Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 632: 173-180, 2022 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-36209586

RESUMEN

The presence of circulating cancer cells in the bloodstream is positively correlated with metastasis. We hypothesize that fluid shear stress (FSS) occurring during circulation alters mitochondrial function, enhancing metastatic behaviors of cancer cells. MCF7 and MDA-MB-231 human breast cancer cells subjected to FSS exponentially increased proliferation. Notably, FSS-treated cells consumed more oxygen but were resistant to uncoupler-mediated ATP loss. We found that exposure to FSS downregulated the F1FO ATP synthase c-subunit and overexpression of the c-subunit arrested cancer cell migration. Approaches that regulate c-subunit abundance may reduce the likelihood of breast cancer metastasis.


Asunto(s)
Neoplasias de la Mama , ATPasas de Translocación de Protón Mitocondriales , Humanos , Femenino , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Regulación hacia Abajo , Adenosina Trifosfato , Proliferación Celular , Oxígeno
2.
Molecules ; 25(15)2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32751250

RESUMEN

Apoptosis, programmed cell death type I, is a critical part of neurodegeneration in cerebral ischemia, Parkinson's, and Alzheimer's disease. Apoptosis begins with activation of pro-death proteins Bax and Bak, release of cytochrome c and activation of caspases, loss of membrane integrity of intracellular organelles, and ultimately cell death. Approaches that block apoptotic pathways may prevent or delay neurodegenerative processes. Carotenoids are a group of pigments found in fruits, vegetables, and seaweeds that possess antioxidant properties. Over the last several decades, an increasing number of studies have demonstrated a protective role of carotenoids in neurodegenerative disease. In this review, we describe functions of commonly consumed carotenoids including lycopene, ß-carotene, lutein, astaxanthin, and fucoxanthin and their roles in neurodegenerative disease models. We also discuss the underlying cellular mechanisms of carotenoid-mediated neuroprotection, including their antioxidant properties, role as signaling molecules, and as gene regulators that alleviate apoptosis-associated brain cell death.


Asunto(s)
Apoptosis/efectos de los fármacos , Carotenoides/farmacología , Fármacos Neuroprotectores/farmacología , Animales , Antioxidantes/química , Antioxidantes/farmacología , Carotenoides/química , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/química , Relación Estructura-Actividad
3.
Biology (Basel) ; 10(8)2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34440004

RESUMEN

B-cell lymphoma-extra large (Bcl-xL) is a mitochondrial protein known to inhibit mitochondria-dependent intrinsic apoptotic pathways. An increasing number of studies have demonstrated that Bcl-xL is critical in regulating neuronal energy metabolism and has a protective role in pathologies associated with an energy deficit. However, it is less known how Bcl-xL regulates physiological processes of the brain. In this study, we hypothesize that Bcl-xL is required for neurite branching and maturation during neuronal development by improving local energy metabolism. We found that the absence of Bcl-xL in rat primary hippocampal neurons resulted in mitochondrial dysfunction. Specifically, the ATP/ADP ratio was significantly decreased in the neurites of Bcl-xL depleted neurons. We further found that neurons transduced with Bcl-xL shRNA or neurons treated with ABT-263, a pharmacological inhibitor of Bcl-xL, showed impaired mitochondrial motility. Neurons lacking Bcl-xL had significantly decreased anterograde and retrograde movement of mitochondria and an increased stationary mitochondrial population when Bcl-xL was depleted by either means. These mitochondrial defects, including loss of ATP, impaired normal neurite development. Neurons lacking Bcl-xL showed significantly decreased neurite arborization, growth and complexity. Bcl-xL depleted neurons also showed impaired synapse formation. These neurons showed increased intracellular calcium concentration and were more susceptible to excitotoxic challenge. Bcl-xL may support positioning of mitochondria at metabolically demanding regions of neurites like branching points. Our findings suggest a role for Bcl-xL in physiological regulation of neuronal growth and development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA