Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
PLoS Pathog ; 18(10): e1010640, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36191034

RESUMEN

Colonization of host phagocytic cells by Leishmania metacyclic promastigotes involves several parasite effectors, including the zinc-dependent metalloprotease GP63. The major mode of action of this virulence factor entails the cleavage/degradation of host cell proteins. Given the potent proteolytic activity of GP63, identification of its substrates requires the adequate preparation of cell lysates to prevent artefactual degradation during cell processing. In the present study, we re-examined the cleavage/degradation of reported GP63 substrates when GP63 activity was efficiently neutralized during the preparation of cell lysates. To this end, we infected bone marrow-derived macrophages with either wild type, Δgp63, and Δgp63+GP63 L. major metacyclic promastigotes for various time points. We prepared cell lysates in the absence or presence of the zinc-metalloprotease inhibitor 1,10-phenanthroline and examined the levels and integrity of ten previously reported host cell GP63 substrates. Inhibition of GP63 activity with 1,10-phenanthroline during the processing of macrophages prevented the cleavage/degradation of several previously described GP63 targets, including PTP-PEST, mTOR, p65RelA, c-Jun, VAMP3, and NLRP3. Conversely, we confirmed that SHP-1, Synaptotagmin XI, VAMP8, and Syntaxin-5 are bona fide GP63 substrates. These results point to the importance of efficiently inhibiting GP63 activity during the preparation of Leishmania-infected host cell lysates. In addition, our results indicate that the role of GP63 in Leishmania pathogenesis must be re-evaluated.


Asunto(s)
Leishmania , Proteína Tirosina Fosfatasa no Receptora Tipo 12 , Leishmania/metabolismo , Metaloendopeptidasas/metabolismo , Metaloproteasas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 12/metabolismo , Proteínas Qa-SNARE/metabolismo , Sinaptotagminas , Serina-Treonina Quinasas TOR/metabolismo , Proteína 3 de Membrana Asociada a Vesículas/metabolismo , Factores de Virulencia , Zinc/metabolismo
2.
Nat Immunol ; 13(6): 543-550, 2012 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-22544393

RESUMEN

Type I interferon is an integral component of the antiviral response, and its production is tightly controlled at the levels of transcription and translation. The eukaryotic translation-initiation factor eIF4E is a rate-limiting factor whose activity is regulated by phosphorylation of Ser209. Here we found that mice and fibroblasts in which eIF4E cannot be phosphorylated were less susceptible to virus infection. More production of type I interferon, resulting from less translation of Nfkbia mRNA (which encodes the inhibitor IκBα), largely explained this phenotype. The lower abundance of IκBα resulted in enhanced activity of the transcription factor NF-κB, which promoted the production of interferon-ß (IFN-ß). Thus, regulated phosphorylation of eIF4E has a key role in antiviral host defense by selectively controlling the translation of an mRNA that encodes a critical suppressor of the innate antiviral response.


Asunto(s)
Factor 4E Eucariótico de Iniciación/metabolismo , Interferón Tipo I/biosíntesis , FN-kappa B/metabolismo , Estomatitis Vesicular/inmunología , Virus de la Estomatitis Vesicular Indiana/fisiología , Animales , Ensayo de Cambio de Movilidad Electroforética , Factor 4E Eucariótico de Iniciación/inmunología , Femenino , Proteínas I-kappa B/biosíntesis , Proteínas I-kappa B/genética , Proteínas I-kappa B/inmunología , Inmunidad Innata/inmunología , Immunoblotting , Interferón Tipo I/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Inhibidor NF-kappaB alfa , FN-kappa B/inmunología , Fosforilación , Biosíntesis de Proteínas , ARN Mensajero/química , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Organismos Libres de Patógenos Específicos , Estomatitis Vesicular/genética , Estomatitis Vesicular/metabolismo , Estomatitis Vesicular/virología , Virus de la Estomatitis Vesicular Indiana/inmunología , Replicación Viral
3.
PLoS Pathog ; 16(6): e1008291, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32479529

RESUMEN

The protozoan parasite Leishmania donovani (L. donovani) causes visceral leishmaniasis, a chronic infection which is fatal when untreated. Herein, we investigated whether in addition to altering transcription, L. donovani modulates host mRNA translation to establish a successful infection. Polysome-profiling revealed that one third of protein-coding mRNAs expressed in primary mouse macrophages are differentially translated upon infection with L. donovani promastigotes or amastigotes. Gene ontology analysis identified key biological processes enriched for translationally regulated mRNAs and were predicted to be either activated (e.g. chromatin remodeling and RNA metabolism) or inhibited (e.g. intracellular trafficking and antigen presentation) upon infection. Mechanistic in silico and biochemical analyses showed selective activation mTOR- and eIF4A-dependent mRNA translation, including transcripts encoding central regulators of mRNA turnover and inflammation (i.e. PABPC1, EIF2AK2, and TGF-ß). L. donovani survival within macrophages was favored under mTOR inhibition but was dampened by pharmacological blockade of eIF4A. Overall, this study uncovers a vast yet selective reprogramming of the host cell translational landscape early during L. donovani infection, and suggests that some of these changes are involved in host defense mechanisms while others are part of parasite-driven survival strategies. Further in vitro and in vivo investigation will shed light on the contribution of mTOR- and eIF4A-dependent translational programs to the outcome of visceral leishmaniasis.


Asunto(s)
Factor 4A Eucariótico de Iniciación/metabolismo , Leishmania donovani/metabolismo , Leishmaniasis Visceral , Macrófagos , Biosíntesis de Proteínas , ARN/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Leishmaniasis Visceral/metabolismo , Leishmaniasis Visceral/patología , Macrófagos/metabolismo , Macrófagos/parasitología , Macrófagos/patología , Ratones
4.
J Immunol ; 204(9): 2392-2400, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32213561

RESUMEN

Deregulation of mRNA translation engenders many human disorders, including obesity, neurodegenerative diseases, and cancer, and is associated with pathogen infections. The role of eIF4E-dependent translational control in macrophage inflammatory responses in vivo is largely unexplored. In this study, we investigated the involvement of the translation inhibitors eIF4E-binding proteins (4E-BPs) in the regulation of macrophage inflammatory responses in vitro and in vivo. We show that the lack of 4E-BPs exacerbates inflammatory polarization of bone marrow-derived macrophages and that 4E-BP-null adipose tissue macrophages display enhanced inflammatory gene expression following exposure to a high-fat diet (HFD). The exaggerated inflammatory response in HFD-fed 4E-BP-null mice coincides with significantly higher weight gain, higher Irf8 mRNA translation, and increased expression of IRF8 in adipose tissue compared with wild-type mice. Thus, 4E-BP-dependent translational control limits, in part, the proinflammatory response during HFD. These data underscore the activity of the 4E-BP-IRF8 axis as a paramount regulatory mechanism of proinflammatory responses in adipose tissue macrophages.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Tejido Adiposo/metabolismo , Inflamación/genética , Factores Reguladores del Interferón/genética , Macrófagos/metabolismo , Biosíntesis de Proteínas/genética , Animales , Médula Ósea/metabolismo , Dieta Alta en Grasa/métodos , Factor 4E Eucariótico de Iniciación/genética , Expresión Génica/genética , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
5.
Eur J Immunol ; 49(8): 1200-1212, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31032899

RESUMEN

Signaling through the mechanistic target of rapamycin complex 1 (mTORC1) is a major regulatory node of pro-inflammatory mediator production by macrophages (MΦs). However, it is still unclear whether such regulation relies on selective translational control by two of the main mTORC1 effectors, the eIF4E-binding proteins 1 and 2 (4E-BP1/2). By comparing translational efficiencies of immune-related transcripts of MΦs from WT and 4E-BP1/2 double-KO (DKO) mice, we found that translation of mRNAs encoding the pro-inflammatory chemokines CCL5 and CXCL10 is controlled by 4E-BP1/2. Macrophages deficient in 4E-BP1/2 produced higher levels of CCL5 and CXCL10 upon LPS stimulation, which enhanced chemoattraction of activated T cells. Consistent with this, treatment of WT cells with mTORC1 inhibitors promoted the activation of 4E-BP1/2 and reduced CCL5 and CXCL10 secretion. In contrast, the phosphorylation status of eIF4E did not affect the synthesis of these chemokines since MΦs derived from mice harboring a non-phosphorylatable form of the protein produced similar levels of CCL5 and CXCL10 to WT counterparts. These data provide evidence that the mTORC1-4E-BP1/2 axis contributes to regulate the production of chemoattractants by MΦs by limiting translation efficiency of Ccl5 and Cxcl10 mRNAs, and suggest that 4E-BP1/2 act as immunological safeguards by fine-tuning inflammatory responses in MΦs.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quimiocina CCL5/genética , Quimiocina CXCL10/genética , Factores Eucarióticos de Iniciación/metabolismo , Macrófagos/inmunología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Linfocitos T/inmunología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas de Ciclo Celular/genética , Diferenciación Celular , Movimiento Celular , Células Cultivadas , Represión Epigenética , Factores Eucarióticos de Iniciación/genética , Activación de Linfocitos , Ratones , Ratones Noqueados , Biosíntesis de Proteínas , Procesamiento Proteico-Postraduccional , Transducción de Señal
6.
PLoS Pathog ; 14(8): e1007264, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30138450

RESUMEN

Herpes Simplex Virus 1 (HSV1) is amongst the most clinically advanced oncolytic virus platforms. However, efficient and sustained viral replication within tumours is limiting. Rapamycin can stimulate HSV1 replication in cancer cells, but active-site dual mTORC1 and mTORC2 (mammalian target of rapamycin complex 1 and 2) inhibitors (asTORi) were shown to suppress the virus in normal cells. Surprisingly, using the infected cell protein 0 (ICP0)-deleted HSV1 (HSV1-dICP0), we found that asTORi markedly augment infection in cancer cells and a mouse mammary cancer xenograft. Mechanistically, asTORi repressed mRNA translation in normal cells, resulting in defective antiviral response but also inhibition of HSV1-dICP0 replication. asTORi also reduced antiviral response in cancer cells, however in contrast to normal cells, transformed cells and cells transduced to elevate the expression of eukaryotic initiation factor 4E (eIF4E) or to silence the repressors eIF4E binding proteins (4E-BPs), selectively maintained HSV1-dICP0 protein synthesis during asTORi treatment, ultimately supporting increased viral replication. Our data show that altered eIF4E/4E-BPs expression can act to promote HSV1-dICP0 infection under prolonged mTOR inhibition. Thus, pharmacoviral combination of asTORi and HSV1 can target cancer cells displaying dysregulated eIF4E/4E-BPs axis.


Asunto(s)
Herpes Simple/patología , Herpesvirus Humano 1/efectos de los fármacos , Herpesvirus Humano 1/genética , Proteínas Inmediatas-Precoces/genética , Neoplasias/virología , Inhibidores de Proteínas Quinasas/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Dominio Catalítico/efectos de los fármacos , Proteínas de Ciclo Celular , Células Cultivadas , Chlorocebus aethiops , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HEK293 , Herpes Simple/complicaciones , Herpes Simple/genética , Humanos , Proteínas Inmediatas-Precoces/deficiencia , Ratones , Neoplasias/complicaciones , Neoplasias/genética , Neoplasias/patología , Organismos Modificados Genéticamente , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/química , Ubiquitina-Proteína Ligasas/deficiencia , Células Vero
7.
J Immunol ; 200(12): 4102-4116, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29712774

RESUMEN

Macrophages represent one of the first lines of defense during infections and are essential for resolution of inflammation following pathogen clearance. Rapid activation or suppression of protein synthesis via changes in translational efficiency allows cells of the immune system, including macrophages, to quickly respond to external triggers or cues without de novo mRNA synthesis. The translational repressors eIF4E-binding proteins 4E-BP1 and 4E-BP2 (4E-BP1/2) are central regulators of proinflammatory cytokine synthesis during viral and parasitic infections. However, it remains to be established whether 4E-BP1/2 play a role in translational control of anti-inflammatory responses. By comparing translational efficiencies of immune-related transcripts in macrophages from wild-type and 4E-BP1/2 double-knockout mice, we found that translation of mRNAs encoding two major regulators of inflammation, IL-10 and PG-endoperoxide synthase 2/cyclooxygenase-2, is controlled by 4E-BP1/2. Genetic deletion of 4E-BP1/2 in macrophages increased endogenous IL-10 and PGE2 protein synthesis in response to TLR4 stimulation and reduced their bactericidal capacity. The molecular mechanism involves enhanced anti-inflammatory gene expression (sIl1ra, Nfil3, Arg1, Serpinb2) owing to upregulation of IL-10-STAT3 and PGE2-C/EBPß signaling. These data provide evidence that 4E-BP1/2 limit anti-inflammatory responses in macrophages and suggest that dysregulated activity of 4E-BP1/2 might be involved in reprogramming of the translational and downstream transcriptional landscape of macrophages during pathological conditions, such as infections and cancer.


Asunto(s)
Proteínas Portadoras/metabolismo , Ciclooxigenasa 2/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Inflamación/metabolismo , Interleucina-10/metabolismo , Macrófagos/metabolismo , Fosfoproteínas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas de Ciclo Celular , Dinoprostona/metabolismo , Expresión Génica/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Unión Proteica/fisiología , Biosíntesis de Proteínas/fisiología , ARN Mensajero/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal/fisiología , Transcripción Genética/fisiología , Regulación hacia Arriba/fisiología
8.
Infect Immun ; 87(5)2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30804103

RESUMEN

CXCL16 is a multifunctional chemokine that is highly expressed by macrophages and other immune cells in response to bacterial and viral pathogens; however, little is known regarding the role of CXCL16 during parasitic infections. The protozoan parasite Leishmania donovani is the causative agent of visceral leishmaniasis. Even though chemokine production is a host defense mechanism during infection, subversion of the host chemokine system constitutes a survival strategy adopted by the parasite. Here, we report that L. donovani promastigotes upregulate CXCL16 synthesis and secretion by bone marrow-derived macrophages (BMDM). In contrast to wild-type parasites, a strain deficient in the virulence factor lipophosphoglycan (LPG) failed to induce CXCL16 production. Consistent with this, cell treatment with purified L. donovani LPG augmented CXCL16 expression and secretion. Notably, the ability of BMDM to promote migration of cells expressing CXCR6, the cognate receptor of CXCL16, was augmented upon L. donovani infection in a CXCL16- and LPG-dependent manner. Mechanistically, CXCL16 induction by L. donovani required the activity of AKT and the mechanistic target of rapamycin (mTOR) but was independent of Toll-like receptor signaling. Collectively, these data provide evidence that CXCL16 is part of the inflammatory response elicited by L. donovani LPG in vitro Further investigation using CXCL16 knockout mice is required to determine whether this chemokine contributes to the pathogenesis of visceral leishmaniasis and to elucidate the underlying molecular mechanisms.


Asunto(s)
Quimiocina CXCL16/inmunología , Quimiotaxis/inmunología , Glicoesfingolípidos/inmunología , Interacciones Huésped-Parásitos/inmunología , Leishmania donovani/inmunología , Leishmaniasis Visceral/inmunología , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
9.
Infect Immun ; 86(9)2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29967092

RESUMEN

The intracellular parasite Toxoplasma gondii promotes infection by targeting multiple host cell processes; however, whether it modulates mRNA translation is currently unknown. Here, we show that infection of primary murine macrophages with type I or II T. gondii strains causes a profound perturbation of the host cell translatome. Notably, translation of transcripts encoding proteins involved in metabolic activity and components of the translation machinery was activated upon infection. In contrast, the translational efficiency of mRNAs related to immune cell activation and cytoskeleton/cytoplasm organization was largely suppressed. Mechanistically, T. gondii bolstered mechanistic target of rapamycin (mTOR) signaling to selectively activate the translation of mTOR-sensitive mRNAs, including those with a 5'-terminal oligopyrimidine (5' TOP) motif and those encoding mitochondrion-related proteins. Consistent with parasite modulation of host mTOR-sensitive translation to promote infection, inhibition of mTOR activity suppressed T. gondii replication. Thus, selective reprogramming of host mRNA translation represents an important subversion strategy during T. gondii infection.


Asunto(s)
Interacciones Huésped-Parásitos , Macrófagos/parasitología , Biosíntesis de Proteínas/genética , Toxoplasma/patogenicidad , Animales , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Mitocondriales/genética , Proteínas Protozoarias/inmunología , Secuencia de Oligopirimidina en la Región 5' Terminal del ARN , Transducción de Señal , Serina-Treonina Quinasas TOR/genética
10.
Nucleic Acids Res ; 43(7): 3764-75, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25779044

RESUMEN

Initiation is a highly regulated rate-limiting step of mRNA translation. During cap-dependent translation, the cap-binding protein eIF4E recruits the mRNA to the ribosome. Specific elements in the 5'UTR of some mRNAs referred to as Internal Ribosome Entry Sites (IRESes) allow direct association of the mRNA with the ribosome without the requirement for eIF4E. Cap-independent initiation permits translation of a subset of cellular and viral mRNAs under conditions wherein cap-dependent translation is inhibited, such as stress, mitosis and viral infection. DAP5 is an eIF4G homolog that has been proposed to regulate both cap-dependent and cap-independent translation. Herein, we demonstrate that DAP5 associates with eIF2ß and eIF4AI to stimulate IRES-dependent translation of cellular mRNAs. In contrast, DAP5 is dispensable for cap-dependent translation. These findings provide the first mechanistic insights into the function of DAP5 as a selective regulator of cap-independent translation.


Asunto(s)
Factor 2B Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Factores de Iniciación de Péptidos/metabolismo , Biosíntesis de Proteínas , Ribosomas/metabolismo , Células HEK293 , Humanos , Caperuzas de ARN
11.
Nature ; 452(7185): 323-8, 2008 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-18272964

RESUMEN

Transcriptional activation of cytokines, such as type-I interferons (interferon (IFN)-alpha and IFN-beta), constitutes the first line of antiviral defence. Here we show that translational control is critical for induction of type-I IFN production. In mouse embryonic fibroblasts lacking the translational repressors 4E-BP1 and 4E-BP2, the threshold for eliciting type-I IFN production is lowered. Consequently, replication of encephalomyocarditis virus, vesicular stomatitis virus, influenza virus and Sindbis virus is markedly suppressed. Furthermore, mice with both 4E- and 4E-BP2 genes (also known as Eif4ebp1 and Eif4ebp2, respectively) knocked out are resistant to vesicular stomatitis virus infection, and this correlates with an enhanced type-I IFN production in plasmacytoid dendritic cells and the expression of IFN-regulated genes in the lungs. The enhanced type-I IFN response in 4E-BP1-/- 4E-BP2-/- double knockout mouse embryonic fibroblasts is caused by upregulation of interferon regulatory factor 7 (Irf7) messenger RNA translation. These findings highlight the role of 4E-BPs as negative regulators of type-I IFN production, via translational repression of Irf7 mRNA.


Asunto(s)
Inmunidad Innata/inmunología , Factor 7 Regulador del Interferón/biosíntesis , Biosíntesis de Proteínas , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular , Células Cultivadas , Células Dendríticas/inmunología , Embrión de Mamíferos/citología , Factores Eucarióticos de Iniciación/deficiencia , Factores Eucarióticos de Iniciación/genética , Factores Eucarióticos de Iniciación/metabolismo , Fibroblastos/virología , Eliminación de Gen , Inmunidad Innata/genética , Factor 7 Regulador del Interferón/genética , Factor 7 Regulador del Interferón/metabolismo , Interferón Tipo I/biosíntesis , Interferón Tipo I/inmunología , Ratones , Ratones Noqueados , Fosfoproteínas/deficiencia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Virus de la Estomatitis Vesicular Indiana/fisiología , Fenómenos Fisiológicos de los Virus , Replicación Viral
12.
Biol Open ; 13(6)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38712984

RESUMEN

The mammary gland is a unique organ as most of its development occurs after birth through stages of proliferation, differentiation and apoptosis that are tightly regulated by circulating hormones and growth factors. Throughout development, hormonal cues induce the regulation of different pathways, ultimately leading to differential transcription and expression of genes involved in this process, but also in the activation or inhibition of post-transcriptional mechanisms of regulation. However, the role of microRNAs (miRNAs) in the different phases of mammary gland remodeling is still poorly understood. The objectives of this study were to analyze the expression of miRNA in key stages of mammary gland development in mice and to determine whether it could be associated with hormonal variation between stages. To do so, miRNAs were isolated from mouse mammary glands at stages of adulthood, pregnancy, lactation and involution, and sequenced. Results showed that 490, 473, 419, and 460 miRNAs are detected in adult, pregnant, lactating and involuting mice, respectively, most of them being common to all four groups, and 58 unique to one stage. Most genes could be divided into six clusters of expression, including two encompassing the highest number of miRNA (clusters 1 and 3) and showing opposite profiles of expression, reaching a peak at adulthood and valley at lactation, or showing the lowest expression at adulthood and peaking at lactation. GO and KEGG analyses suggest that the miRNAs differentially expressed between stages influence the expression of targets associated with mammary gland homeostasis and hormone regulation. To further understand the links between miRNA expression and hormones involved in mammary gland development, miRNAs were then sequenced in breast cells exposed to estradiol, progesterone, prolactin and oxytocin. Four, 38, 24 and 66 miRNAs were associated with progesterone, estradiol, prolactin, and oxytocin exposure, respectively. Finally, when looking at miRNAs modulated by the hormones, differentially expressed during mammary gland development, and having a pattern of expression that could be correlated with the relative levels of hormones known to be found in vivo, 16 miRNAs were identified as likely regulated by circulating hormones. Overall, our study brings a better understanding of the regulation of miRNAs throughout mammary gland development and suggests that there is a relationship between their expression and the main hormones involved in mammary gland development. Future studies will examine this role more in detail.


Asunto(s)
Lactancia , Glándulas Mamarias Animales , MicroARNs , MicroARNs/genética , Animales , Femenino , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/crecimiento & desarrollo , Ratones , Embarazo , Perfilación de la Expresión Génica , Hormonas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica , Biología Computacional/métodos
13.
mBio ; 14(4): e0079523, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37387601

RESUMEN

The intracellular parasite Toxoplasma gondii induces host AKT activation to prevent autophagy-mediated clearance; however, the molecular underpinnings are not fully understood. Autophagy can be negatively regulated through AKT-sensitive phosphorylation and nuclear export of the transcription factor Forkhead box O3a (FOXO3a). Using a combination of pharmacological and genetic approaches, herein we investigated whether T. gondii hinders host autophagy through AKT-dependent inactivation of FOXO3a. We found that infection by type I and II strains of T. gondii promotes gradual and sustained AKT-dependent phosphorylation of FOXO3a at residues S253 and T32 in human foreskin fibroblasts (HFF) and murine 3T3 fibroblasts. Mechanistically, AKT-sensitive phosphorylation of FOXO3a by T. gondii required live infection and the activity of PI3K but was independent of the plasma membrane receptor EGFR and the kinase PKCα. Phosphorylation of FOXO3a at AKT-sensitive residues was paralleled by its nuclear exclusion in T. gondii-infected HFF. Importantly, the parasite was unable to drive cytoplasmic localization of FOXO3a upon pharmacological blockade of AKT or overexpression of an AKT-insensitive mutant form of FOXO3a. Transcription of a subset of bona fide autophagy-related targets of FOXO3a was reduced during T. gondii infection in an AKT-dependent fashion. However, parasite-directed repression of autophagy-related genes was AKT-resistant in cells deficient in FOXO3a. Consistent with this, T. gondii failed to inhibit the recruitment of acidic organelles and LC3, an autophagy marker, to the parasitophorous vacuole upon chemically or genetically induced nuclear retention of FOXO3a. In all, we provide evidence that T. gondii suppresses FOXO3a-regulated transcriptional programs to prevent autophagy-mediated killing. IMPORTANCE The parasite Toxoplasma gondii is the etiological agent of toxoplasmosis, an opportunistic infection commonly transmitted by ingestion of contaminated food or water. To date, no effective vaccines in humans have been developed and no promising drugs are available to treat chronic infection or prevent congenital infection. T. gondii targets numerous host cell processes to establish a favorable replicative niche. Of note, T. gondii activates the host AKT signaling pathway to prevent autophagy-mediated killing. Herein, we report that T. gondii inhibits FOXO3a, a transcription factor that regulates the expression of autophagy-related genes, through AKT-dependent phosphorylation. The parasite's ability to block the recruitment of the autophagy machinery to the parasitophorous vacuole is impeded upon pharmacological inhibition of AKT or overexpression of an AKT-insensitive form of FOXO3a. Thus, our study provides greater granularity in the role of FOXO3a during infection and reinforces the potential of targeting autophagy as a therapeutic strategy against T. gondii.

14.
Microbiol Spectr ; 11(4): e0509622, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37404188

RESUMEN

Polyclonal B cell activation and the resulting hypergammaglobulinemia are a detrimental consequence of visceral leishmaniasis (VL); however, the mechanisms underlying this excessive production of nonprotective antibodies are still poorly understood. Here, we show that a causative agent of VL, Leishmania donovani, induces CD21-dependent formation of tunneling nanotubule (TNT)-like protrusions in B cells. These intercellular connections are used by the parasite to disseminate among cells and propagate B cell activation, and close contact both among the cells and between B cells and parasites is required to achieve this activation. Direct contact between cells and parasites is also observed in vivo, as L. donovani can be detected in the splenic B cell area as early as 14 days postinfection. Interestingly, Leishmania parasites can also glide from macrophages to B cells via TNT-like protrusions. Taken together, our results suggest that, during in vivo infection, B cells may acquire L. donovani from macrophages via TNT-like protrusions, and these connections are subsequently exploited by the parasite to disseminate among B cells, thus propagating B cell activation and ultimately leading to polyclonal B cell activation. IMPORTANCE Leishmania donovani is a causative agent of visceral leishmaniasis, a potentially lethal disease characterized by strong B cell activation and the subsequent excessive production of nonprotective antibodies, which are known to worsen the disease. How Leishmania activates B cells is still unknown, particularly because this parasite mostly resides inside macrophages and would not have access to B cells during infection. In this study, we describe for the first time how the protozoan parasite Leishmania donovani induces and exploits the formation of protrusions that connect B lymphocytes with each other or with macrophages and glides on these structures from one cell to another. In this way, B cells can acquire Leishmania from macrophages and become activated upon contact with the parasites. This activation will then lead to antibody production. These findings provide an explanation for how the parasite may propagate B cell activation during infection.


Asunto(s)
Leishmania donovani , Leishmaniasis Visceral , Humanos , Leishmania donovani/fisiología , Leishmaniasis Visceral/parasitología , Macrófagos
15.
Sci Rep ; 12(1): 6369, 2022 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-35430587

RESUMEN

Macrophages undergo swift changes in mRNA abundance upon pathogen invasion. Herein we describe early remodelling of the macrophage transcriptome during infection by amastigotes or promastigotes of Leishmania donovani. Approximately 10-16% of host mRNAs were differentially modulated in L. donovani-infected macrophages when compared to uninfected controls. This response was partially stage-specific as a third of changes in mRNA abundance were either exclusively driven by one of the parasite forms or significantly different between them. Gene ontology analyses identified categories associated with immune functions (e.g. antigen presentation and leukocyte activation) among significantly downregulated mRNAs during amastigote infection while cytoprotective-related categories (e.g. DNA repair and apoptosis inhibition) were enriched in upregulated transcripts. Interestingly a combination of upregulated (e.g. cellular response to IFNß) and repressed (e.g. leukocyte activation, chemotaxis) immune-related transcripts were overrepresented in the promastigote-infected dataset. In addition, Ingenuity Pathway Analysis (IPA) associated specific mRNA subsets with a number of upstream transcriptional regulators predicted to be modulated in macrophages infected with L. donovani amastigotes (e.g. STAT1 inhibition) or promastigotes (e.g. NRF2, IRF3, and IRF7 activation). Overall, our results indicate that early parasite stage-driven transcriptional remodelling in macrophages contributes to orchestrate both protective and deleterious host cell responses during L. donovani infection.


Asunto(s)
Leishmania donovani , Parásitos , Animales , Presentación de Antígeno , Leishmania donovani/genética , Macrófagos , Parásitos/genética , ARN Mensajero/genética
16.
Nat Commun ; 13(1): 6558, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36323665

RESUMEN

mRNA translation is tightly regulated to preserve cellular homeostasis. Despite extensive biochemical, genetic, and structural studies, a detailed understanding of mRNA translation regulation is lacking. Imaging methodologies able to resolve the binding dynamics of translation factors at single-cell and single-mRNA resolution were necessary to fully elucidate regulation of this paramount process. Here live-cell spectroscopy and single-particle tracking were combined to interrogate the binding dynamics of endogenous initiation factors to the 5'cap. The diffusion of initiation factors (IFs) changed markedly upon their association with mRNA. Quantifying their diffusion characteristics revealed the sequence of IFs assembly and disassembly in cell lines and the clustering of translation in neurons. This approach revealed translation regulation at high spatial and temporal resolution that can be applied to the formation of any endogenous complex that results in a measurable shift in diffusion.


Asunto(s)
Factores de Iniciación de Péptidos , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Factores de Iniciación de Péptidos/genética , Caperuzas de ARN/metabolismo , Iniciación de la Cadena Peptídica Traduccional
17.
Artículo en Inglés | MEDLINE | ID: mdl-33014898

RESUMEN

The obligate intracellular parasite Toxoplasma gondii reprograms host gene expression through multiple mechanisms that promote infection, including the up-regulation of mTOR-dependent host mRNA translation. In addition to the mTOR-4E-BP1/2 axis, MAPK-interacting kinases 1 and 2 (MNK1/2) control the activity of the mRNA cap-binding protein eIF4E. Herein, we show that T. gondii inhibits the phosphorylation of MNK1/2 and their downstream target eIF4E in murine and human macrophages. Exposure to soluble T. gondii antigens (STAg) failed to fully recapitulate this phenotype indicating the requirement of live infection. Treatment with okadaic acid, a potent phosphatase inhibitor, restored phosphorylation of MNK1/2 and eIF4E regardless of infection. T. gondii replication was higher in macrophages isolated from mice mutated at the residue where eIF4E is phosphorylated (eIF4E S209A knock-in) than in wild-type (WT) control cells despite no differences in infection rates. Similarly, parasitemia in the mesenteric lymph nodes and spleen, as well as brain cyst burden were significantly augmented in infected eIF4E S209A knock-in mice compared to their WT counterparts. Of note, mutant mice were more susceptible to acute toxoplasmosis and displayed exacerbated levels of IFNγ. In all, these data suggest that the MNK1/2-eIF4E axis is required to control T. gondii infection and that its inactivation represents a strategy exploited by the parasite to promote its survival.


Asunto(s)
Parásitos , Toxoplasma , Animales , Factor 4E Eucariótico de Iniciación/metabolismo , Ratones , Parásitos/metabolismo , Fosforilación , Biosíntesis de Proteínas , Toxoplasma/metabolismo
18.
Nat Microbiol ; 4(4): 724, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30808989

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

19.
Nat Microbiol ; 4(4): 714-723, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30692670

RESUMEN

Leishmania are ancient eukaryotes that have retained the exosome pathway through evolution. Leishmania RNA virus 1 (LRV1)-infected Leishmania species are associated with a particularly aggressive mucocutaneous disease triggered in response to the double-stranded RNA (dsRNA) virus. However, it is unclear how LRV1 is exposed to the mammalian host cells. In higher eukaryotes, some viruses are known to utilize the host exosome pathway for their formation and cell-to-cell spread. As a result, exosomes derived from infected cells contain viral material or particles. Herein, we investigated whether LRV1 exploits the Leishmania exosome pathway to reach the extracellular environment. Biochemical and electron microscopy analyses of exosomes derived from LRV1-infected Leishmania revealed that most dsRNA LRV1 co-fractionated with exosomes, and that a portion of viral particles was surrounded by these vesicles. Transfer assays of LRV1-containing exosome preparations showed that a significant amount of parasites were rapidly and transiently infected by LRV1. Remarkably, these freshly infected parasites generated more severe lesions in mice than non-infected ones. Moreover, mice co-infected with parasites and LRV1-containing exosomes also developed a more severe disease. Overall, this work provides evidence that Leishmania exosomes function as viral envelopes, thereby facilitating LRV1 transmission and increasing infectivity in the mammalian host.


Asunto(s)
Exosomas/virología , Leishmania/fisiología , Leishmania/virología , Leishmaniasis/parasitología , Leishmaniavirus/fisiología , Animales , Femenino , Humanos , Leishmania/genética , Leishmania/patogenicidad , Ratones , Ratones Endogámicos BALB C , Virulencia
20.
Cell Rep ; 29(12): 4010-4023.e5, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31851930

RESUMEN

Residual cell-intrinsic innate immunity in cancer cells hampers infection with oncolytic viruses. Translational control of mRNA is an important feature of innate immunity, yet the identity of translationally regulated mRNAs functioning in host defense remains ill-defined. We report the translatomes of resistant murine "4T1" breast cancer cells infected with three of the most clinically advanced oncolytic viruses: herpes simplex virus 1, reovirus, and vaccinia virus. Common among all three infections are translationally de-repressed mRNAs, including Inpp5e, encoding an inositol 5-phosphatase that modifies lipid second messenger signaling. We find that viral infection induces the expression of an Inpp5e mRNA variant that lacks repressive upstream open reading frames (uORFs) within its 5' leader and is efficiently translated. Furthermore, we show that INPP5E contributes to antiviral immunity by altering virus attachment. These findings uncover a role for translational control through alternative 5' leader expression and assign an antiviral function to the ciliopathy gene Inpp5e.


Asunto(s)
Regiones no Traducidas 5'/genética , Neoplasias Mamarias Animales/terapia , Viroterapia Oncolítica , Virus Oncolíticos/patogenicidad , Monoéster Fosfórico Hidrolasas/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Animales , Femenino , Neoplasias Mamarias Animales/genética , Neoplasias Mamarias Animales/metabolismo , Neoplasias Mamarias Animales/virología , Ratones , Sistemas de Lectura Abierta , Monoéster Fosfórico Hidrolasas/genética , ARN Mensajero/genética , Ribosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA