RESUMEN
Cell-cell communication is mediated by many soluble mediators, including over 40 cytokines. Cytokines, e.g. TNF, IL1ß, IL5, IL6, IL12 and IL23, represent important therapeutic targets in immune-mediated inflammatory diseases (IMIDs), such as inflammatory bowel disease (IBD), psoriasis, asthma, rheumatoid and juvenile arthritis. The identification of cytokines that are causative drivers of, and not just associated with, inflammation is fundamental for selecting therapeutic targets that should be studied in clinical trials. As in vitro models of cytokine interactions provide a simplified framework to study complex in vivo interactions, and can easily be perturbed experimentally, they are key for identifying such targets. We present a method to extract a minimal, weighted cytokine interaction network, given in vitro data on the effects of the blockage of single cytokine receptors on the secretion rate of other cytokines. Existing biological network inference methods typically consider the correlation structure of the underlying dataset, but this can make them poorly suited for highly connected, non-linear cytokine interaction data. Our method uses ordinary differential equation systems to represent cytokine interactions, and efficiently computes the configuration with the lowest Akaike information criterion value for all possible network configurations. It enables us to study indirect cytokine interactions and quantify inhibition effects. The extracted network can also be used to predict the combined effects of inhibiting various cytokines simultaneously. The model equations can easily be adjusted to incorporate more complicated dynamics and accommodate temporal data. We validate our method using synthetic datasets and apply our method to an experimental dataset on the regulation of IL23, a cytokine with therapeutic relevance in psoriasis and IBD. We validate several model predictions against experimental data that were not used for model fitting. In summary, we present a novel method specifically designed to efficiently infer cytokine interaction networks from cytokine perturbation data in the context of IMIDs.
Asunto(s)
Enfermedades Inflamatorias del Intestino , Psoriasis , Citocinas , Humanos , Inflamación , Psoriasis/tratamiento farmacológico , Receptores de CitocinasRESUMEN
This perspective outlines an approach to improve mechanistic understanding of macrophages in inflammation and tissue homeostasis, with a focus on human inflammatory bowel disease (IBD). The approach integrates wet-lab and in-silico experimentation, driven by mechanistic mathematical models of relevant biological processes. Although wet-lab experimentation with genetically modified mouse models and primary human cells and tissues have provided important insights, the role of macrophages in human IBD remains poorly understood. Key open questions include: (1) To what degree hyperinflammatory processes (e.g., gain of cytokine production) and immunodeficiency (e.g., loss of bacterial killing) intersect to drive IBD pathophysiology? and (2) What are the roles of macrophage heterogeneity in IBD onset and progression? Mathematical modeling offers a synergistic approach that can be used to address such questions. Mechanistic models are useful for informing wet-lab experimental designs and provide a knowledge constrained framework for quantitative analysis and interpretation of resulting experimental data. The majority of published mathematical models of macrophage function are based either on animal models, or immortalized human cell lines. These experimental models do not recapitulate important features of human gastrointestinal pathophysiology, and, therefore are limited in the extent to which they can fully inform understanding of human IBD. Thus, we envision a future where mechanistic mathematical models are based on features relevant to human disease and parametrized by richer human datasets, including biopsy tissues taken from IBD patients, human organ-on-a-chip systems and other high-throughput clinical data derived from experimental medicine studies and/or clinical trials on IBD patients.