both the amount of SDS-insoluble aggregates and of caspase-3 positive non-homogenous inclusions, which act toxic to the cells. Our results demonstrate an influence of SUMOylation on the multistep aggregation process of ATXN7 and implicate a role for ATXN7 SUMOylation in SCA7 pathogenesis.


Asunto(s)
Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/toxicidad , Péptidos/toxicidad , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Expansión de Repetición de Trinucleótido/genética , Adulto , Animales , Ataxina-7 , Caspasa 3/metabolismo , Niño , Activación Enzimática/efectos de los fármacos , Resultado Fatal , Femenino , Humanos , Cuerpos de Inclusión Intranucleares/efectos de los fármacos , Cuerpos de Inclusión Intranucleares/metabolismo , Lisina/metabolismo , Masculino , Ratones , Complejos Multiproteicos/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica/efectos de los fármacos , Estructura Cuaternaria de Proteína , Transporte de Proteínas/efectos de los fármacos , Ataxias Espinocerebelosas/metabolismo , Ataxias Espinocerebelosas/patología , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Ubiquitina/metabolismo
14.
J Cell Biol ; 174(1): 65-76, 2006 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-16818720

RESUMEN

The pathogenesis of spinocerebellar ataxia type 7 and other neurodegenerative polyglutamine (polyQ) disorders correlates with the aberrant accumulation of toxic polyQ-expanded proteins in the nucleus. Promyelocytic leukemia protein (PML) nuclear bodies are often present in polyQ aggregates, but their relation to pathogenesis is unclear. We show that expression of PML isoform IV leads to the formation of distinct nuclear bodies enriched in components of the ubiquitin-proteasome system. These bodies recruit soluble mutant ataxin-7 and promote its degradation by proteasome-dependent proteolysis, thus preventing the aggregate formation. Inversely, disruption of the endogenous nuclear bodies with cadmium increases the nuclear accumulation and aggregation of mutant ataxin-7, demonstrating their role in ataxin-7 turnover. Interestingly, beta-interferon treatment, which induces the expression of endogenous PML IV, prevents the accumulation of transiently expressed mutant ataxin-7 without affecting the level of the endogenous wild-type protein. Therefore, clastosomes represent a potential therapeutic target for preventing polyQ disorders.


Asunto(s)
Núcleo Celular/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Ataxina-7 , Células COS , Cloruro de Cadmio/farmacología , Células Cultivadas , Chlorocebus aethiops , Humanos , Interferón beta/farmacología , Ratones , Ratones Transgénicos , Complejos Multiproteicos/efectos de los fármacos , Mutación , Proteínas de Neoplasias/efectos de los fármacos , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/efectos de los fármacos , Péptidos/genética , Proteína de la Leucemia Promielocítica , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Isoformas de Proteínas/efectos de los fármacos , Isoformas de Proteínas/metabolismo , Factores de Transcripción/efectos de los fármacos , Proteínas Supresoras de Tumor/efectos de los fármacos
15.
Cell Metab ; 32(3): 479-497.e9, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32877691

RESUMEN

We used BioID, a proximity-dependent biotinylation assay with 100 mitochondrial baits from all mitochondrial sub-compartments, to create a high-resolution human mitochondrial proximity interaction network. We identified 1,465 proteins, producing 15,626 unique high-confidence proximity interactions. Of these, 528 proteins were previously annotated as mitochondrial, nearly half of the mitochondrial proteome defined by Mitocarta 2.0. Bait-bait analysis showed a clear separation of mitochondrial compartments, and correlation analysis among preys across all baits allowed us to identify functional clusters involved in diverse mitochondrial functions and to assign uncharacterized proteins to specific modules. We demonstrate that this analysis can assign isoforms of the same mitochondrial protein to different mitochondrial sub-compartments and show that some proteins may have multiple cellular locations. Outer membrane baits showed specific proximity interactions with cytosolic proteins and proteins in other organellar membranes, suggesting specialization of proteins responsible for contact site formation between mitochondria and individual organelles.


Asunto(s)
Mitocondrias/química , Proteínas Mitocondriales/química , Mapas de Interacción de Proteínas , Biotinilación , Células Cultivadas , Células HEK293 , Humanos
16.
EMBO Mol Med ; 8(9): 1019-38, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27390132

RESUMEN

Mitochondria form a dynamic network that responds to physiological signals and metabolic stresses by altering the balance between fusion and fission. Mitochondrial fusion is orchestrated by conserved GTPases MFN1/2 and OPA1, a process coordinated in yeast by Ugo1, a mitochondrial metabolite carrier family protein. We uncovered a homozygous missense mutation in SLC25A46, the mammalian orthologue of Ugo1, in a subject with Leigh syndrome. SLC25A46 is an integral outer membrane protein that interacts with MFN2, OPA1, and the mitochondrial contact site and cristae organizing system (MICOS) complex. The subject mutation destabilizes the protein, leading to mitochondrial hyperfusion, alterations in endoplasmic reticulum (ER) morphology, impaired cellular respiration, and premature cellular senescence. The MICOS complex is disrupted in subject fibroblasts, resulting in strikingly abnormal mitochondrial architecture, with markedly shortened cristae. SLC25A46 also interacts with the ER membrane protein complex EMC, and phospholipid composition is altered in subject mitochondria. These results show that SLC25A46 plays a role in a mitochondrial/ER pathway that facilitates lipid transfer, and link altered mitochondrial dynamics to early-onset neurodegenerative disease and cell fate decisions.


Asunto(s)
Homeostasis , Enfermedad de Leigh/patología , Metabolismo de los Lípidos , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Proteínas Mitocondriales/metabolismo , Mutación Missense , Proteínas de Transporte de Fosfato/metabolismo , Células Cultivadas , Retículo Endoplásmico/metabolismo , Femenino , Humanos , Enfermedad de Leigh/genética , Proteínas Mitocondriales/genética , Proteínas de Transporte de Fosfato/genética
17.
Eur J Hum Genet ; 23(10): 1301-7, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25604853

RESUMEN

RMND1 is an integral inner membrane mitochondrial protein that assembles into a large 240 kDa complex to support translation of the 13 polypeptides encoded on mtDNA, all of which are essential subunits of the oxidative phosphorylation (OXPHOS) complexes. Variants in RMND1 produce global defects in mitochondrial translation and were first reported in patients with severe neurological phenotypes leading to mortality in the first months of life. Using whole-exome sequencing, we identified compound heterozygous RMND1 variants in a 4-year-old patient with congenital lactic acidosis, severe myopathy, hearing loss, renal failure, and dysautonomia. The levels of mitochondrial ribosome proteins were reduced in patient fibroblasts, causing a translation defect, which was rescued by expression of the wild-type cDNA. RMND1 was almost undetectable by immunoblot analysis in patient muscle and fibroblasts. BN-PAGE analysis showed a severe combined OXPHOS assembly defect that was more prominent in patient muscle than in fibroblasts. Immunofluorescence experiments showed that RMND1 localizes to discrete foci in the mitochondrial network, juxtaposed to RNA granules where the primary mitochondrial transcripts are processed. RMND1 foci were not detected in patient fibroblasts. We hypothesize that RMND1 acts to anchor or stabilize the mitochondrial ribosome near the sites where the mRNAs are matured, spatially coupling post-transcriptional handling mRNAs with their translation, and that loss of function variants in RMND1 are associated with a unique constellation of clinical phenotypes that vary with the severity of the mitochondrial translation defect.


Asunto(s)
Acidosis Láctica/genética , Proteínas de Ciclo Celular/deficiencia , Proteínas de Ciclo Celular/genética , Sordera/genética , Predisposición Genética a la Enfermedad/genética , Insuficiencia Multiorgánica/genética , Insuficiencia Renal/genética , Preescolar , Variación Genética/genética , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA