Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Res ; 237(Pt 1): 116786, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37517485

RESUMEN

Freshwater shortages are a consequence of the rapid increase in population, and desalination of saltwater has gained popularity as an alternative water treatment method in recent years. To date, the forward osmosis-reverse osmosis (FO-RO) hybrid technology has been proposed as a low-energy and environmentally friendly next-generation seawater desalination process. Scaling up the FO-RO hybrid system significantly affects the success of a commercial-scale process. However, neither the ideal structure nor the membrane components for plate-and-frame FO (PFFO) and spiral-wound FO (SWFO) are known. This study aims to explore and optimize the performance of SWFO-RO and PFFO-RO hybrid element-scale systems in the desalination of seawater. The results showed that both hybrid systems could yield high water recovery under optimal operating conditions. The prediction of the system performance (water flux and reverse salt flux) by artificial intelligence was considerably better (R > 0.99, root mean square error <5%) than that of conventional mass balance models. A Markov-based decision tree successfully classified the water flux level in hybrid systems. An optimal set of operational conditions for each membrane system was proposed. For example, in RO, a combination of the feed solution (FS) flow rate (≥17.5 L/min), FS concentration (<17,500 ppm), and operation pressure (<35 bar) would result in high water permeability (>40 LMH). In addition, five SWFO elements and four PFFO elements should be the optimal numbers of FO membranes in the hybrid FO-RO system for effective seawater desalination, especially for long-term operation.

2.
Environ Res ; 232: 116350, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37290619

RESUMEN

The performance of a moving bed biofilm reactor (MBBR) depends largely on the type of biofilm carrier used. However, how different carriers affect the nitrification process, particularly when treating anaerobic digestion effluents, is not completely understood. This study aimed to evaluate the nitrification performance of two distinct biocarriers in MBBRs over a 140-d operation period, with a gradually decreasing hydraulic retention time (HRT) from 20 to 10 d. Reactor 1 (R1) was filled with fiber balls, whereas a Mutag Biochip was used for reactor 2 (R2). At an HRT of 20 d, the ammonia removal efficiency of both reactors was >95%. However, as the HRT was reduced, the ammonia removal efficiency of R1 gradually declined, ultimately dropping to 65% at a 10-d HRT. In contrast, the ammonia removal efficiency of R2 consistently exceeding 99% throughout the long-term operation. R1 exhibited partial nitrification, whereas R2 exhibited complete nitrification. Analysis of microbial communities showed that the abundance and diversity of bacterial communities, particularly nitrifying bacteria such as Hyphomicrobium sp. And Nitrosomonas sp., in R2 was higher than that in R1. In conclusion, the choice of biocarrier significantly impact the abundance and diversity of microbial communities in MBBR systems. Therefore, these factors should be closely monitored to ensure the efficient treatment of high-strength ammonia wastewater.


Asunto(s)
Microbiota , Nitrificación , Amoníaco , Biopelículas , Anaerobiosis , Reactores Biológicos/microbiología , Bacterias , Eliminación de Residuos Líquidos
3.
J Environ Manage ; 318: 115544, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35749902

RESUMEN

Currently, forward osmosis (FO) is widely studied for wastewater treatment and reuse. However, there are still challenges which need to be addressed for the application of the FO on a commercial scale. In the meantime, with a strong capability to solve the complicated nonlinear relationships and to examine of the relations between multiple variables, artificial intelligence (AI) technique could be a viable tool to improve FO system performance to make it more applicable. This study aims to develop an AI-based model for supporting early control and making decision in the FO membrane system. The results show that the artificial neural networks model is extremely suitable for prediction of water flux, membrane fouling, and removal efficiencies. The most appropriate input dataset for the model was proposed, in which organic matters, sodium ion, and calcium ion concentrations played a vital role in all predictions. The best model architecture was suggested with an optimal hidden layers (2-4 layers), and neurons (10-15 neurons). The developed models for membrane fouling show strong correlation between experimental and predicted data (with R2 values for prediction of membrane fouling porosity, thickness, roughness, and density were 0.85, 0.97, 0.97, and 0.98, respectively). The prediction of water flux presented a high R2 and low root mean square error (RMSE) of 0.92 and 0.9 L m-2.h-1, respectively. Prediction of the contaminant removal exhibits a relatively high correlation between the observed and predicted data with R2 values of 0.87 and RMSE values of below 2.7%. The developed models are expected to create a breakthrough in the control and enhancement in a novel FO membrane process used for wastewater treatment by providing us with actionable insights to produce fit-for-future systems in the context of sustainable development.


Asunto(s)
Aguas Residuales , Purificación del Agua , Inteligencia Artificial , Membranas Artificiales , Ósmosis , Agua , Purificación del Agua/métodos
4.
Environ Sci Technol ; 55(10): 6984-6994, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33949853

RESUMEN

A new optimized ultraviolet (UV) technique induced a photooxidation surface modification on thin-film composite (TFC) polyamide (PA) brackish water reverse osmosis (BWRO) membranes that improved membrane performance (i.e., permeability and organic fouling propensity). Commercial PA membranes were irradiated with UV-B light (285 nm), and the changes in the membrane performance were assessed through dead-end and cross-flow tests. UV-B irradiation at 12 J·cm-2 enhanced the pure water permeability by 34% in the dead-end tests without decreasing the mono- or divalent ion rejections, as compared with the pristine PA membrane, and led to less fouling by natural organic matter in the cross-flow tests. Scanning electron microscopy (SEM), attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS) confirmed that UV-B irradiation opened the pore structure and created carboxylic and amine groups on the PA surface, leading to increased membrane surface charge and hydrophilicity. Thus, an optimal UV-B dose appears to modify only a thin layer of the PA membrane surface, which favorably enhances the membrane performance. UV-B did not alter the structure, flux, or salt rejection for cellulose triacetate (CTA)-based membranes. While other membrane surface modifications include oxidants, strong acids, and bases, the UV-B facile treatment is chemical-free, thus reducing chemical wastes, and easy to apply in roll-to-roll fabrication processes of PA membranes. The results also showed that a low UV irradiation dose could be applied to PA or CTA membranes for disinfection or photocatalytic oxidation.


Asunto(s)
Membranas Artificiales , Nylons , Filtración , Ósmosis , Permeabilidad
5.
Environ Res ; 194: 110597, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33316231

RESUMEN

Perfluorinated chemical (PFC)-based materials have been widely applied in industry. In this study, the influence of PFCs on the physicochemical properties of membranes and that of the co-existence of organic matter and microplastics on the removal rate in the process of forward osmosis (FO) was examined. The water flux, reverse salt flux, and rejection of PFCs were evaluated under w and w/o contaminants. The lowest rejection rates of PFCs in FO membranes were observed to be 92.2% and 90.4% for FO-TFC and PA-Aqua FO membranes, respectively. The main rejection mechanism of the FO membrane is the sieving effect (p-value: PA-TFC-0.015, PA-Aqua-0.002) based on molecular volume, which is more dominant than the electrostatic repulsive force and hydrophobic interaction, the major rejection mechanisms of existing trace contaminants. In addition, we observed that the effects of co-existing pollutants in raw water have an insignificant effect on the rejection of PFCs because of the physical and chemical stability of PFCs. According to the results of this study, using the FO membrane, PFCs can effectively control not only their self-existence but also when contaminants co-exist with them in water bodies.


Asunto(s)
Microplásticos , Purificación del Agua , Membranas Artificiales , Ósmosis , Plásticos
6.
Environ Res ; 188: 109772, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32544724

RESUMEN

Microalgal isolates obtained from stream water and wastewater treatment plant were examined to select a suitable microalgal species capable of simultaneously removing nutrient and producing biofuel. Ten isolates were identified using internal transcribed spacer (ITS) region sequencing analysis and were determined to be green microalgae, belonging to phylum Chlorophyta. The highest nutrient removal rates of 8.1 mg-T-N/L-d and 1.6 mg-T-P/L-d were achieved by Chlorella sorokiniana UTEX 1810 under photo-autotrophic cultivation conditions. Fatty acid methyl ester (FAME) composition analysis was conducted to estimate biofuel quality using gas chromatography with mass spectrometry on the basis of the lipid content extracted from microalgal cell. The composition of FAME is mainly composed of palmitic acid (C16:0), stearic acid (C18:0), linoleic acid (C18:2), and heneicosanoic acid (C21:0). These results suggest that C. sorokiniana UTEX 1810 is a promising candidate for simultaneous removal of nutrient and biofuel production from wastewater.


Asunto(s)
Chlorella , Microalgas , Biocombustibles , Biomasa , Cromatografía de Gases y Espectrometría de Masas , Aguas Residuales
7.
Environ Res ; 180: 108866, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31703977

RESUMEN

In general, cartridge filters (CFs) are installed before reverse osmosis systems as a safeguard to minimize fouling of the reverse osmosis membrane in seawater desalination plants. Depending on the retention time of microorganisms and various fouling matter in the storage tank, pipe, and filter housing, serious fouling of the CF may occur, decreasing its lifetime. More importantly, biofouling of CFs in a continuous process can have a significant impact on reverse osmosis membrane fouling. Few studies related to CF fouling and control have been undertaken due to the low cost of CFs. Herein, comparative evaluation of optical density (O.D) for Cl2 and ClO2 was performed to investigate the efficiency of biofouling control and for developing alternative disinfection processes because the chemistry and reactivity of ClO2 differ from those of Cl2. The results showed that the concentrations of Cl2 and ClO2 required to achieve a log reduction value of 2 for the live bacterial cells with 180 min of contact time were 1.5 and 0.6 mg L-1, respectively. Both Cl2 and ClO2 were effective for the control of organic matter and particles. However, the required Cl2 concentration (1.5 mg L-1) was 2.5 times higher than that of ClO2 (0.6 mg L-1). Surface analysis and economic evaluation of the CF showed that ClO2 has higher biofouling control ability than Cl2 and is more economical, at a current cost of $ 23,667 during seawater desalination plant duration.


Asunto(s)
Incrustaciones Biológicas , Purificación del Agua , Cloro , Compuestos de Cloro , Membranas Artificiales , Ósmosis , Óxidos , Agua de Mar
8.
Environ Res ; 188: 109746, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32540570

RESUMEN

This study investigated effects of the thermal hydrolysis pre-treatment on mechanical deep dewaterability of dewatered sludge to extend understanding of dewatering characteristics of thermally hydrolyzed sludge. Floc sizes of dewatered sludge were gradually reduced during the thermal hydrolysis pre-treatment at 170 °C and 185 °C with increasing retention time whereas longer retention time (>60 min) increased floc sizes of thermally hydrolyzed sludges at 200 °C due to formation of undesired refractory organic materials (ROMs), which might hinder the disintegration of dewatered sludge flocs. Similar trends were found for thermal hydrolytic solubilization of dewatered sludge. This demonstrated that the efficiency of the thermal hydrolysis pre-treatment at a higher temperature (200 °C) with longer retention time (≥60 min) could be strongly influenced by the formation of ROMs associated with changes of solid fractions and some free amino acids (i.e., ß-aminobutyric acid, 4-hydroxyproline, and cysteine). Since the trade-off between the degradation of dewatered sludge and the formation of ROMs determined mechanical deep dewaterability of thermally hydrolyzed sludge, the lowest residual weight and moisture content were observed for thermally hydrolyzed sludges at 200 °C with retention time range of 60 min (residual weight = 0.165; moisture content = 55.38%) to 90 min (residual weight = 0.160; moisture content = 59.87%). These observations were intimately correlated to variations of extracellular polymeric substances during the thermal hydrolysis pre-treatment, but not in accordance with the change pattern of capillary suction time (CST) values. This is evident that the CST value was inadequate to estimate mechanical deep dewaterability of thermally hydrolyzed sludge.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Calor , Hidrólisis , Temperatura , Agua
9.
J Environ Manage ; 247: 385-393, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31254754

RESUMEN

Fouling and rejection mechanisms of both charged antibiotics (ABs) and nanoparticles (NPs) were determined using a negatively-charged polyamide thin film composite forward osmosis (FO) flat sheet membrane. Two types of ABs and NPs were selected as positively and negatively charged foulants at pH 8. The ABs did not cause significant membrane fouling, but the extent of fouling and rejection changed based on the electrostatic attraction or repulsion forces. The addition of opposite charged AB and NP resulted in a decline of the membrane flux by 11.0% but a 6.5% AB average rejection efficiency improvement. On the other hand, mixing of like-charged ABs and NPs generated repulsive forces that improved average rejection efficiency about 5.5% but made no changes in the membrane flux. In addition, NPs and ABs were mixed and tested at various concentrations and pH levels to rectify the behavior of ABs. The aggregate size and removal efficiency were observed to vary with the change in the electron double layer of the mixture. It can help to make the strategy to control the ABs in the FO process and consequently it enables the FO process to produce environmentally safe effluent.


Asunto(s)
Nanopartículas , Purificación del Agua , Antibacterianos , Membranas Artificiales , Ósmosis
10.
Environ Technol ; 35(1-4): 125-36, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24600849

RESUMEN

The change in bacterial community structure induced by bacterial competition and succession was investigated during seawater reverse osmosis (SWRO) in order to elucidate a possible link between the bacterial consortium on SWRO membranes and biofouling. To date, there has been no definitive characterization of the microbial diversity in SWRO in terms of distinguishing time-dependent changes in the richness or abundance of bacterial species. For bacterial succession within biofilms on the membrane surface, SWRO using a cross-flow filtration membrane test unit was operated for 5 and 100h, respectively. As results of the pyrosequencing analysis, bacterial communities differed considerably among seawater and the 5 and 100 h samples. From a total of 33,876 pyrosequences (using a 95% sequence similarity), there were less than 1% of shared species, confirming the influence of the operational time factor and lack of similarity of these communities. During SWRO operation, the abundance of Pseudomonas stutzeri BBSPN3 (GU594474) belonging to gamma-Proteobacteria suggest that biofouling of SWRO membrane might be driven by the dominant influence of a specific species. In addition, among the bacterial competition of five bacterial species (Pseudomonas aeruginosa, Bacillus sp., Rhodobacter sp., Flavobacterium sp., and Mycobacterium sp.) competing for bacterial colonization on the SWRO membrane surfaces, it was exhibited that Bacillus sp. was the most dominant. The dominant influences ofPseudomonas sp. and Bacillus sp. on biofouling during actual SWRO is decisive depending on higher removal efficiency of the seawater pretreatment.


Asunto(s)
Bacterias/genética , Biopelículas/clasificación , Biopelículas/crecimiento & desarrollo , Membranas Artificiales , Consorcios Microbianos/genética , Agua de Mar/microbiología , Ultrafiltración/instrumentación , Bacterias/clasificación , Secuencia de Bases , Datos de Secuencia Molecular , Ósmosis , Análisis de Secuencia de ADN , Especificidad de la Especie
11.
Environ Technol ; 35(9-12): 1455-61, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24701943

RESUMEN

Fouling control is an important consideration in the design and operation of membrane-based water treatment processes. It has been generally known that chemical cleaning is still the most common method to remove foultants and maintain the performance of reverse osmosis (RO) desalination. Regardless of the chemical membrane cleaning methods applied effectively, however, frequent chemical cleaning can shorten the membrane life. In addition, it also increases operating and maintenance costs due to the waste chemical disposal. As an alternative, osmotic backwashing can be applied to RO membranes by diluting the concentration polarization (CP) layer. In this study, the effects of osmotic backwashing were analysed under different total dissolved salts (TDSs) and backwashing conditions, and the parameters of the osmotic backwashing were evaluated. The results of the analysis based on the properties of the organic matters found in raw water showed that the cleaning efficiency in respect to the fouling by hydrophilic organic matters was the greatest. Osmotic backwashing was carried out by changing the TDS of the permeate. As a result, the backwashing volume decreased with time due to the CP of the permeate and the backwashing volume. The difference in the osmotic pressure between the raw water and the permeate (Delta pi) also decreased as time passed. It was confirmed that when the temperature of the effluent was high, both the cleaning efficiency and the backwashing volume, which inpours at the same time, increased. When the circulation flow of the effluent was high, both the cleaning efficiency and the backwashing volume increased.


Asunto(s)
Ósmosis , Agua de Mar , Temperatura
12.
Chemosphere ; 349: 140944, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38096989

RESUMEN

Increased seawater temperature leads to harmful algal blooms (HABs), which releases toxic materials and extracellular polymeric substances (EPS) that are harmful to both humans and the environment. Reverse osmosis (RO) with cartridge filter (CF) as the pretreatment process is often used for desalination process. However, the EPS causes severe fouling on the CF, and RO membrane. Disinfectants, such as NaOCl and ClO2, are commonly used to remove biofouling, because they can oxidize and kill microorganisms. Therefore, our study aims to utilize NaOCl and ClO2 during the CF-RO process to minimize the algal growth within the system and minimize the fouling induced by EPS. Results from this study show that CF can remove more than 50% of protein and 14% of polysaccharides but is not effective in removing toxins. However, with disinfectants, toxic materials were completely oxidized. Improved removal of EPS with CF improved overall performance. The flux reduction in RO process without disinfection was over 60%, however, the flux decline was about 44% and 10% with NaOCl and ClO2, respectively. Both disinfectants were found to be effective, however use of ClO2 is recommended because it is less damaging the membrane, yet more effective in enhancing the performance.


Asunto(s)
Incrustaciones Biológicas , Desinfectantes , Purificación del Agua , Humanos , Purificación del Agua/métodos , Filtración , Incrustaciones Biológicas/prevención & control , Floraciones de Algas Nocivas , Agua de Mar , Ósmosis , Membranas Artificiales
13.
Water Res ; 249: 120930, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38101047

RESUMEN

Phosphorus is a nonrenewable material with a finite supply on Earth; however, due to the rapid growth of the manufacturing industry, phosphorus contamination has become a global concern. Therefore, this study highlights the remarkable potential of ranunculus-like MgO (MO4-MO6) as superior adsorbents for phosphate removal and recovery. Furthermore, MO6 stands out with an impressive adsorption capacity of 596.88 mg/g and a high efficacy across a wide pH range (2-10) under varying coexisting ion concentrations. MO6 outperforms the top current adsorbents for phosphate removal. The process follows Pseudo-second-order and Langmuir models, indicating chemical interactions between the phosphate species and homogeneous MO6 monolayer. MO6 maintains 80 % removal and 96 % recovery after five cycles and adheres to the WHO and EUWFD regulations for residual elements in water. FT-IR and XPS analyses further reveal the underlying mechanisms, including ion exchange, electrostatic, and acid-base interactions. Ten machine learning (ML) models were applied to simultaneously predict multi-criteria (sorption capacity, removal efficiency, final pH, and Mg leakage) affected by 15 diverse environmental conditions. Traditional ML models and deep neural networks have poor accuracy, particularly for removal efficiency. However, a breakthrough was achieved by the developed deep belief network (DBN) with unparalleled performance (MAE = 1.3289, RMSE = 5.2552, R2 = 0.9926) across all output features, surpassing all current studies using thousands of data points for only one output factor. These captivating MO6 and DBN models also have immense potential for effectively applying in the real water test with error < 5 %, opening immense horizons for transformative methods, particularly in phosphate removal and recovery.


Asunto(s)
Ranunculus , Contaminantes Químicos del Agua , Fósforo , Óxido de Magnesio , Porosidad , Espectroscopía Infrarroja por Transformada de Fourier , Contaminantes Químicos del Agua/análisis , Cinética , Fosfatos , Agua , Adsorción , Concentración de Iones de Hidrógeno
14.
Chemosphere ; 356: 141778, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554864

RESUMEN

Physical fouling characteristics on silicon carbide (SiC) membranes induced by various organic matter compounds vary depending on the presence of calcium ions (Ca2+). Both destructive techniques (morphological surface analysis) and non-destructive techniques (fouling properties monitoring) were used to determine the fouling mechanisms and behavior during the membrane filtration systems. Destructive analysis and a modified Hermia model were employed to assess the fouling mechanisms. Fouling behavior was also analyzed through non-destructive monitoring techniques including optical coherence tomography (OCT) and three-dimensional laser scanning confocal microscopy (3D-LSM). At concentrations of 10, 30, and 100 mg/L without Ca2+, the flux decreased by 57-95% for humic acid (HA) and anionic polyacrylamide (APAM). APAM exhibited a notable removal rate of up to 56% without Ca2+. At concentration of 10, 30, and 100 mg/L in the absence of Ca2+, the flux decreased by 6-8% for sodium alginate (SA). However, the addition of Ca2+ led to a reduction in the flux for SA by up to 91% and resulted in a removal rate of 40%. Furthermore, addition of Ca2+ led to an alteration of the fouling characteristics of HA and SA. In the case of HA, higher concentrations resulted in elevated thickness and roughness with correlation coefficients of 0.991 and 0.992, respectively. For SA, increased SA concentration led to a thicker (correlation coefficient of 0.999) but smoother surfaces (correlation coefficients of 0.502). Monitoring of these physical characteristics of the fouling layer through non-destructive analysis is crucial for effective fouling management, optimization of the system performance and extending the lifespan of the membrane. By continuously assessing the fouling layer thickness and surface roughness, we expect to be able to provide insights on the fouling behavior, identify trends, that can help scientists and engineers to make informed decisions regarding fouling control strategies in future.


Asunto(s)
Resinas Acrílicas , Filtración , Sustancias Húmicas , Membranas Artificiales , Sustancias Húmicas/análisis , Resinas Acrílicas/química , Filtración/métodos , Purificación del Agua/métodos , Calcio/química , Calcio/análisis , Aniones/química , Incrustaciones Biológicas/prevención & control , Alginatos/química
15.
Chemosphere ; 361: 142577, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38857632

RESUMEN

Water distribution networks play a crucial role in ensuring a reliable water supply, yet they encounter challenges such as corrosion, scale formation, and biofilm growth due to interactions with environmental elements. Biofilms and corrosion layers are significant contaminants in water pipes, formed by complex interactions with pipe materials. As the structure of these contamination layers varies depending on the pipe material, it is essential to investigate the contamination layer for each material individually. Specifically, biofilm growth is typically investigated concerning organic sources, while the growth of humus layers is examined in relation to inorganic elements such as manganese (Mn), iron (Fe), and aluminum (Al), which are major elements and organic substances found in water pipes. Real-time imaging of recently contaminated layers can provide important insights to improve system performance by optimizing operations and cleaning processes. In this study, cast iron (7.10 ± 0.78 nm) exhibits greater surface roughness compared to PVC (5.60 ± 0.14 nm) and provides favorable conditions for biofilm formation due to its positive charge. Over a period of 425 h, the fouling layer on cast iron and PVC surfaces gradually increased in fouling thickness, porosity, roughness, and density, reaching maximum value of 29.72 ± 3.6 µm, 11.44 ± 1.1%, 41673 ± 1025.6 pixels, and 0.80 ± 0.3 fouling layer pixel/layer pixel for cast iron, and 8.15 ± 0.4 µm, 20.64 ± 0.9%, 35916.6 ± 755.7 pixels, and 0.58 ± 0.1 fouling layer pixel/layer pixel, respectively. Within the scope of the current research, CNN model demonstrates high correlation coefficients (0.98 and 0.91) in predicting biofilm thickness for cast iron and PVC. The model also presented high accuracy in predicting porosity for both materials (over 0.91 for cast iron and 0.96 for PVC). While the model accurately predicted biofilm roughness and density for cast iron (correlation coefficients 0.98 and 0.94, respectively), it had lower accuracy for PVC (correlation coefficients 0.92 for both parameters).


Asunto(s)
Biopelículas , Hierro , Abastecimiento de Agua , Biopelículas/crecimiento & desarrollo , Corrosión , Hierro/química , Hierro/análisis , Monitoreo del Ambiente/métodos , Aluminio/química , Cloruro de Polivinilo/química
16.
Chemosphere ; 358: 142094, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38648984

RESUMEN

Designing of an effectual heterostructure photocatalyst for catalytic organic pollutant exclusion has been the subject of rigorous research intended to resolve the related environmental aggravation. Fabricating p-n junctions is an effective strategy to promote electron-hole separation of semiconductor photocatalysts as well as enhance the organic toxin degradation performance. In this study, a series of n-type NiAlFe-layered triple hydroxide (LTH) loaded with various ratios of p-type MoS2 was synthesized for forming a heterostructure LTH/MoS2 (LMs) by an in situ hydrothermal strategy. The photocatalysts were characterized by XRD, SEM&EDX, TEM, FT-IR, XPS, as well as UV-vis DRS. The photoactivity of photocatalysts was tested by the degradation of Indigo Carmine (IC) dye. The optimized catalyst (LM1) degrades 100% of indigo dye in high alkaline pH under UV light for 100 min. Besides, the degradation rate of LM1 is 15 times higher than that of pristine NiAlFe-LTH. The enhanced photoactivity is attributed to the synergistic effect between NiAlFe-LTH and MoS2 as well as the p-n junction formation.


Asunto(s)
Colorantes , Carmin de Índigo , Molibdeno , Catálisis , Colorantes/química , Molibdeno/química , Carmin de Índigo/química , Disulfuros/química , Concentración de Iones de Hidrógeno , Luz , Contaminantes Químicos del Agua/química , Hidróxidos/química , Fotólisis , Rayos Ultravioleta
17.
Chemosphere ; 313: 137596, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36538953

RESUMEN

Coagulation has been evaluated as an economical and effective pre-treatment method for controlling membrane fouling. We investigated the influence of the pre-coagulation of oil-water (O/W) emulsions on the formation of membrane fouling in the ceramic membrane process. The results confirmed that pre-coagulation effectively mitigated the fouling formation on the ceramic membrane surface during the O/W emulsion separation. The mechanism of mitigating membrane fouling by pre-coagulation was proposed, owing to the reduction in the zeta potential value of oil droplets by pre-coagulation, resulting in weak electrostatic attraction between oil droplets and ceramic membrane surfaces, and an increase in the size of the oil droplets by pre-coagulation, leading the formation of a cake layer fouling. In addition, the decrease in the hydrophobicity of oil droplets by pre-coagulation resulted in alleviating the hydrophobic interaction between oil droplets and membrane surface. The proposed fouling mechanism was supported by the characterization of the virgin and fouled membrane surfaces and the analysis of the fouling resistance ability of the membranes. Our study could be indicative of mitigation protocols that can be used to alleviate membrane fouling on ceramic membranes during oily wastewater treatment.


Asunto(s)
Aceites , Purificación del Agua , Emulsiones , Aceites/química , Cerámica/química , Agua , Membranas Artificiales , Purificación del Agua/métodos
18.
Chemosphere ; 314: 137696, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36586448

RESUMEN

Metal organic frameworks (MOFs) are attracting attention as high-performance adsorbents because of their high specific surface area and porosity. In particular, magnetic MIL-100(Fe) has the both characteristics of Fe3O4 and MIL-100(Fe), which are magnetic characteristics, high specific surface area and open metal sites. However, multiple synthetic steps are required for synthesis of magnetic MOF, and there is limitation that the residual organic linker and unreacted Fe center ions can be discharged, and they cause water pollution. In this study, magnetic MIL-100(Fe) was synthesized within 4 h without the addition of Fe ions by using nitric acid for the surface modification of Fe3O4. Magnetic MIL-100(Fe) was confirmed through XRD, FTIR, and TEM surface analysis, and the optimal conditions for nitric acid addition were selected through magnetization measurements and BET analysis of synthesized magnetic MIL-100(Fe). Thereafter, adsorption evaluation was performed using MB and MO, which are representative cationic and anionic dyes, respectively. The pseudo-second-order Langmuir model showed a relatively high correlation compared to the other models. This shows that the adsorption mechanism depends on both the amount of adsorbent and adsorbate, and Fe3O4 modification with nitric acid does not cause any change in the adsorption mechanism. In the case of adsorption selectivity between the MB and MO, removal rates of 93.27% and 58.73% were obtained, respectively. The above results can contribute to the simplification of the manufacturing of magnetic metal organic frameworks for removing ionic organic compounds and the minimization of water pollution in the manufacturing process.


Asunto(s)
Estructuras Metalorgánicas , Contaminantes Químicos del Agua , Adsorción , Ácido Nítrico , Fenómenos Magnéticos , Iones , Contaminantes Químicos del Agua/análisis
19.
Chemosphere ; 339: 139665, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37506890

RESUMEN

Pharmaceutical and personal care products (PPCPs) are emerging pollutants that are commonly found in the environment and exist predominantly in nondegradable forms. Several attempts have been made to remove PPCPs via conventional wastewater treatment processes; however, these processes have limitations, such as high costs and insufficient removal efficiencies. Adsorption is a promising alternative for removing PPCPs because it is inexpensive, highly reusable, and easy to operate. Therefore, this study aims to determine the contributing characteristics that can be used to predict the adsorption behaviour of PPCPs based on their physicochemical properties, with heated metal oxide adsorbents (HMOAs). HAOP (heated aluminium oxide particles) and HIOP (heated iron oxide particles) with particle sizes below 38 µm were used. Results from the Brunauer-Emmett-Teller (BET) analysis show that HIOP has higher surface area and smaller pore size (113.7 ± 26.3 m2/g and 5.4 ± 1.8 nm) than HAOP (14.5 ± 0.6 m2/g and 18.6 ± 3.1 nm), which suggest that HIOP would show superior adsorption rates compared to HAOP. The adsorption mechanism is identified based on three major physicochemical properties of PPCPs: molecular weight (M.W.), octanol-water partition coefficient (log Kow), and acid dissociation constant (pKa). The results suggest that the most dominant factor that contributes to the adsorption of PPCPs on to HMOAs is the M.W., where the larger the molecular size, the better the adsorption efficiency. The tests conducted with varying log Kow values revealed that the hydrophilicity of the adsorbent influences the adsorption performance. It was found that HIOP exhibits better removal efficiencies with hydrophilic PPCPs (up to 83%) than with hydrophobic PPCPs (48%), while HAOP exhibits better removal efficiencies with hydrophobic PPCPs (86%) than with hydrophilic PPCPs, with less than 10% removal. Unlike the M.W. and pKa values, the log Kow does not exhibit any visible trend. Therefore, the adsorption behaviour can be predicted with the M.W. and pKa values of the PPCPs, when HAOP and HIOP are used as adsorbents.


Asunto(s)
Cosméticos , Contaminantes Químicos del Agua , Cosméticos/análisis , Óxidos/análisis , Aguas Residuales , Agua/química , Preparaciones Farmacéuticas , Contaminantes Químicos del Agua/análisis , Adsorción
20.
Chemosphere ; 332: 138878, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37172625

RESUMEN

It would be extremely momentous to familiarize a low-cost sole adsorbent NiAlFe-layered triple hydroxides (LTHs) having a strong sorption affinity towards both anionic and cationic dyes. Using the urea hydrolysis hydrothermal method LTHs were fabricated and by altering the ratio of participant metal cations the adsorbent was optimized. BET analysis revealed that the optimized LTHs possess an elevated surface area (160.04 m2/g) while TEM and FESEM analysis portrayed the stacked sheets-like 2D morphology. LTHs were employed for the amputation of anionic congo red (CR) and cationic brilliant green (BG) dye. The adsorption study showed that within 20 and 60 min, respectively, maximum adsorption capacities were achieved at 57.47 mg/g and 192.30 mg/g for CR and BG dye. Adsorption isotherm, kinetics, and thermodynamics study revealed that both chemisorptions with physisorptions were the assertive factor for the dye encapsulation. This enhanced adsorption performance of the optimized LTH for the anionic dye is attributed to its inherent anions exchange properties and new bond formation with the adsorbent skeleton. Whereas for the cationic dye, it was because of the formation of strong hydrogen bonds, and electrostatic interaction. Morphological manipulation of LTHs, formulates the optimized adsorbent LTH111, provokes the adsorbent for this elevated adsorption performance. Overall, this study revealed that LTHs have a high potential for the effectual remediation of dyes from wastewater as a sole adsorbent at a low cost.


Asunto(s)
Colorantes , Contaminantes Químicos del Agua , Humanos , Colorantes/química , Hidróxidos , Rojo Congo/química , Cationes , Adsorción , Contaminantes Químicos del Agua/química , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA