RESUMEN
Thiamine is present in many foods and is well recognised as an essential nutrient critical for energy metabolism. While thiamine deficiency is commonly recognised in alcoholism, it can present in many other settings where it is often not considered and goes unrecognised. One challenging aspect to diagnosis is that it may have varied metabolic, neurological and cardiac presentations. Here we present an overview of the disorder, focusing on the multiple causes and clinical presentations. Interestingly, thiamine deficiency is likely increasing in frequency, especially among wildlife, where it is linked with changing environments and climate change. Thiamine deficiency should be considered whenever neurological or cardiological disease of unknown aetiology presents, especially in any patient presenting with lactic acidosis.
Asunto(s)
Acidosis Láctica , Alcoholismo , Deficiencia de Tiamina , Humanos , Deficiencia de Tiamina/diagnóstico , Deficiencia de Tiamina/etiología , Tiamina , Acidosis Láctica/complicaciones , Acidosis Láctica/diagnóstico , Alcoholismo/complicaciones , AlimentosRESUMEN
Prolonged cold storage and re-warming (CS/REW) of kidneys are risk factors for delayed graft function (DGF). Studies in renal tubular epithelial cells (RTECs) have determined apoptosis and autophagy in models of either cold storage (CS) or re-warming alone. The effect of both cold storage and re-warming on apoptosis and autophagy, in RTECS is not known and is relevant to DGF as the kidney is subjected to both CS and re-warming. We hypothesized that CS/REW of RTECs would induce autophagy that protects against apoptosis. In CS/REW, there was increased autophagic flux of RTECs. Autophagy inhibition using an Atg5 siRNA resulted in increased cleaved caspase-3 and increased apoptotic cells (on both morphology and annexin V staining) during CS/REW. The effect of autophagy inhibition on necrosis in RTECs is unknown. There were increased necrosis and caspase-1, a mediator of necrosis, during CS/REW, and the Atg5 siRNA had no effect on necrosis and caspase-1. In a kidney transplant model, there was an increase in LC3 II, a marker of autophagy, in kidneys transplanted after cold storage. In summary, autophagic flux is increased during CS/REW. Autophagy inhibition resulted in increased cleaved caspase-3 and increased apoptosis during CS/REW without an effect on necrosis or caspase-1. In conclusion, autophagy inhibition in RTECs after CS/REW induces apoptotic cell death and may be deleterious as a therapy to decrease DGF.
Asunto(s)
Apoptosis , Autofagia/fisiología , Trasplante de Riñón , Túbulos Renales/patología , Preservación de Órganos , Recalentamiento , Animales , Caspasa 1/metabolismo , Caspasa 3/metabolismo , Células Cultivadas , Funcionamiento Retardado del Injerto/etiología , Células Epiteliales/fisiología , Macrólidos/farmacología , PorcinosRESUMEN
Triptolide, a traditional Chinese medicine, has anti-inflammatory, antiproliferative, and proapoptotic properties. As interstitial inflammation and tubular apoptosis are features of cisplatin-induced acute kidney injury (AKI), we determined the effect of the water-soluble triptolide derivative 14-succinyl triptolide sodium salt (PG490-88) in a mouse model of cisplatin-induced AKI. PG490-88 resulted in a significant decrease in blood urea nitrogen (BUN), serum creatinine, and acute tubular necrosis (ATN) score, and a nonsignificant increase in tubular apoptosis score in AKI. The mitogen-activated protein kinase (MAPK) pathway is activated in AKI. On immunoblot analysis, phosphoextracellular signal-regulated kinase (p-ERK) was increased 3.6-fold in AKI and 2.0-fold inhibited by PG490-88. Phospho-c-Jun N-terminal kinase (p-JNK) was increased in AKI. PG490-88 resulted in a nonsignificant decrease in p-JNK. Phospho-p38 was not affected by cisplatin or PG490-88. MAPK phosphatase-1 (MKP-1) that negatively regulates MAPK signaling has not previously been studied in AKI. MKP-1 activity was not affected by cisplatin or PG490-88. Changes in p-ERK, p-JNK, and MKP-1 were confirmed on reverse protein phase analysis. The ERK inhibitor U0126 resulted in lower BUN and serum creatinine, suggesting a mechanistic role of ERK in AKI. The increase in interleukin-1α (IL-1α), IL-1ß, IL-6, CXCL1, and IL-33 in the kidney in AKI was unaffected by PG490-88. In summary, PG490-88 protects against AKI and ATN despite no decrease in tubular apoptosis. The protection of PG490-88 against AKI was associated with a decrease in p-ERK and was independent of MKP-1 and proinflammatory cytokines. In conclusion, PG490-88 protects against cisplatin-induced AKI possibly by decreasing p-ERK.
Asunto(s)
Lesión Renal Aguda/prevención & control , Antineoplásicos/toxicidad , Cisplatino/toxicidad , Diterpenos/química , Diterpenos/uso terapéutico , Fenantrenos/química , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/enzimología , Lesión Renal Aguda/patología , Animales , Apoptosis/efectos de los fármacos , Citocinas/inmunología , Diterpenos/administración & dosificación , Diterpenos/farmacología , Compuestos Epoxi/química , Pruebas de Función Renal , MAP Quinasa Quinasa 4/antagonistas & inhibidores , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidoresRESUMEN
BACKGROUND: Patients with advanced chronic kidney disease (ACKD) are at an increased risk of developing renal cell carcinoma (RCC), but molecular alterations in RCC specimens arising from ACKD and overall survival (OS) in affected patients are not well defined. PATIENTS AND METHODS: Using the Oncology Research Information Exchange Network (ORIEN) Total Cancer Care® protocol, 296 consented adult patients with RCC and somatic tumor whole exome sequencing were included. Patients with ACKD were defined as those with serum creatinine ≥1.5 mg/dL prior to RCC diagnosis. RESULTS: Of 296 patients with RCC, 61 met the criteria for ACKD. The most common somatic mutations in the overall cohort were in VHL (126, 42.6%), PBRM1 (102, 34.5%), and SETD2 (54, 18.2%). BAP1 had a decreased mutational frequency in RCC specimens from patients without ACKD as compared to those with ACKD (10.6% versus 1.6%), but this was not statistically significant in univariable (OR 0.14, p = 0.056) or multivariable (OR 0.15, p = 0.067) analysis. Median OS was not reached in either cohort. CONCLUSIONS: Using the clinicogenomic ORIEN database, our study found lower rates of BAP1 mutations in RCC specimens from patients with ACKD, which may reflect a BAP1-independent mutational driver of RCC in patients with ACKD.
RESUMEN
Background: Vascularized composite allograft transplantation is a treatment option for complex tissue injuries; however, ischemia reperfusion injury and high acute rejection rates remain a challenge. Hypothermic machine perfusion using acellular storage perfusate is a potential solution. This study evaluated the University of Wisconsin Kidney Preservation Solution-1 (KPS-1) compared with normal saline (NS) for preservation of donor rat hindlimbs subjected to 24 h of ex vivo perfusion cold storage. Methods: Hindlimbs were subjected to 24-h perfusion cold storage with heparinized KPS-1 (nâ =â 6) or heparinized NS (nâ =â 6). Flow, resistance, and pH were measured continuously. At the end of the 24-h period, tissue was collected for histological analysis of edema and apoptosis. Results: KPS-1 perfused limbs showed significantly less edema than the NS group, as evidenced by lower limb weight gain (Pâ <â 0.001) and less interfascicular space (Pâ <â 0.001). KPS-perfused muscle had significantly less cell death than NS-perfused muscle based on terminal deoxynucleotidyl transferase dUTP nick-end labeling (Pâ <â 0.001) and cleaved caspase-3 staining (Pâ =â 0.045). During hypothermic machine perfusion, a significant decrease in pH over time was detected in both groups, with a significantly greater decline in pH in the KPS-1 group than in the NS group. There were no significant differences overall and over time in flow rate or vascular resistance between the KPS and NS groups. Conclusions: Perfusion with KPS-1 can successfully extend vascularized composite allograft perfusion cold storage for 24 h in a rat hindlimb model without significant edema or cell death.
RESUMEN
Hibernators periodically undergo profound physiological changes including dramatic reductions in metabolic, heart, and respiratory rates and core body temperature. This review discusses the effect of hypoperfusion and hypothermia observed during hibernation on glomerular filtration and renal plasma flow, as well as specific adaptations in renal architecture, vasculature, the renin-angiotensin system, and upregulation of possible protective mechanisms during the extreme conditions endured by hibernating mammals. Understanding the mechanisms of protection against organ injury during hibernation may provide insights into potential therapies for organ injury during cold storage and reimplantation during transplantation.
Asunto(s)
Adaptación Fisiológica/fisiología , Hibernación/fisiología , Sistema Renina-Angiotensina/fisiología , Animales , Temperatura Corporal/fisiología , Humanos , Riñón/fisiologíaRESUMEN
Muscle loss, osteoporosis, and vascular disease are common in subjects with reduced renal function. Despite intensive research of the underlying risk factors and mechanisms driving these phenotypes, we still lack effective treatment strategies for this underserved patient group. Thus, new approaches are needed to identify effective treatments. We believe that nephrologists could learn much from biomimicry; i.e., studies of nature's models to solve complicated physiological problems and then imitate these fascinating solutions to develop novel interventions. The hibernating bear (Ursidae) should be of specific interest to the nephrologist as they ingest no food or water for months, remaining anuric and immobile, only to awaken with low blood urea nitrogen levels, healthy lean body mass, strong bones, and without evidence for thrombotic complications. Identifying the mechanisms by which bears prevent the development of azotemia, sarcopenia, osteoporosis, and atherosclerosis despite being inactive and anuric could lead to novel interventions for both prevention and treatment of patients with chronic kidney disease.
Asunto(s)
Hibernación/fisiología , Nefrología , Insuficiencia Renal Crónica/terapia , Ursidae/fisiología , Animales , Tasa de Filtración Glomerular , Músculo Esquelético/patología , Osteoporosis/prevención & control , Tromboembolia/prevención & control , Uremia/fisiopatología , Cicatrización de HeridasRESUMEN
We have demonstrated that caspase-1 is a mediator of both cisplatin-induced acute kidney injury (AKI) and ischemic AKI. As caspase-1 is activated in the inflammasome, we investigated the inflammasome in cisplatin-induced and ischemic AKI. Mice were injected with cisplatin or subjected to bilateral renal pedicle clamping. Immunoblot analysis of whole kidney after cisplatin-induced AKI revealed: 1) an increase in apoptosis-associated Speck-like protein containing a caspase recruitment domain (ASC), the major protein that complexes with nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain containing proteins (NLRP) 1 or 3 to form the inflammasome; 2) an increase in caspase-1 activity, caspase-5, and NLRP1, components of the NLRP1 inflammasome; and 3) a trend toward increased NLRP3. To determine whether the NLRP3 inflammasome plays an injurious role in cisplatin-induced AKI, we studied NLRP knockout (NLRP3(-/-)) mice. In cisplatin-induced AKI, the blood urea nitrogen, serum creatinine, acute tubular necrosis score, and tubular apoptosis score were not significantly decreased in NALP3(-/-) mice compared with wild-type mice. We have previously demonstrated the injurious role of caspase-1 in ischemic AKI. NLRP3, but not ASC or NLRP1, is increased in ischemic AKI. NLRP3(-/-) mice with ischemic AKI had significantly lower blood urea nitrogen, serum creatinine, and acute tubular necrosis and apoptosis scores than the wild-type controls. The difference in protection against cisplatin-induced AKI compared with ischemic AKI in NLRP3(-/-) mice was not explained by the differences in proinflammatory cytokines interleukin (IL)-1ß, IL-6, chemokine (C-X-C motif) ligand 1, or tumor necrosis factor α. NLRP3 inflammasome is a mediator of ischemic AKI but not cisplatin-induced AKI, and further investigation of the NLRP1 inflammasome in cisplatin-induced AKI should prove interesting.
Asunto(s)
Lesión Renal Aguda/genética , Lesión Renal Aguda/prevención & control , Antineoplásicos , Proteínas Portadoras/genética , Proteínas Portadoras/fisiología , Cisplatino , Isquemia/complicaciones , Lesión Renal Aguda/inducido químicamente , Animales , Caspasa 1/metabolismo , Caspasas/metabolismo , Línea Celular Tumoral , Ensayo de Inmunoadsorción Enzimática , Interleucina-1alfa/metabolismo , Interleucina-1beta/metabolismo , Riñón/patología , Túbulos Renales Proximales/patología , Macrófagos/efectos de los fármacos , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR , Infiltración Neutrófila/genética , Infiltración Neutrófila/fisiología , Circulación Renal/fisiologíaRESUMEN
BACKGROUND: AKI is common following liver transplantation and is associated with significant morbidity and mortality. Biomarkers of AKI have not been well established in this setting but are needed to help guide patient care and facilitate development of novel therapeutics. METHODS: Serum creatinine, cystatin C, IL-6, and IL-8 and urine IL-18, NGAL, IL-6, and IL-8 were measured before and within 24 hours after liver transplantation in 40 patients. AKI was defined as a ≥50% sustained increase in creatinine above pre-operative values occurring within 24 hours of transplantation and persisting for at least 24 hours. RESULTS: Seven patients met criteria for AKI (17.5%), with mean creatinines of 0.81 mg/dL pre-operatively and 1.75 mg/dL post-operatively. While pre-operative biomarker levels in patients with AKI were similar to those in patients without AKI, differences were seen between the groups with regard to median post-operative serum IL-8 (pg/mL) (242.48 vs. 82.37, p = 0.0463) and urine NGAL (ng/mL) (386.86 vs. 24.31, p = 0.0039), IL-6 (pg/mL) (52 vs. 7.29, p=0.0532), IL-8 (pg/mL) (14.3 vs. 0, p = 0.0224), and IL-18 (pg/mL) (883.09 vs. 0, p = 0.0449). The areas under receiver operating characteristic (ROC) curves were 0.749 for urine IL-18, 0.833 for urine NGAL, 0.745 for urine IL-6, 0.682 for serum IL-6, 0.773 for urine IL-8, and 0.742 for serum IL-8. Post-operative cystatin C was not significantly different between AKI and no AKI groups. CONCLUSION: Serum IL-8 and urine IL-18, NGAL, IL-6, and IL-8 are elevated in AKI within the first 24 hours following liver transplantation.
Asunto(s)
Lesión Renal Aguda/sangre , Lesión Renal Aguda/epidemiología , Proteínas de Fase Aguda/orina , Interleucina-18/orina , Interleucina-8/sangre , Interleucina-8/orina , Lipocalinas/orina , Trasplante de Hígado/estadística & datos numéricos , Proteínas Proto-Oncogénicas/orina , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , Biomarcadores/orina , Colorado/epidemiología , Comorbilidad , Femenino , Humanos , Incidencia , Lipocalina 2 , Masculino , Persona de Mediana Edad , Complicaciones Posoperatorias/sangre , Complicaciones Posoperatorias/epidemiología , Reproducibilidad de los Resultados , Factores de Riesgo , Sensibilidad y Especificidad , Adulto JovenRESUMEN
Hibernating ground squirrels maintain homeostasis despite extreme physiological challenges. In winter, these circannual hibernators fast for months while cycling between prolonged periods of low blood flow and body temperature, known as torpor, and short interbout arousals (IBA), where more typical mammalian parameters are rapidly restored. Here we examined the kidney proteome for changes that support the dramatically different physiological demands of the hibernator's year. We identified proteins in 150 two-dimensional gel spots that altered by at least 1.5-fold using liquid chromatography and tandem mass spectrometry. These data successfully classified individuals by physiological state and revealed three dynamic patterns of relative protein abundance that dominated the hibernating kidney: 1) a large group of proteins generally involved with capturing and storing energy were most abundant in summer; 2) a select subset of these also increased during each arousal from torpor; and 3) 14 spots increased in torpor and early arousal were enriched for plasma proteins that enter cells via the endocytic pathway. Immunohistochemistry identified α(2)-macroglobulin and albumin in kidney blood vessels during late torpor and early arousal; both exhibited regional heterogeneity consistent with highly localized control of blood flow in the glomeruli. Furthermore, albumin, but not α(2)-macroglobulin, was detected in the proximal tubules during torpor and early arousal but not in IBA or summer animals. Taken together, our findings indicate that normal glomerular filtration barriers remain intact throughout torpor-arousal cycles but endocytosis, and hence renal function, is compromised at low body temperature during torpor and then recovers with rewarming during arousal.
Asunto(s)
Nivel de Alerta/fisiología , Proteínas Sanguíneas/metabolismo , Regulación de la Expresión Génica/fisiología , Hibernación/fisiología , Riñón/metabolismo , Sciuridae/fisiología , Animales , Western Blotting , Temperatura Corporal , Cromatografía Liquida , Cartilla de ADN/genética , Inmunohistoquímica , Proteómica/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sciuridae/metabolismo , Estaciones del Año , Albúmina Sérica/metabolismo , Espectrometría de Masas en Tándem , alfa-Macroglobulinas/metabolismoRESUMEN
BACKGROUND: Inflammation is thought to play a role in ischemic acute kidney injury (AKI). We have demonstrated that macrophage and dendritic cell depletion, using liposome-encapsulated clodronate (LEC), is protective against ischemic AKI. METHODS: To determine whether macrophages or dendritic cells or both play a role in ischemic AKI, we performed ischemic AKI in CD11b-DTR mice that have a diphtheria toxin (DT)-induced depletion of CD11b cells (macrophages) and CD11c-DTR mice that have a DT-induced depletion of CD11c cells (dendritic cells). RESULTS: While LEC-treated animals had a significant functional protection from AKI, CD11b-DTR and CD11c-DTR mice were not protected against AKI despite a similar degree of renal macrophage and dendritic cell depletion. Proinflammatory cytokines are known to play a role in ischemic AKI. To determine the possible reasons for the lack of protection in CD11b-DTR and CD11c-DTR mice compared to LEC-treated mice, 32 cytokines/chemokines were measured in these mice. Of the cytokines/chemokines measured, IL-6, MCP-1, GMCSF, IL-1ß and CXCL1 (also known as IL-8 in humans or KC in mice) showed significant differences in the LEC-treated, CD11b-DTR and CD11c-DTR mice. MCP-1 and CXCL1 (known mediators of AKI), and also GMCSF and IL-1ß were increased in AKI and decreased in LEC-treated AKI but not AKI in CD11b-DTR or CD11c-DTR mice. CONCLUSIONS: These findings suggest that LEC-mediated protection from AKI is not simply mediated by depletion of renal macrophage or dendritic cell subpopulations. Protection against AKI in LEC-treated compared to CD11b-DTR or CD11c-DTR mice may be partially explained by differences in proinflammatory cytokine profiles.
Asunto(s)
Lesión Renal Aguda/inmunología , Lesión Renal Aguda/metabolismo , Citocinas/metabolismo , Células Dendríticas/inmunología , Macrófagos/inmunología , Lesión Renal Aguda/etiología , Animales , Quimiocina CCL2/metabolismo , Quimiocina CXCL1/metabolismo , Ácido Clodrónico/farmacología , Células Dendríticas/efectos de los fármacos , Toxina Diftérica/farmacología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Interleucina-1/metabolismo , Interleucina-1beta/metabolismo , Isquemia/complicaciones , Macrófagos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BLRESUMEN
BACKGROUND: Serum cytokines are increased in patients with acute kidney injury (AKI) and predict increased mortality. It is widely assumed that increased renal production of cytokines is the source of increased serum cytokines; the role of extra-renal cytokine production and impaired renal cytokine clearance is less well studied. We hypothesized that cytokine production in AKI was mononuclear phagocyte dependent, independent of production by the kidneys, and that serum cytokine clearance would be impaired in AKI. METHODS: Bilateral nephrectomy was used as a model of AKI to assess cytokine production independent of kidney cytokine production. Mononuclear phagocytes were depleted utilizing intravenous (IV) administration of liposome-encapsulated clodronate (LEC). Twenty-three serum cytokines were determined utilizing a multiplex cytokine kit. Proteins for cytokines were determined in the spleen and liver by enzyme-linked immunosorbent assay. Recombinant cytokines were injected by IV into mice with bilateral nephrectomy to determine the effect of absent kidney function on serum cytokine clearance. RESULTS: Serum interleukin (IL)-6, chemokine (C-X-C motif) ligand 1 (CXCL1), IL-10, IL-1ß, monocyte chemotactic protein 1 (MCP-1), IL-5 and eotaxin were increased in the serum of mice after bilateral nephrectomy and were reduced with LEC. Serum IL-12p40 and regulated upon activation, normal T-cell expressed, and secreted (RANTES) were increased after bilateral nephrectomy and were further increased with LEC. Spleen IL-6, CXCL1, IL-10 and IL-1ß and liver IL-6 and IL-10 were increased after bilateral nephrectomy. After IV injection, IL-6, CXCL1, IL-10 and IL-1ß had a prolonged serum cytokine appearance in mice with bilateral nephrectomy versus sham operation. CONCLUSIONS: Increased mononuclear phagocyte production and impaired renal clearance contribute to serum cytokine accumulation in AKI, independent of kidney injury. The effect of AKI on cytokine production and clearance may contribute to the increased mortality of patients with AKI.
Asunto(s)
Lesión Renal Aguda/metabolismo , Citocinas/metabolismo , Animales , Citocinas/biosíntesis , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , NefrectomíaRESUMEN
Inflammation contributes to the pathogenesis of acute kidney injury (AKI). IL-33 is a proinflammatory cytokine, but its role in AKI is unknown. Here we observed increased protein expression of full-length IL-33 in the kidney following induction of AKI with cisplatin. To determine whether IL-33 promotes injury, we administered soluble ST2 (sST2), a fusion protein that neutralizes IL-33 activity by acting as a decoy receptor. Compared with cisplatin-induced AKI in untreated mice, mice treated with sST2 had fewer CD4 T cells infiltrate the kidney, lower serum creatinine, and reduced acute tubular necrosis (ATN) and apoptosis. In contrast, administration of recombinant IL-33 (rIL-33) exacerbated cisplatin-induced AKI, measured by an increase in CD4 T cell infiltration, serum creatinine, ATN, and apoptosis; this did not occur in CD4-deficient mice, suggesting that CD4 T cells mediate the injurious effect of IL-33. Wildtype mice that received cisplatin and rIL-33 also had higher levels of the proinflammatory chemokine CXCL1, which CD T cells produce, in the kidney compared with CD4-deficient mice. Mice deficient in the CXCL1 receptor also had lower serum creatinine, ATN, and apoptosis than wildtype mice following cisplatin-induced AKI. Taken together, IL-33 promotes AKI through CD4 T cell-mediated production of CXCL1. These data suggest that inhibiting IL-33 or CXCL1 may have therapeutic potential in AKI.
Asunto(s)
Lesión Renal Aguda/inmunología , Interleucinas/inmunología , Necrosis Tubular Aguda/inmunología , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/patología , Animales , Antineoplásicos/toxicidad , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/inmunología , Quimiocina CXCL1/inmunología , Quimiocina CXCL1/metabolismo , Cisplatino/toxicidad , Modelos Animales de Enfermedad , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Citometría de Flujo , Interleucina-33 , Interleucinas/sangre , Interleucinas/farmacología , Glomérulos Renales/inmunología , Glomérulos Renales/metabolismo , Glomérulos Renales/patología , Necrosis Tubular Aguda/inducido químicamente , Necrosis Tubular Aguda/patología , Masculino , Ratones , Ratones Endogámicos C57BLRESUMEN
Cyst expansion in polycystic kidney disease (PKD) results in localized hypoxia in the kidney that may activate hypoxia-inducible factor-1α (HIF-1α). HIF-1α and autophagy, a form of programmed cell repair, are induced by hypoxia. The purposes were to determine HIF-1α expression and autophagy in rat and mouse models of PKD. HIF-1α was detected by electrochemiluminescence. Autophagy was visualized by electron microscopy (EM). LC3 and beclin-1, markers of autophagy, were detected by immunoblotting. Eight-week-old male heterozygous (Cy/+) and 4-wk-old homozygous (Cy/Cy) Han:SPRD rats, 4-wk-old cpk mice, and 112-day-old Pkd2WS25/- mice with a mutation in the Pkd2 gene were studied. HIF-1α was significantly increased in massive Cy/Cy and cpk kidneys and not smaller Cy/+ and Pkd2WS25/- kidneys. On EM, features of autophagy were seen in wild-type (+/+), Cy/+, and cpk kidneys: autophagosomes, mitophagy, and autolysosomes. Specifically, autophagosomes were found on EM in the tubular cells lining the cysts in cpk mice. The increase in LC3-II, a marker of autophagosome production and beclin, a regulator of autophagy, in Cy/Cy and cpk kidneys, followed the same pattern of increase as HIF-1α. To determine the role of HIF-1α in cyst formation and/or growth, Cy/+ rats, Cy/Cy rats, and cpk mice were treated with the HIF-1α inhibitor 2-methoxyestradiol (2ME2). 2ME2 had no significant effect on kidney volume or cyst volume density. In summary, HIF-1α is highly expressed in the late stages of PKD and is associated with an increase in LC3-II and beclin-1. The first demonstration of autophagosomes in PKD kidneys is reported. Inhibition of HIF-1α did not have a therapeutic effect.
Asunto(s)
Autofagia , Células Epiteliales/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Riñón/metabolismo , Enfermedades Renales Poliquísticas/metabolismo , 2-Metoxiestradiol , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Beclina-1 , Western Blotting , Modelos Animales de Enfermedad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Estradiol/análogos & derivados , Estradiol/farmacología , Técnica del Anticuerpo Fluorescente , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Riñón/efectos de los fármacos , Riñón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Transmisión , Proteínas Asociadas a Microtúbulos/metabolismo , Enfermedades Renales Poliquísticas/genética , Enfermedades Renales Poliquísticas/patología , Ratas , Canales Catiónicos TRPP/deficiencia , Canales Catiónicos TRPP/genéticaRESUMEN
Acute kidney injury (AKI) after transplantation of human deceased donor kidneys is associated with upregulation of tubular toll like receptor 4 (TLR4), but whether TLR4 is required for AKI is unknown. We hypothesized that TLR4 knockout mice (TLR4KO) subjected to cold ischemia followed by kidney transplant (CI + Txp) would be protected from AKI. C57Bl/6J wild type or TLR4KO kidneys were subjected to CI + Txp into wild type recipients. Tubular cell apoptosis, tubular injury and cast formation were significantly improved in recipients of TLR4KO kidneys. TLR4KO kidneys also demonstrated significantly decreased expression of the effector caspase 8. Brush border injury scores and serum creatinine were not different in recipients of TLR4KO versus wild type kidneys. Phosphorylated RIP3 and MLKL through which TLR4 signals programmed necrosis were expressed in both recipient groups. In addition, TNF-α and TNFR1 expression were significantly increased in recipient serum and TLR4KO kidneys respectively after CI + Txp, suggesting continued activation of programmed necrosis despite TLR4 deletion. Our results suggest that TLR4 deletion decreases apoptosis via inhibition of the death receptor pathway and decreases tubular injury and cast formation.
Asunto(s)
Lesión Renal Aguda/prevención & control , Apoptosis , Isquemia Fría/efectos adversos , Trasplante de Riñón/efectos adversos , Necrosis , Receptor Toll-Like 4/fisiología , Lesión Renal Aguda/etiología , Lesión Renal Aguda/patología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal , Donantes de Tejidos/provisión & distribuciónRESUMEN
One of the cornerstone research models used in our laboratories is the induction of ischemic injury through cold ischemia followed by warm ischemia to donor kidneys to mimic the clinical realities of transplantation. The experimental design of the present study included bilateral nephrectomies on the day of syngeneic kidney transplant, with serum creatinine measured 24 hours postoperatively to measure acute function. Cold ischemia time in these experiments was always 30 minutes, and warm ischemia time was not standardized but always recorded. It became apparent that some transplanted kidneys that should have displayed injury were producing close to normal serum creatinine levels on postoperative day 1. In reviewing our data, we found a potential correlation between warm ischemia time and serum creatinine, in particular a significant proportion of low serum creatinine results (0.48 ± 0.26 mg/dL vs 1.99 ± 1.11 mg/dL; P < .05) was associated with warm ischemia times that were significantly shorter than our historical average (29.2 ± 2.7 min vs 35.7 ± 2.2 min; P < .05). The kidneys with lower serum creatinine also displayed lower apoptosis and brush border injury scores and fewer tubular casts. Therefore, we concluded that establishing a minimum warm ischemia time was just as important as standardized cold ischemia time to ensure consistent injury in this model.
Asunto(s)
Modelos Animales de Enfermedad , Trasplante de Riñón , Riñón , Isquemia Tibia/métodos , Animales , Isquemia Fría , Creatinina/sangre , Isquemia/fisiopatología , Riñón/fisiopatología , Masculino , RatonesRESUMEN
BACKGROUND: Caspase-1 knockout mice (Casp1KO) are protected from Acute Kidney Injury (AKI) after warm ischemia/reperfusion injury in non-transplant models. Since Caspase-1 plays a central role as an inflammatory response initiator, we hypothesized that Casp1KO mice would be protected from AKI following transplant. METHODS: Renal tubular cells (RTECs) were subjected to cold storage and rewarming (CS/REW). C57Bl/6 J wild type or Casp1KO kidneys were subjected to CI for 30 min and then transplanted into wild type recipients (CI + Txp). The recipients underwent bilateral native nephrectomy at the time of transplant. Serum creatinine (sCr) was measured 24 h after native nephrectomy to assess transplant function. RESULTS: We found that RTECs subjected to CS/REW had significantly increased expression of the Caspase-1 and inflammasome protein NLRP1. Wild type kidneys subjected to CI + Txp into wild type recipients also demonstrated significantly increased Caspase-1 and NLRP1 protein expression compared to kidneys transplanted from Casp1KO donors into wild type recipients. Caspase-1 deletion results in significantly decreased RTEC apoptosis in transplanted Casp1KO vs WT kidneys. Surprisingly, however, renal function, ATN scores including brush border injury, cast formation and tubular simplification were similar in both groups and not significantly different. CONCLUSIONS: Our data suggest that other triggers of inflammation and programmed necrosis may need to be inhibited in addition to attenuating Caspase-1 to fully prevent AKI after kidney transplant. Importantly, requirements may be distinct for AKI induced by transplantation as opposed to other transient models such as the clamp model of AKI.
Asunto(s)
Lesión Renal Aguda , Apoptosis , Caspasa 1/deficiencia , Daño por Reperfusión , Animales , Caspasa 1/metabolismo , Riñón/metabolismo , Ratones , Ratones Endogámicos C57BL , Necrosis , Daño por Reperfusión/metabolismoRESUMEN
Hibernating 13-lined ground squirrels are characterized by tolerance of severe hypothermia and hypoperfusion during torpor, followed by periodic warm reperfusion during IBA, conditions which are lethal to nonhibernating mammals. The aim of the present study was to determine whether protection from apoptosis was specific to torpor arousal cycles during hibernation or will also apply to cisplatin treatment on squirrel renal tubular cells (RTECs) that were procured during hibernation. Squirrel and mouse RTECs were treated with cisplatin, a potent inducer of RTEC apoptosis. Squirrel RTECs subjected to cisplatin had significantly less apoptosis, no cleaved caspase-3, and increased XIAP, pAkt, and pBAD versus mouse RTECs. To determine whether XIAP and Akt1 are necessary for RTEC protection against cisplatin induced apoptotic cell death, gene expression of Akt1 or XIAP was silenced in squirrel RTECs. Squirrel RTECs deficient in Akt1 and XIAP had increased apoptosis and cleaved caspase-3 when treated with cisplatin. Our results thus demonstrates that 13-lined ground squirrel RTECs possess intrinsic intracellular mechanisms by which they protect themselves from apoptotic cell death. Cisplatin induced acute kidney injury (AKI) may be avoided in cancer patients by employing mechanisms used by squirrel RTECs to protect against cisplatin induced tubular cell apoptosis.
RESUMEN
BACKGROUND: Prolonged cold ischemia (CI) is a risk factor for acute kidney injury after kidney transplantation. We endeavored to determine the pathways involved in the development of tubular cell injury and death before and after transplantation. We hypothesized that ex vivo cold storage before transplant would produce a different injury phenotype to that seen after engraftment in kidney transplants with or without CI. METHODS: Four groups of mouse donor kidneys were studied: (1) nontransplanted control kidneys; (2) donor kidneys subjected to ex vivo cold ischemia (CI); (3) donor kidneys subjected to kidney transplant without CI (Txp); and (4) donor kidneys subjected to CI followed by transplantation (CI+Txp). RESULTS: Acute kidney injury only occurred in the CI+Txp group, which had significantly increased sCr versus the Txp group and the control mice. Histologically, the CI group demonstrated significantly increased tubular cell apoptosis and caspase-9 expression, whereas the Txp group demonstrated only mild brush border injury without apoptosis or necrosis. In contrast, the CI+Txp group had tubular cell apoptosis associated with expression of caspase-8, TNFR1, and increased serum TNF-α. CI+Txp also led to significantly higher ATN scores in association with increased RIP1, RIP3, pMLKL, and TLR4 expression. CONCLUSIONS: Our results suggest distinct therapies are needed at different times during organ preservation and transplantation. Prevention of apoptosis during cold storage is best achieved by inhibiting intrinsic pathways. In contrast, prevention of cell death and innate immunity after CI+Txp requires inhibition of both the extrinsic death receptor pathway via TNFR1 and caspase-8 and inhibition of programmed necrosis via TLR4 and TNFR1.
Asunto(s)
Lesión Renal Aguda/etiología , Isquemia Fría/efectos adversos , Trasplante de Riñón/efectos adversos , Animales , Apoptosis , Riñón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Necrosis , Receptores Tipo I de Factores de Necrosis Tumoral/fisiologíaRESUMEN
BACKGROUND: Prolonged cold ischemia is a risk factor for delayed graft function of kidney transplants, and is associated with caspase-3-mediated apoptotic tubular cell death. We hypothesized that treatment of tubular cells and donor kidneys during cold storage with a caspase inhibitor before transplant would reduce tubular cell apoptosis and improve kidney function after transplant. METHODS: Mouse tubular cells were incubated with either dimethyl sulfoxide (DMSO) or Q-VD-OPh during cold storage in saline followed by rewarming in normal media. For in vivo studies, donor kidneys from C57BL/6 mice were perfused with cold saline, DMSO (vehicle), or QVD-OPh. Donor kidneys were then recovered, stored at 4°C for 60 minutes, and transplanted into syngeneic C57BL/6 recipients. RESULTS: Tubular cells treated with a caspase inhibitor had significantly reduced capsase-3 protein expression, caspase-3 activity, and apoptotic cell death compared with saline or DMSO (vehicle) in a dose-dependent manner. Treatment of donor kidneys with a caspase inhibitor significantly reduced serum creatinine and resulted in significantly less tubular cell apoptosis, BBI, tubular injury, cast formation, and tubule lumen dilation compared with DMSO and saline-treated kidneys. CONCLUSIONS: Caspase inhibition resulted in decreased tubular cell apoptosis and improved renal function after transplantation. Caspase inhibition may be a useful strategy to prevent cold ischemic injury of donor renal grafts.