Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Mol Plant Microbe Interact ; 37(3): 304-314, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37782126

RESUMEN

It has been discovered that plant pathogens produce effectors that spread via plasmodesmata (PD) to allow modulation of host processes in distal uninfected cells. Fusarium oxysporum f. sp. lycopersici (Fol) facilitates effector translocation by expansion of the size-exclusion limit of PD using the Six5/Avr2 effector pair. How other fungal pathogens manipulate PD is unknown. We recently reported that many fungal pathogens belonging to different families carry effector pairs that resemble the SIX5/AVR2 gene pair from Fol. Here, we performed structural predictions of three of these effector pairs from Leptosphaeria maculans (Lm) and tested their ability to manipulate PD and to complement the virulence defect of a Fol SIX5 knockout mutant. We show that the AvrLm10A homologs are structurally related to FolSix5 and localize at PD when they are expressed with their paired effectors. Furthermore, these effectors were found to complement FolSix5 function in cell-to-cell mobility assays and in fungal virulence. We conclude that distantly related fungal species rely on structurally related paired effector proteins to manipulate PD and facilitate effector mobility. The wide distribution of these effector pairs implies Six5-mediated effector translocation to be a conserved propensity among fungal plant pathogens. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Proteínas Fúngicas , Fusarium , Humanos , Proteínas Fúngicas/metabolismo , Virulencia , Plasmodesmos/metabolismo , Enfermedades de las Plantas/microbiología
2.
PLoS Pathog ; 13(10): e1006670, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29073267

RESUMEN

Fusarium fujikuroi causes bakanae ("foolish seedling") disease of rice which is characterized by hyper-elongation of seedlings resulting from production of gibberellic acids (GAs) by the fungus. This plant pathogen is also known for production of harmful mycotoxins, such as fusarins, fusaric acid, apicidin F and beauvericin. Recently, we generated the first de novo genome sequence of F. fujikuroi strain IMI 58289 combined with extensive transcriptional, epigenetic, proteomic and chemical product analyses. GA production was shown to provide a selective advantage during infection of the preferred host plant rice. Here, we provide genome sequences of eight additional F. fujikuroi isolates from distant geographic regions. The isolates differ in the size of chromosomes, most likely due to variability of subtelomeric regions, the type of asexual spores (microconidia and/or macroconidia), and the number and expression of secondary metabolite gene clusters. Whilst most of the isolates caused the typical bakanae symptoms, one isolate, B14, caused stunting and early withering of infected seedlings. In contrast to the other isolates, B14 produced no GAs but high amounts of fumonisins during infection on rice. Furthermore, it differed from the other isolates by the presence of three additional polyketide synthase (PKS) genes (PKS40, PKS43, PKS51) and the absence of the F. fujikuroi-specific apicidin F (NRPS31) gene cluster. Analysis of additional field isolates confirmed the strong correlation between the pathotype (bakanae or stunting/withering), and the ability to produce either GAs or fumonisins. Deletion of the fumonisin and fusaric acid-specific PKS genes in B14 reduced the stunting/withering symptoms, whereas deletion of the PKS51 gene resulted in elevated symptom development. Phylogenetic analyses revealed two subclades of F. fujikuroi strains according to their pathotype and secondary metabolite profiles.


Asunto(s)
Fusarium/genética , Fusarium/patogenicidad , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Proteínas Fúngicas/biosíntesis , Fusariosis/genética , Fusarium/metabolismo , Genes Fúngicos/genética , Filogenia , Virulencia
3.
Environ Microbiol ; 20(9): 3343-3362, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30047187

RESUMEN

Here we present the identification and characterization of the H3K4-specific histone methyltransferase Set1 and its counterpart, the Jumonji C demethylase Kdm5, in the rice pathogen Fusarium fujikuroi. While Set1 is responsible for all detectable H3K4me2/me3 in this fungus, Kdm5 antagonizes the H3K4me3 mark. Notably, deletion of both SET1 and KDM5 mainly resulted in the upregulation of genome-wide transcription, also affecting a large set of secondary metabolite (SM) key genes. Although H3K4 methylation is a hallmark of actively transcribed euchromatin, several SM gene clusters located in subtelomeric regions were affected by Set1 and Kdm5. While the regulation of many of them is likely indirect, H3K4me2 levels at gibberellic acid (GA) genes correlated with GA biosynthesis in the wild type, Δkdm5 and OE::KDM5 under inducing conditions. Whereas Δset1 showed an abolished GA3 production in axenic culture, phytohormone biosynthesis was induced in planta, so that residual amounts of GA3 were detected during rice infection. Accordingly, Δset1 exhibited a strongly attenuated, though not abolished, virulence on rice. Apart from regulating secondary metabolism, Set1 and Kdm5 function as activator and repressor of conidiation respectively. They antagonistically regulate H3K4me3 levels and expression of the major conidiation-specific transcription factor gene ABA1 in F. fujikuroi.


Asunto(s)
Fusarium/metabolismo , Regulación Fúngica de la Expresión Génica , Histonas/antagonistas & inhibidores , Esporas Fúngicas/metabolismo , Factores de Transcripción/metabolismo , Fusarium/genética , Fusarium/crecimiento & desarrollo , Fusarium/patogenicidad , Giberelinas/metabolismo , Histonas/genética , Histonas/metabolismo , Metilación , Familia de Multigenes , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Procesamiento Proteico-Postraduccional , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/patogenicidad , Factores de Transcripción/genética , Activación Transcripcional , Virulencia
4.
Appl Microbiol Biotechnol ; 102(2): 615-630, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29204899

RESUMEN

The fungus Fusarium fujikuroi causes bakanae disease of rice due to its ability to produce the plant hormones, the gibberellins. The fungus is also known for producing harmful mycotoxins (e.g., fusaric acid and fusarins) and pigments (e.g., bikaverin and fusarubins). However, for a long time, most of these well-known products could not be linked to biosynthetic gene clusters. Recent genome sequencing has revealed altogether 47 putative gene clusters. Most of them were orphan clusters for which the encoded natural product(s) were unknown. In this review, we describe the current status of our research on identification and functional characterizations of novel secondary metabolite gene clusters. We present several examples where linking known metabolites to the respective biosynthetic genes has been achieved and describe recent strategies and methods to access new natural products, e.g., by genetic manipulation of pathway-specific or global transcritption factors. In addition, we demonstrate that deletion and over-expression of histone-modifying genes is a powerful tool to activate silent gene clusters and to discover their products.


Asunto(s)
Fusarium/metabolismo , Familia de Multigenes , Metabolismo Secundario , Vías Biosintéticas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ácido Fusárico/biosíntesis , Fusarium/genética , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Giberelinas/biosíntesis , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histona Metiltransferasas/genética , Histona Metiltransferasas/metabolismo , Histonas/genética , Histonas/metabolismo , Oryza/microbiología , Enfermedades de las Plantas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Appl Microbiol Biotechnol ; 102(1): 279-295, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29080998

RESUMEN

The fungus Fusarium fujikuroi causes "bakanae" disease of rice due to its ability to produce gibberellins (GAs), a family of plant hormones. Recent genome sequencing revealed the genetic capacity for the biosynthesis of 46 additional secondary metabolites besides the industrially produced GAs. Among them are the pigments bikaverin and fusarubins, as well as mycotoxins, such as fumonisins, fusarin C, beauvericin, and fusaric acid. However, half of the potential secondary metabolite gene clusters are silent. In recent years, it has been shown that the fungal specific velvet complex is involved in global regulation of secondary metabolism in several filamentous fungi. We have previously shown that deletion of the three components of the F. fujikuroi velvet complex, vel1, vel2, and lae1, almost totally abolished biosynthesis of GAs, fumonisins and fusarin C. Here, we present a deeper insight into the genome-wide regulatory impact of Lae1 on secondary metabolism. Over-expression of lae1 resulted in de-repression of GA biosynthetic genes under otherwise repressing high nitrogen conditions demonstrating that the nitrogen repression is overcome. In addition, over-expression of one of five tested histone acetyltransferase genes, HAT1, was capable of returning GA gene expression and GA production to the GA-deficient Δlae1 mutant. Deletion and over-expression of HAT1 in the wild type resulted in downregulation and upregulation of GA gene expression, respectively, indicating that HAT1 together with Lae1 plays an essential role in the regulation of GA biosynthesis.


Asunto(s)
Proteínas Fúngicas/genética , Fusarium/genética , Regulación Fúngica de la Expresión Génica , Histona Acetiltransferasas/genética , Metabolismo Secundario/genética , Proteínas Fúngicas/metabolismo , Fusarium/enzimología , Eliminación de Gen , Giberelinas/metabolismo , Histona Acetiltransferasas/metabolismo , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Familia de Multigenes , Micotoxinas/biosíntesis , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Activación Transcripcional
6.
J Biol Chem ; 291(53): 27403-27420, 2016 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-27856636

RESUMEN

The 2H-pyran-2-one gibepyrone A and its oxidized derivatives gibepyrones B-F have been isolated from the rice pathogenic fungus Fusarium fujikuroi already more than 20 years ago. However, these products have not been linked to the respective biosynthetic genes, and therefore, their biosynthesis has not yet been analyzed on a molecular level. Feeding experiments with isotopically labeled precursors clearly supported a polyketide origin for the formal monoterpenoid gibepyrone A, whereas the terpenoid pathway could be excluded. Targeted gene deletion verified that the F. fujikuroi polyketide synthase PKS13, designated Gpy1, is responsible for gibepyrone A biosynthesis. Next to Gpy1, the ATP-binding cassette transporter Gpy2 is encoded by the gibepyrone gene cluster. Gpy2 was shown to have only a minor impact on the actual efflux of gibepyrone A out of the cell. Instead, we obtained evidence that Gpy2 is involved in gene regulation as it represses GPY1 gene expression. Thus, GPY1 was up-regulated and gibepyrone A production was enhanced both extra- and intracellularly in Δgpy2 mutants. Furthermore, expression of GPY genes is strictly repressed by members of the fungus-specific velvet complex, Vel1, Vel2, and Lae1, whereas Sge1, a major regulator of secondary metabolism in F. fujikuroi, affects gibepyrone biosynthesis in a positive manner. The gibepyrone A derivatives gibepyrones B and D were shown to be produced by cluster-independent P450 monooxygenases, probably to protect the fungus from the toxic product. In contrast, the formation of gibepyrones E and F from gibepyrone A is a spontaneous process and independent of enzymatic activity.


Asunto(s)
Proteínas Fúngicas/genética , Fusarium/genética , Oryza/genética , Enfermedades de las Plantas/genética , Sintasas Poliquetidas/metabolismo , Pironas/metabolismo , Proteínas Fúngicas/metabolismo , Fusarium/crecimiento & desarrollo , Fusarium/metabolismo , Regulación Fúngica de la Expresión Génica , Familia de Multigenes , Oryza/metabolismo , Oryza/microbiología , Enfermedades de las Plantas/microbiología
7.
Chembiochem ; 18(10): 899-904, 2017 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-28295904

RESUMEN

The range of secondary metabolites (SMs) produced by the rice pathogen Fusarium fujikuroi is quite broad. Several polyketides, nonribosomal peptides and terpenes have been identified. However, no products of dimethylallyltryptophan synthases (DMATSs) have been elucidated, although two putative DMATS genes are present in the F. fujikuroi genome. In this study, the in vivo product derived from one of the DMATSs (DMATS1, FFUJ_09179) was identified with the help of the software MZmine 2. Detailed structure elucidation showed that this metabolite is a reversely N-prenylated tryptophan with a rare form of prenylation. Further identified products probably resulted from side reactions of DMATS1. The genes adjacent to DMATS1 were analyzed; this showed no influence on the biosynthesis of the product.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Proteínas Fúngicas/metabolismo , Fusarium/metabolismo , Triptófano/metabolismo , Oryza/microbiología , Prenilación
8.
Environ Microbiol ; 18(3): 936-56, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26662839

RESUMEN

Fusaric acid (FSA) is a mycotoxin produced by several fusaria, including the rice pathogen Fusarium fujikuroi. Genes involved in FSA biosynthesis were previously identified as a cluster containing a polyketide synthase (PKS)-encoding (FUB1) and four additional genes (FUB2-FUB5). However, the biosynthetic steps leading to FSA as well as the origin of the nitrogen atom, which is incorporated into the polyketide backbone, remained unknown. In this study, seven additional cluster genes (FUB6-FUB12) were identified via manipulation of the global regulator FfSge1. The extended FUB gene cluster encodes two Zn(II)2 Cys6 transcription factors: Fub10 positively regulates expression of all FUB genes, whereas Fub12 is involved in the formation of the two FSA derivatives, i.e. dehydrofusaric acid and fusarinolic acid, serving as a detoxification mechanism. The major facilitator superfamily transporter Fub11 functions in the export of FSA out of the cell and is essential when FSA levels become critical. Next to Fub1, a second key enzyme was identified, the non-canonical non-ribosomal peptide synthetase Fub8. Chemical analyses of generated mutant strains allowed for the identification of a triketide as PKS product and the proposition of an FSA biosynthetic pathway, thereby unravelling the unique formation of a hybrid metabolite consisting of this triketide and an amino acid moiety.


Asunto(s)
Transporte Biológico/genética , Vías Biosintéticas/genética , Ácido Fusárico/biosíntesis , Fusarium/enzimología , Fusarium/genética , Ácido Fusárico/análogos & derivados , Ácido Fusárico/genética , Fusarium/metabolismo , Datos de Secuencia Molecular , Familia de Multigenes/genética , Oryza/genética , Sintasas Poliquetidas/genética , Factores de Transcripción/genética
9.
Environ Microbiol ; 17(8): 2690-708, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25115968

RESUMEN

The plant pathogenic fungus Fusarium fujikuroi is the causal agent of bakanae disease on rice due to its ability to produce gibberellins. Besides these phytohormones, F. fujikuroi is able to produce several other secondary metabolites (SMs). Although much progress has been made in the field of secondary metabolism, the transcriptional regulation of SM biosynthesis is complex and still incompletely understood. Environmental conditions, global as well as pathway-specific regulators and chromatin remodelling have been shown to play major roles. Here, the role of FfSge1, a homologue of the morphological switch regulators Wor1 and Ryp1 in Candida albicans and Histoplasma capsulatum, respectively, is explored with emphasis on secondary metabolism. FfSge1 is not required for formation of conidia and pathogenicity but is involved in vegetative growth. Transcriptome analysis of the mutant Δffsge1 compared with the wild type, as well as comparative chemical analysis between the wild type, Δffsge1 and OE:FfSGE1, revealed that FfSge1 functions as a global activator of secondary metabolism in F. fujikuroi. Double mutants of FfSGE1 and other SM regulatory genes brought insights into the hierarchical regulation of secondary metabolism. In addition, FfSge1 is also required for expression of a yet uncharacterized SM gene cluster containing a non-canonical non-ribosomal peptide synthetase.


Asunto(s)
Proteínas Fúngicas/metabolismo , Fusarium/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Familia de Multigenes , Oryza/microbiología , Metabolismo Secundario/genética , Proteínas Fúngicas/genética , Fusarium/genética , Fusarium/patogenicidad , Eliminación de Gen , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Proteínas de Transporte de Membrana/genética , Enfermedades de las Plantas/microbiología , Virulencia/genética
10.
Epigenetics Chromatin ; 17(1): 7, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509556

RESUMEN

BACKGROUND: Fusarium fujikuroi is a pathogen of rice causing diverse disease symptoms such as 'bakanae' or stunting, most likely due to the production of various natural products (NPs) during infection. Fusaria have the genetic potential to synthesize a plethora of these compounds with often diverse bioactivity. The capability to synthesize NPs exceeds the number of those being produced by far, implying a gene regulatory network decisive to induce production. One such regulatory layer is the chromatin structure and chromatin-based modifications associated with it. One prominent example is the exchange of histones against histone variants such as the H2A variant H2A.Z. Though H2A.Z already is well studied in several model organisms, its regulatory functions are not well understood. Here, we used F. fujikuroi as a model to explore the role of the prominent histone variant FfH2A.Z in gene expression within euchromatin and facultative heterochromatin. RESULTS: Through the combination of diverse '-omics' methods, we show the global distribution of FfH2A.Z and analyze putative crosstalks between the histone variant and two prominent histone marks, i.e., H3K4me3 and H3K27me3, important for active gene transcription and silencing, respectively. We demonstrate that, if FfH2A.Z is positioned at the + 1-nucleosome, it poises chromatin for gene transcription, also within facultative heterochromatin. Lastly, functional characterization of FfH2A.Z overexpression and depletion mutants revealed that FfH2A.Z is important for wild type-like fungal development and secondary metabolism. CONCLUSION: In this study, we show that the histone variant FfH2A.Z is a mark of positive gene transcription and acts independently of the chromatin state most likely through the stabilization of the + 1-nucleosome. Furthermore, we demonstrate that FfH2A.Z depletion does not influence the establishment of both H3K27me3 and H3K4me3, thus indicating no crosstalk between FfH2A.Z and both histone marks. These results highlight the manifold functions of the histone variant FfH2A.Z in the phytopathogen F. fujikuroi, which are distinct regarding gene transcription and crosstalk with the two prominent histone marks H3K27me3 and H3K4me3, as proposed for other model organisms.


Asunto(s)
Fusarium , Histonas , Nucleosomas , Histonas/metabolismo , Heterocromatina , Cromatina , Silenciador del Gen
11.
mBio ; 15(3): e0019524, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38380921

RESUMEN

Sphingofungins are sphinganine analog mycotoxins acting as inhibitors of serine palmitoyl transferases, enzymes responsible for the first step in the sphingolipid biosynthesis. Eukaryotic cells are highly organized with various structures and organelles to facilitate cellular processes and chemical reactions, including the ones occurring as part of the secondary metabolism. We studied how sphingofungin biosynthesis is compartmentalized in the human-pathogenic fungus Aspergillus fumigatus, and we observed that it takes place in the endoplasmic reticulum (ER), ER-derived vesicles, and the cytosol. This implies that sphingofungin and sphingolipid biosynthesis colocalize to some extent. Automated analysis of confocal microscopy images confirmed the colocalization of the fluorescent proteins. Moreover, we demonstrated that the cluster-associated aminotransferase (SphA) and 3-ketoreductase (SphF) play a bifunctional role, supporting sphingolipid biosynthesis, and thereby antagonizing the toxic effects caused by sphingofungin production.IMPORTANCEA balanced sphingolipid homeostasis is critical for the proper functioning of eukaryotic cells. To this end, sphingolipid inhibitors have therapeutic potential against diseases related to the deregulation of sphingolipid balance. In addition, some of them have significant antifungal activity, suggesting that sphingolipid inhibitors-producing fungi have evolved mechanisms to escape self-poisoning. Here, we propose a novel self-defense mechanism, with cluster-associated genes coding for enzymes that play a dual role, being involved in both sphingofungin and sphingolipid production.


Asunto(s)
Aspergillus fumigatus , Esfingolípidos , Humanos , Aspergillus fumigatus/genética , Homeostasis , Metabolismo de los Lípidos , Serina/metabolismo
12.
ACS Chem Biol ; 17(2): 386-394, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35023724

RESUMEN

Sphingofungins belong to a group of structurally related sphingolipid inhibitors produced by fungi, which specifically inhibit serine palmitoyl transferases, enzymes catalyzing the initial step during sphingolipid biosynthesis. Sphingolipids are integral parts of the eukaryotic cell membrane, and disturbances in their homeostasis have been linked to various human diseases. It has been suggested that external interventions, via sphingolipid inhibitors, may represent a promising approach for alternative therapies. Here, we identified and elucidated the biosynthetic gene cluster responsible for the biosynthesis of sphingofungins B, C, and D in Aspergillus fumigatus. Moreover, in vitro analyses have shown that sphingofungin biosynthesis starts with the condensation of a C18 polyketide with the uncommon substrate aminomalonate. Furthermore, the investigations on sphingofungin E and F produced by Paecilomyces variotii pointed out that different aminomalonate derivatives are used as substrates for those chemical variants. This research boosts knowledge on the general biosynthesis of sphingolipid inhibitors in fungi.


Asunto(s)
Hongos , Esfingolípidos , Aspergillus fumigatus/metabolismo , Hongos/metabolismo , Humanos , Serina/metabolismo , Esfingolípidos/metabolismo
13.
mBio ; 11(3)2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32546615

RESUMEN

Fumonisin (FB) mycotoxins produced by species of the genus Fusarium detrimentally affect human and animal health upon consumption, due to the inhibition of ceramide synthase. In the present work, we set out to identify mechanisms of self-protection employed by the FB1 producer Fusarium verticillioides FB1 biosynthesis was shown to be compartmentalized, and two cluster-encoded self-protection mechanisms were identified. First, the ATP-binding cassette transporter Fum19 acts as a repressor of the FUM gene cluster. Appropriately, FUM19 deletion and overexpression increased and decreased, respectively, the levels of intracellular and secreted FB1 Second, the cluster genes FUM17 and FUM18 were shown to be two of five ceramide synthase homologs in Fusarium verticillioides, grouping into the two clades CS-I and CS-II in a phylogenetic analysis. The ability of FUM18 to fully complement the yeast ceramide synthase null mutant LAG1/LAC1 demonstrated its functionality, while coexpression of FUM17 and CER3 partially complemented, likely via heterodimer formation. Cell viability assays revealed that Fum18 contributes to the fungal self-protection against FB1 and increases resistance by providing FUM cluster-encoded ceramide synthase activity.IMPORTANCE The biosynthesis of fungal natural products is highly regulated not only in terms of transcription and translation but also regarding the cellular localization of the biosynthetic pathway. In all eukaryotes, the endoplasmic reticulum (ER) is involved in the production of organelles, which are subject to cellular traffic or secretion. Here, we show that in Fusarium verticillioides, early steps in fumonisin production take place in the ER, together with ceramide biosynthesis, which is targeted by the mycotoxin. A first level of self-protection is given by the presence of a FUM cluster-encoded ceramide synthase, Fum18, hitherto uncharacterized. In addition, the final fumonisin biosynthetic step occurs in the cytosol and is thereby spatially separate from the fungal ceramide synthases. We suggest that these strategies help the fungus to avoid self-poisoning during mycotoxin production.


Asunto(s)
Vías Biosintéticas/genética , Fumonisinas/metabolismo , Fusarium/genética , Regulación Fúngica de la Expresión Génica , Familia de Multigenes , Oxidorreductasas/genética , Compartimento Celular , Ceramidas/biosíntesis , Retículo Endoplásmico/metabolismo , Fusarium/enzimología , Genes Fúngicos , Oxidorreductasas/metabolismo , Filogenia , Esfingolípidos/antagonistas & inhibidores , Esfingolípidos/biosíntesis
14.
ACS Chem Biol ; 14(12): 2922-2931, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31756078

RESUMEN

Dimethylallyltryptophan synthases catalyze the regiospecific transfer of (oligo)prenylpyrophosphates to aromatic substrates like tryptophan derivatives. These reactions are key steps in many biosynthetic pathways of fungal and bacterial secondary metabolites. In vitro investigations on recombinant DMATS1Ff from Fusarium fujikuroi identified the enzyme as the first selective reverse tryptophan-N-1 prenyltransferase of fungal origin. The enzyme was also able to catalyze the reverse N-geranylation of tryptophan. DMATS1Ff was shown to be phylogenetically related to fungal tyrosine O-prenyltransferases and fungal 7-DMATS. Like these enzymes, DMATS1Ff was able to convert tyrosine into its regularly O-prenylated derivative. Investigation of the binding sites of DMATS1Ff by homology modeling and comparison to the crystal structure of 4-DMATS FgaPT2 showed an almost identical site for DMAPP binding but different residues for tryptophan coordination. Several putative active site residues were verified by site directed mutagenesis of DMATS1Ff. Homology models of the phylogenetically related enzymes showed similar tryptophan binding residues, pointing to a unified substrate binding orientation of tryptophan and DMAPP, which is distinct from that in FgaPT2. Isotopic labeling experiments showed the reaction catalyzed by DMATS1Ff to be nonstereospecific. Based on these data, a detailed mechanism for DMATS1Ff catalysis is proposed.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Fusarium/enzimología , Transferasas Alquil y Aril/química , Transferasas Alquil y Aril/genética , Sitios de Unión , Dominio Catalítico , Mutagénesis Sitio-Dirigida , Conformación Proteica
15.
mBio ; 10(2)2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30914505

RESUMEN

The pathogenic fungus Aspergillus fumigatus is able to adapt to extremely variable environmental conditions. The A. fumigatus genome contains four genes coding for mitogen-activated protein kinases (MAPKs), which are important regulatory knots involved in diverse cellular responses. From a clinical perspective, MAPK activity has been connected to salvage pathways, which can determine the failure of effective treatment of invasive mycoses using antifungal drugs. Here, we report the characterization of the Saccharomyces cerevisiae Fus3 ortholog in A. fumigatus, designated MpkB. We demonstrate that MpkB is important for conidiation and that its deletion induces a copious increase of dihydroxynaphthalene (DHN)-melanin production. Simultaneous deletion of mpkB and mpkA, the latter related to maintenance of the cell wall integrity, normalized DHN-melanin production. Localization studies revealed that MpkB translocates into the nuclei when A. fumigatus germlings are exposed to caspofungin stress, and this is dependent on the cross-talk interaction with MpkA. Additionally, DHN-melanin formation was also increased after deletion of genes coding for the Gα protein GpaA and for the G protein-coupled receptor GprM. Yeast two-hybrid and coimmunoprecipitation assays confirmed that GpaA and GprM interact, suggesting their role in the MpkB signaling cascade.IMPORTANCEAspergillus fumigatus is the most important airborne human pathogenic fungus, causing thousands of deaths per year. Its lethality is due to late and often inaccurate diagnosis and the lack of efficient therapeutics. The failure of efficient prophylaxis and therapy is based on the ability of this pathogen to activate numerous salvage pathways that are capable of overcoming the different drug-derived stresses. A major role in the protection of A. fumigatus is played by melanins. Melanins are cell wall-associated macromolecules classified as virulence determinants. The understanding of the various signaling pathways acting in this organism can be used to elucidate the mechanism beyond melanin production and help to identify ideal drug targets.


Asunto(s)
Aspergillus fumigatus/crecimiento & desarrollo , Aspergillus fumigatus/metabolismo , Melaninas/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Naftoles/metabolismo , Mapas de Interacción de Proteínas , Esporas Fúngicas/crecimiento & desarrollo , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Proteínas Quinasas Activadas por Mitógenos/genética
16.
Genetics ; 208(1): 153-171, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29146582

RESUMEN

In this work, we present a comprehensive analysis of the H3K36 histone methyltransferases Set2 and Ash1 in the filamentous ascomycete Fusarium fujikuroi In Saccharomyces cerevisiae, one single methyltransferase, Set2, confers all H3K36 methylation, while there are two members of the Set2 family in filamentous fungi, and even more H3K36 methyltransferases in higher eukaryotes. Whereas the yeast Set2 homolog has been analyzed in fungi previously, the second member of the Set2 family, designated Ash1, has not been described for any filamentous fungus. Western blot and ChIP-Seq analyses confirmed that F. fujikuroi Set2 and Ash1 are H3K36-specific histone methyltransferases that deposit H3K36me3 at specific loci: Set2 is most likely responsible for H3K36 methylation of euchromatic regions of the genome, while Ash1 methylates H3K36 at the subtelomeric regions (facultative heterochromatin) of all chromosomes, including the accessory chromosome XII. Our data indicate that H3K36me3 cannot be considered a hallmark of euchromatin in F. fujikuroi, and likely also other filamentous fungi, making them different to what is known about nuclear characteristics in yeast and higher eukaryotes. We suggest that the H3K36 methylation mark exerts specific functions when deposited at euchromatic or subtelomeric regions by Set2 or Ash1, respectively. We found an enhanced level of H3K27me3, an increased instability of subtelomeric regions and losses of the accessory chromosome XII over time in Δash1 mutants, indicating an involvement of Ash1 in DNA repair processes. Further phenotypic analyses revealed a role of H3K36 methylation in vegetative growth, sporulation, secondary metabolite biosynthesis, and virulence in F. fujikuroi.


Asunto(s)
Cromosomas Fúngicos , Fusarium/genética , Fusarium/metabolismo , Genoma Fúngico , Inestabilidad Genómica , N-Metiltransferasa de Histona-Lisina/metabolismo , Clonación Molecular , Fusarium/crecimiento & desarrollo , Perfilación de la Expresión Génica , Histona Metiltransferasas , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Unión Proteica , Metabolismo Secundario , Eliminación de Secuencia , Telómero/genética , Telómero/metabolismo , Transcriptoma
17.
Toxins (Basel) ; 9(4)2017 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-28379186

RESUMEN

The PKS-NRPS-derived tetramic acid equisetin and its N-desmethyl derivative trichosetin exhibit remarkable biological activities against a variety of organisms, including plants and bacteria, e.g., Staphylococcus aureus. The equisetin biosynthetic gene cluster was first described in Fusarium heterosporum, a species distantly related to the notorious rice pathogen Fusarium fujikuroi. Here we present the activation and characterization of a homologous, but silent, gene cluster in F. fujikuroi. Bioinformatic analysis revealed that this cluster does not contain the equisetin N-methyltransferase gene eqxD and consequently, trichosetin was isolated as final product. The adaption of the inducible, tetracycline-dependent Tet-on promoter system from Aspergillus niger achieved a controlled overproduction of this toxic metabolite and a functional characterization of each cluster gene in F. fujikuroi. Overexpression of one of the two cluster-specific transcription factor (TF) genes, TF22, led to an activation of the three biosynthetic cluster genes, including the PKS-NRPS key gene. In contrast, overexpression of TF23, encoding a second Zn(II)2Cys6 TF, did not activate adjacent cluster genes. Instead, TF23 was induced by the final product trichosetin and was required for expression of the transporter-encoding gene MFS-T. TF23 and MFS-T likely act in consort and contribute to detoxification of trichosetin and therefore, self-protection of the producing fungus.


Asunto(s)
Fusarium/genética , Regulación Fúngica de la Expresión Génica , Pirrolidinonas , Aspergillus/genética , Supervivencia Celular/efectos de los fármacos , Proteínas Fúngicas/genética , Fusarium/metabolismo , Células Hep G2 , Humanos , Familia de Multigenes , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Regiones Promotoras Genéticas , Pirrolidinonas/aislamiento & purificación , Pirrolidinonas/metabolismo , Pirrolidinonas/toxicidad , Tetrahidronaftalenos/toxicidad , Factores de Transcripción/genética
18.
Front Microbiol ; 7: 2144, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28119673

RESUMEN

In the two fungal pathogens Fusarium fujikuroi and Fusarium graminearum, secondary metabolites (SMs) are fitness and virulence factors and there is compelling evidence that the coordination of SM gene expression is under epigenetic control. Here, we characterized Ccl1, a subunit of the COMPASS complex responsible for methylating lysine 4 of histone H3 (H3K4me). We show that Ccl1 is not essential for viability but a regulator of genome-wide trimethylation of H3K4 (H3K4me3). Although, recent work in Fusarium and Aspergillus spp. detected only sporadic H3K4 methylation at the majority of the SM gene clusters, we show here that SM profiles in CCL1 deletion mutants are strongly deviating from the wild type. Cross-complementation experiments indicate high functional conservation of Ccl1 as phenotypes of the respective △ccl1 were rescued in both fungi. Strikingly, biosynthesis of the species-specific virulence factors gibberellic acid and deoxynivalenol produced by F. fujikuroi and F. graminearum, respectively, was reduced in axenic cultures but virulence was not attenuated in these mutants, a phenotype which goes in line with restored virulence factor production levels in planta. This suggests that yet unknown plant-derived signals are able to compensate for Ccl1 function during pathogenesis.

19.
PLoS One ; 9(7): e103336, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25058475

RESUMEN

The fungus F. fujikuroi is well known for its production of gibberellins causing the 'bakanae' disease of rice. Besides these plant hormones, it is able to produce other secondary metabolites (SMs), such as pigments and mycotoxins. Genome sequencing revealed altogether 45 potential SM gene clusters, most of which are cryptic and silent. In this study we characterize a new non-ribosomal peptide synthetase (NRPS) gene cluster that is responsible for the production of the cyclic tetrapeptide apicidin F (APF). This new SM has structural similarities to the known histone deacetylase inhibitor apicidin. To gain insight into the biosynthetic pathway, most of the 11 cluster genes were deleted, and the mutants were analyzed by HPLC-DAD and HPLC-HRMS for their ability to produce APF or new derivatives. Structure elucidation was carried out be HPLC-HRMS and NMR analysis. We identified two new derivatives of APF named apicidin J and K. Furthermore, we studied the regulation of APF biosynthesis and showed that the cluster genes are expressed under conditions of high nitrogen and acidic pH in a manner dependent on the nitrogen regulator AreB, and the pH regulator PacC. In addition, over-expression of the atypical pathway-specific transcription factor (TF)-encoding gene APF2 led to elevated expression of the cluster genes under inducing and even repressing conditions and to significantly increased product yields. Bioinformatic analyses allowed the identification of a putative Apf2 DNA-binding ("Api-box") motif in the promoters of the APF genes. Point mutations in this sequence motif caused a drastic decrease of APF production indicating that this motif is essential for activating the cluster genes. Finally, we provide a model of the APF biosynthetic pathway based on chemical identification of derivatives in the cultures of deletion mutants.


Asunto(s)
Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Fusarium/metabolismo , Familia de Multigenes , Péptidos Cíclicos/química , Péptidos Cíclicos/genética , Clonación Molecular , Proteínas Fúngicas/metabolismo , Fusarium/genética , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Concentración de Iones de Hidrógeno , Nitrógeno/metabolismo , Péptidos Cíclicos/metabolismo , Mutación Puntual , Metabolismo Secundario
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA