Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Planta ; 260(1): 27, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38865018

RESUMEN

MAIN CONCLUSION: In Brassica rapa, the epigenetic modifier BraA.CLF orchestrates flowering by modulating H3K27me3 levels at the floral integrator genes FT, SOC1, and SEP3, thereby influencing their expression. CURLY LEAF (CLF) is the catalytic subunit of the plant Polycomb Repressive Complex 2 that mediates the trimethylation of histone H3 lysine 27 (H3K27me3), an epigenetic modification that leads to gene silencing. While the function of CURLY LEAF (CLF) has been extensively studied in Arabidopsis thaliana, its role in Brassica crops is barely known. In this study, we focused on the Brassica rapa homolog of CLF and found that the loss-of-function mutant braA.clf-1 exhibits an accelerated flowering together with pleiotropic phenotypic alterations compared to wild-type plants. In addition, we carried out transcriptomic and H3K27me3 genome-wide analyses to identify the genes regulated by BraA.CLF. Interestingly, we observed that several floral regulatory genes, including the B. rapa homologs of FT, SOC1 and SEP3, show reduced H3K27me3 levels and increased transcript levels compared to wild-type plants, suggesting that they are direct targets of BraA.CLF and key players in regulating flowering time in this crop. In addition, the results obtained will enhance our understanding of the epigenetic mechanisms regulating key developmental traits and will aid to increase crop yield by engineering new Brassica varieties with different flowering time requirements.


Asunto(s)
Brassica rapa , Flores , Regulación de la Expresión Génica de las Plantas , Histonas , Brassica rapa/genética , Brassica rapa/fisiología , Brassica rapa/crecimiento & desarrollo , Flores/genética , Flores/crecimiento & desarrollo , Flores/fisiología , Histonas/metabolismo , Histonas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Epigénesis Genética , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo
2.
Plant Cell Environ ; 46(5): 1427-1441, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36575647

RESUMEN

Knowledge concerning the integration of genetic pathways mediating the responses to environmental cues controlling flowering initiation in crops is scarce. Here, we reveal the diversity in oilseed rape (OSR) flowering response to high ambient temperature. Using a set of different spring OSR varieties, we found a consistent flowering delay at elevated temperatures. Remarkably, one of the varieties assayed exhibited the opposite behaviour. Several FT-like paralogs are plausible candidates to be part of the florigen in OSR. We revealed that BnaFTA2 plays a major role in temperature-dependent flowering initiation. Analysis of the H2A.Z histone variant occupancy at this locus in different Brassica napus varieties produced contrasting results, suggesting the involvement of additional molecular mechanisms in BnaFTA2 repression at high ambient temperature. Moreover, BnARP6 RNAi plants showed little accumulation of H2A.Z at high temperature while maintaining temperature sensitivity and delayed flowering. Furthermore, we found that H3K4me3 present in BnaFTA2 under inductive flowering conditions is reduced at high temperature, suggesting a role for this hallmark of transcriptionally active chromatin in the OSR flowering response to warming. Our work emphasises the plasticity of flowering responses in B. napus and offers venues to optimise this process in crop species grown under suboptimal environmental conditions.


Asunto(s)
Brassica napus , Brassica napus/genética , Temperatura , Histonas , Reproducción
3.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36674684

RESUMEN

Elevated growth temperatures are negatively affecting crop productivity by increasing yield losses. The modulation of root traits associated with improved response to rising temperatures is a promising approach to generate new varieties better suited to face the environmental constraints caused by climate change. In this study, we identified several Brassica napus root traits altered in response to warm ambient temperatures. Different combinations of changes in specific root traits result in an extended and deeper root system. This overall root growth expansion facilitates root response by maximizing root-soil surface interaction and increasing roots' ability to explore extended soil areas. We associated these traits with coordinated cellular events, including changes in cell division and elongation rates that drive root growth increases triggered by warm temperatures. Comparative transcriptomic analysis revealed the main genetic determinants of these root system architecture (RSA) changes and uncovered the necessity of a tight regulation of the heat-shock stress response to adjusting root growth to warm temperatures. Our work provides a phenotypic, cellular, and genetic framework of root response to warming temperatures that will help to harness root response mechanisms for crop yield improvement under the future climatic scenario.


Asunto(s)
Brassica napus , Brassica napus/genética , Temperatura , Raíces de Plantas/genética , Fenotipo , Suelo
4.
Plant Physiol ; 187(1): 462-471, 2021 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-34618146

RESUMEN

Plants react to environmental challenges by integrating external cues with endogenous signals to optimize survival and reproductive success. However, the mechanisms underlying this integration remain obscure. While stress conditions are known to impact plant development, how developmental transitions influence responses to adverse conditions has not been addressed. Here, we reveal a molecular mechanism of stress response attenuation during the onset of flowering in Arabidopsis (Arabidopsis thaliana). We show that Arabidopsis MORF-RELATED GENE (MRG) proteins, components of the NuA4 histone acetyltransferase complex that bind trimethylated-lysine 36 in histone H3 (H3K36me3), function as a chromatin switch on the floral integrator SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) to coordinate flowering initiation with plant responsiveness to hostile environments. MRG proteins are required to activate SOC1 expression during flowering induction by promoting histone H4 acetylation. In turn, SOC1 represses a broad array of genes that mediate abiotic stress responses. We propose that during the transition from vegetative to reproductive growth, the MRG-SOC1 module constitutes a central hub in a mechanism that tunes down stress responses to enhance the reproductive success and plant fitness at the expense of costly efforts for adaptation to challenging environments.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Cromosómicas no Histona/genética , Flores/crecimiento & desarrollo , Proteínas de Dominio MADS/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Flores/genética , Proteínas de Dominio MADS/metabolismo , Estrés Fisiológico
5.
Plant Cell Environ ; 45(5): 1428-1441, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35037269

RESUMEN

Epigenetic regulation is necessary for optimal organism development and preservation of gene expression profiles in the cell. In plants, the trimethylation of histone H3 lysine 27 (H3K27me3) is a silencing epigenetic mark relevant for developmental transitions like flowering. The floral transition is a key agronomic trait; however, the epigenetic mechanisms of flowering time regulation in crops remain poorly understood. Here we study the Jumonji H3K27me3 demethylases BraA.REF6 and BraA.ELF6 in Brassica rapa. Phenotypic characterization of novel mutant lines and genome-wide H3K27me3 chromatin immunoprecipitation and transcriptomic analyses indicated that BraA.REF6 plays a greater role than BraA.ELF6 in fine-tuning H3K27me3 levels. In addition, we found that braA.elf6 mutants were early flowering due to high H3K27me3 levels at B. rapa homologs of the floral repressor FLC. Unlike mutations in Arabidopsis thaliana, braA.ref6 mutants were late flowering without altering the expression of B. rapa FLC genes. Remarkably, we found that BraA.REF6 regulated a number of gibberellic acid (GA) biosynthetic genes, including a homolog of GA1, and that GA-treatment complemented the late flowering mutant phenotype. This study increases our understanding of the epigenetic regulation of flowering time in B. rapa, highlighting conserved and distinct regulatory mechanisms between model and crop species.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Brassica rapa , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Brassica rapa/metabolismo , Epigénesis Genética , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Histonas/metabolismo
6.
Plant Cell ; 31(2): 537-554, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30696706

RESUMEN

The control of precursor-messenger RNA (pre-mRNA) splicing is emerging as an important layer of regulation in plant responses to endogenous and external cues. In eukaryotes, pre-mRNA splicing is governed by the activity of a large ribonucleoprotein machinery, the spliceosome, whose protein core is composed of the Sm ring and the related Sm-like 2-8 complex. Recently, the Arabidopsis (Arabidopsis thaliana) Sm-like 2-8 complex has been characterized. However, the role of plant Sm proteins in pre-mRNA splicing remains largely unknown. Here, we present the functional characterization of Sm protein E1 (SME1), an Arabidopsis homolog of the SME subunit of the eukaryotic Sm ring. Our results demonstrate that SME1 regulates the spliceosome activity and that this regulation is controlled by the environmental conditions. Indeed, depending on the conditions, SME1 ensures the efficiency of constitutive and alternative splicing of selected pre-mRNAs. Moreover, missplicing of most targeted pre-mRNAs leads to the generation of nonsense-mediated decay signatures, indicating that SME1 also guarantees adequate levels of the corresponding functional transcripts. In addition, we show that the selective function of SME1 in ensuring appropriate gene expression patterns through the regulation of specific pre-mRNA splicing is essential for adequate plant development and adaptation to freezing temperatures. These findings reveal that SME1 plays a critical role in plant development and interaction with the environment by providing spliceosome activity specificity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Empalmosomas/metabolismo , Empalme Alternativo/genética , Empalme Alternativo/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Precursores del ARN/genética , Precursores del ARN/metabolismo , Empalme del ARN/genética , Empalme del ARN/fisiología , Empalmosomas/genética , Estrés Fisiológico/genética , Estrés Fisiológico/fisiología
7.
Plant J ; 100(2): 343-356, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31257648

RESUMEN

Flowering time is a relevant agronomic trait because is crucial for the optimal formation of seeds and fruits. The genetic pathways controlling this developmental phase transition have been studied extensively in Arabidopsis thaliana. These pathways converge in a small number of genes including FT, the so-called florigen, which integrates environmental cues like ambient temperature. Nevertheless, detailed and functional studies about flowering time in Brassica crops are scarce. Here we study the role of the FT Brassica rapa homologues and the effect of high ambient temperature on flowering time in this crop. Phenotypic characterization and gene-expression analyses suggest that BraA.FT.a (BraA02g016700.3C) is decisive for initiating floral transition; consequently, braA.ft.a loss-of-function and hypomorphic mutations result in late flowering phenotypes. We also show that high ambient temperature delays B. rapa floral transition by reducing BraA.FT.a expression. Strikingly, these expression changes are associated with increased histone H2A.Z levels and less accessible chromatin configuration of the BraA.FT.a locus at high ambient temperature. Interestingly, increased H2A.Z levels at high ambient temperature were also observed for other B. rapa temperature-responsive genes. Previous reports delimited that Arabidopsis flowers earlier at high ambient temperature due to reduced H2A.Z incorporation in the FT locus. Our data reveal a conserved chromatin-mediated mechanism in B. rapa and Arabidopsis in which the incorporation of H2A.Z at FT chromatin in response to warm ambient temperature results in different flowering time responses. This work will help to develop improved Brassica crop varieties with flowering time requirements to cope with global warming. OPEN RESEARCH BADGES: This article has earned an Open Materials Badge for making publicly available the components of the research methodology needed to reproduce the reported procedure and analysis. Methods are available at protocols.iodx.doi.org/10.17504/protocols.io.zmff43n.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Brassica rapa/metabolismo , Flores/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Temperatura
8.
Plant J ; 96(2): 300-315, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30003619

RESUMEN

Pollen development is a crucial step in higher plants, which not only makes possible plant fertilization and seed formation, but also determines fruit quality and yield in crop species. Here, we reported a tomato T-DNA mutant, pollen deficient1 (pod1), characterized by an abnormal anther development and the lack of viable pollen formation, which led to the production of parthenocarpic fruits. Genomic analyses and the characterization of silencing lines proved that pod1 mutant phenotype relies on the tomato SlMED18 gene encoding the subunit 18 of Mediator multi-protein complex involved in RNA polymerase II transcription machinery. The loss of SlMED18 function delayed tapetum degeneration, which resulted in deficient microspore development and scarce production of viable pollen. A detailed histological characterization of anther development proved that changes during microgametogenesis and a significant delay in tapetum degeneration are associated with a high proportion of degenerated cells and, hence, should be responsible for the low production of functional pollen grains. Expression of pollen marker genes indicated that SlMED18 is essential for the proper transcription of a subset of genes specifically required to pollen formation and fruit development, revealing a key role of SlMED18 in male gametogenesis of tomato. Additionally, SlMED18 is able to rescue developmental abnormalities of the Arabidopsis med18 mutant, indicating that most biological functions have been conserved in both species.


Asunto(s)
Complejo Mediador/metabolismo , Solanum lycopersicum/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Gametogénesis en la Planta/genética , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/fisiología , Complejo Mediador/genética , Mutación , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polen/genética , Polen/crecimiento & desarrollo , Polen/fisiología
9.
New Phytol ; 222(4): 1893-1908, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30742710

RESUMEN

Posttranslational histone modifications and the dynamics of histone variant H2A.Z are key mechanisms underlying the floral transition. In yeast, SWR1-C and NuA4-C mediate the deposition of H2A.Z and the acetylation of histone H4, H2A and H2A.Z, respectively. Yaf9 is a subunit shared by both chromatin-remodeling complexes. The significance of the two Arabidopsis YAF9 homologues, YAF9A and YAF9B, is unknown. To get an insight into the role of Arabidopsis YAF9 proteins in plant developmental responses, we followed physiological, genetic, genomic, epigenetic, proteomics and cell biology approaches. Our data revealed that YAF9A and YAF9B are histone H3 readers with unequally redundant functions. Double mutant yaf9a yaf9b plants display pleiotropic developmental phenotypic alterations as well as misregulation of a wide variety of genes. We demonstrated that YAF9 proteins regulate flowering time by both FLC-dependent and independent mechanisms that work in parallel with SWR1-C. Interestingly, we show that YAF9A binds FLC chromatin and that YAF9 proteins regulate FLC expression by modulating the acetylation levels of H2A.Z and H4 but not H2A.Z deposition. Our work highlights the key role exerted by YAF9 homologues in the posttranslational modification of canonical histones and variants that regulate gene expression in plants to control development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cromatina/metabolismo , Flores/fisiología , Histonas/metabolismo , Proteínas de Dominio MADS/metabolismo , Complejos Multiproteicos/metabolismo , Acetilación , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proliferación Celular , Flores/genética , Regulación de la Expresión Génica de las Plantas , Mutación/genética , Fenotipo , Hojas de la Planta/citología , Hojas de la Planta/metabolismo , Dominios Proteicos , Saccharomyces cerevisiae/metabolismo
10.
Plant Physiol ; 173(3): 1735-1749, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28153919

RESUMEN

Faithful transmission of the genetic information is essential in all living organisms. DNA replication is therefore a critical step of cell proliferation, because of the potential occurrence of replication errors or DNA damage when progression of a replication fork is hampered causing replicative stress. Like other types of DNA damage, replicative stress activates the DNA damage response, a signaling cascade allowing cell cycle arrest and repair of lesions. The replicative DNA polymerase ε (Pol ε) was shown to activate the S-phase checkpoint in yeast in response to replicative stress, but whether this mechanism functions in multicellular eukaryotes remains unclear. Here, we explored the genetic interaction between Pol ε and the main elements of the DNA damage response in Arabidopsis (Arabidopsis thaliana). We found that mutations affecting the polymerase domain of Pol ε trigger ATR-dependent signaling leading to SOG1 activation, WEE1-dependent cell cycle inhibition, and tolerance to replicative stress induced by hydroxyurea, but result in enhanced sensitivity to a wide range of DNA damaging agents. Using knock-down lines, we also provide evidence for the direct role of Pol ε in replicative stress sensing. Together, our results demonstrate that the role of Pol ε in replicative stress sensing is conserved in plants, and provide, to our knowledge, the first genetic dissection of the downstream signaling events in a multicellular eukaryote.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , ADN Polimerasa II/genética , Replicación del ADN , Arabidopsis/enzimología , Proteínas de Arabidopsis/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/genética , ADN Polimerasa II/metabolismo , ADN de Plantas/genética , ADN de Plantas/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Hidroxiurea/farmacología , Microscopía Fluorescente , Modelos Genéticos , Mutación , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Plantas Modificadas Genéticamente , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
11.
Plant Cell ; 27(9): 2437-54, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26373454

RESUMEN

The regulation of CONSTANS (CO) gene expression is crucial to accurately measure changes in daylength, which influences flowering time in Arabidopsis thaliana. CO expression is under both transcriptional and posttranslational control mechanisms. We previously showed that the E3 ubiquitin ligase HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES1 (HOS1) physically interacts with CO in Arabidopsis. This interaction is required to precisely modulate the timing of CO accumulation and, consequently, to maintain low levels of FLOWERING LOCUS T expression during the first part of the day. The data presented here demonstrate that HOS1 is involved in the red light-mediated degradation of CO that takes place in the early stages of the daylight period. Our results show that phytochrome B (phyB) is able to regulate flowering time, acting in the phloem companion cells, as previously described for CO and HOS1. Moreover, we reveal that phyB physically interacts with HOS1 and CO, indicating that the three proteins may be present in a complex in planta that is required to coordinate a correct photoperiodic response in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Unión al ADN/metabolismo , Flores/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Fitocromo B/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas , Péptidos y Proteínas de Señalización Intracelular/genética , Luz , Mutación , Proteínas Nucleares/genética , Floema/metabolismo , Fotoperiodo , Fitocromo B/genética , Plantas Modificadas Genéticamente , Temperatura , Factores de Transcripción/genética
12.
Nucleic Acids Res ; 44(12): 5597-614, 2016 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-26980282

RESUMEN

Arabidopsis ESD7 locus encodes the catalytic subunit of the DNA Pol ϵ involved in the synthesis of the DNA leading strand and is essential for embryo viability. The hypomorphic allele esd7-1 is viable but displays a number of pleiotropic phenotypic alterations including an acceleration of flowering time. Furthermore, Pol ϵ is involved in the epigenetic silencing of the floral integrator genes FT and SOC1, but the molecular nature of the transcriptional gene silencing mechanisms involved remains elusive. Here we reveal that ESD7 interacts with components of the PRC2 such as CLF, EMF2 and MSI1, and that mutations in ESD7 cause a decrease in the levels of the H3K27me3 mark present in the chromatin of FT and SOC1 We also demonstrate that a domain of the C-terminal region of ESD7 mediates the binding to the different PRC2 components and this interaction is necessary for the proper recruitment of PRC2 to FT and SOC1 chromatin. We unveil the existence of interplay between the DNA replication machinery and the PcG complexes in epigenetic transcriptional silencing. These observations provide an insight into the mechanisms ensuring that the epigenetic code at pivotal loci in developmental control is faithfully transmitted to the progeny of eukaryotic cells.


Asunto(s)
Proteínas de Arabidopsis/genética , ADN Polimerasa II/genética , Epigénesis Genética , Lipocalinas/genética , Proteínas de Dominio MADS/genética , Arabidopsis/enzimología , Arabidopsis/genética , Cromatina/genética , Replicación del ADN/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , N-Metiltransferasa de Histona-Lisina/genética , Mutación , Complejo Represivo Polycomb 2 , Proteínas Represoras/genética , Transcripción Genética
13.
Plant Cell Environ ; 40(10): 2393-2405, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28770581

RESUMEN

The Arabidopsis protein EARLY BOLTING IN SHORT DAYS (EBS), a plant-specific transcriptional regulator, is involved in the control of flowering time by repressing the floral integrator FT. The EBS protein binds the H3K4me3 histone mark and interacts with histone deacetylases to modulate gene expression. Here, we show that EBS also participates in the regulation of seed dormancy. ebs mutations cause a reduction in seed dormancy, and the concurrent loss of function of the EBS homologue SHORT LIFE (SHL) enhances this dormancy alteration. Transcriptomic analyses in ebs mutant seeds uncovered the misregulation of several regulators of seed dormancy including the MADS box gene AGAMOUS-LIKE67 (AGL67). AGL67 interacts genetically with EBS in seed dormancy regulation, indicating that both loci act in the same pathway. Interestingly, EBS functions independently of the master regulator gene of dormancy DELAY OF GERMINATION 1 (DOG1) and other genes encoding chromatin remodelling factors involved in the control of seed dormancy. Altogether, these data show that EBS is a central repressor of germination during seed dormancy and that SHL acts redundantly with EBS in the control of this developmental process. Our observations suggest that a tightly regulated crosstalk among histone modifications is necessary for a proper control of seed dormancy.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Homeodominio/metabolismo , Latencia en las Plantas , Semillas/fisiología , Ácido Abscísico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Germinación/genética , Proteínas de Homeodominio/genética , Mutación/genética , Fenotipo , Latencia en las Plantas/genética , Semillas/genética
14.
Plant Cell ; 26(10): 3922-38, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25281686

RESUMEN

The interplay among histone modifications modulates the expression of master regulatory genes in development. Chromatin effector proteins bind histone modifications and translate the epigenetic status into gene expression patterns that control development. Here, we show that two Arabidopsis thaliana paralogs encoding plant-specific proteins with a plant homeodomain (PHD) motif, SHORT LIFE (SHL) and EARLY BOLTING IN SHORT DAYS (EBS), function in the chromatin-mediated repression of floral initiation and play independent roles in the control of genes regulating flowering. Previous results showed that repression of the floral integrator FLOWERING LOCUS T (FT) requires EBS. We establish that SHL is necessary to negatively regulate the expression of SUPPRESSOR OF OVEREXPRESSION OF CO1 (SOC1), another floral integrator. SHL and EBS recognize di- and trimethylated histone H3 at lysine 4 and bind regulatory regions of SOC1 and FT, respectively. These PHD proteins maintain an inactive chromatin conformation in SOC1 and FT by preventing high levels of H3 acetylation, bind HISTONE DEACETYLASE6, and play a central role in regulating flowering time. SHL and EBS are widely conserved in plants but are absent in other eukaryotes, suggesting that the regulatory module mediated by these proteins could represent a distinct mechanism for gene expression control in plants.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Cromatina/genética , Flores/genética , Proteínas de Homeodominio/genética , Proteínas Nucleares/genética , Acetilación , Secuencia de Aminoácidos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cromatina/metabolismo , Flores/crecimiento & desarrollo , Flores/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Proteínas de Homeodominio/metabolismo , Lisina/metabolismo , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Metilación , Datos de Secuencia Molecular , Mutación , Proteínas Nucleares/metabolismo , Fotoperiodo , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Factores de Tiempo
15.
Plant J ; 83(1): 96-109, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25943140

RESUMEN

Eukaryotic organisms have canonical histones and a number of histone variants that perform specialized functions and confer particular structural properties to the nucleosomes that contain them. The histone H2A family comprises several variants, with H2A.Z being the most evolutionarily conserved. This variant is essential in eukaryotes and has emerged as a key player in chromatin function, performing an essential role in gene transcription and genome stability. During recent years, biochemical, genetic and genomic studies have begun to uncover the role of several ATP-dependent chromatin-remodeling complexes in H2A.Z deposition and removal. These ATPase complexes are widely conserved from yeast to mammals. In Arabidopsis there are homologs for most of the subunits of these complexes, and their functions are just beginning to be unveiled. In this review, we discuss the major contributions made in relation to the biology of the H2A.Z in plants, and more specifically concerning the function of this histone variant in the transition from vegetative to reproductive development. Recent advances in the understanding of the molecular mechanisms underlying the H2A.Z-mediated modulation of the floral transition, and thermosensory flowering responses in particular, are discussed. The emerging picture shows that plants contain chromatin-remodeling complexes related to those involved in modulating the dynamics of H2A.Z in other eukaryotes, but their precise biochemical nature remains elusive.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Cromatina/metabolismo , Flores/fisiología , Histonas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ensamble y Desensamble de Cromatina , Células Eucariotas , Regulación de la Expresión Génica , Histonas/genética , Nucleosomas
16.
Plant Cell ; 25(8): 2944-57, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23922208

RESUMEN

Stress constantly challenges plant adaptation to the environment. Of all stress types, arsenic was a major threat during the early evolution of plants. The most prevalent chemical form of arsenic is arsenate, whose similarity to phosphate renders it easily incorporated into cells via the phosphate transporters. Here, we found that arsenate stress provokes a notable transposon burst in plants, in coordination with arsenate/phosphate transporter repression, which immediately restricts arsenate uptake. This repression was accompanied by delocalization of the phosphate transporter from the plasma membrane. When arsenate was removed, the system rapidly restored transcriptional expression and membrane localization of the transporter. We identify WRKY6 as an arsenate-responsive transcription factor that mediates arsenate/phosphate transporter gene expression and restricts arsenate-induced transposon activation. Plants therefore have a dual WRKY-dependent signaling mechanism that modulates arsenate uptake and transposon expression, providing a coordinated strategy for arsenate tolerance and transposon gene silencing.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arseniatos/metabolismo , Elementos Transponibles de ADN/genética , Factores de Transcripción/metabolismo , Arabidopsis/efectos de los fármacos , Arseniatos/toxicidad , Secuencia de Bases , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Histonas/metabolismo , Lisina/metabolismo , Datos de Secuencia Molecular , Fenotipo , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Proteínas Represoras/metabolismo
17.
Plant J ; 77(6): 944-53, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24456507

RESUMEN

Transcription factors (TFs) are key regulators of gene expression in all organisms. In eukaryotes, TFs are often represented by functionally redundant members of large gene families. Overexpression might prove a means to unveil the biological functions of redundant TFs; however, constitutive overexpression of TFs frequently causes severe developmental defects, preventing their functional characterization. Conditional overexpression strategies help to overcome this problem. Here, we report on the TRANSPLANTA collection of Arabidopsis lines, each expressing one of 949 TFs under the control of a ß-estradiol-inducible promoter. Thus far, 1636 independent homozygous lines, representing an average of 2.6 lines for every TF, have been produced for the inducible expression of 634 TFs. Along with a GUS-GFP reporter, randomly selected TRANSPLANTA lines were tested and confirmed for conditional transgene expression upon ß-estradiol treatment. As a proof of concept for the exploitation of this resource, ß-estradiol-induced proliferation of root hairs, dark-induced senescence, anthocyanin accumulation and dwarfism were observed in lines conditionally expressing full-length cDNAs encoding RHD6, WRKY22, MYB123/TT2 and MYB26, respectively, in agreement with previously reported phenotypes conferred by these TFs. Further screening performed with other TRANSPLANTA lines allowed the identification of TFs involved in different plant biological processes, illustrating that the collection is a powerful resource for the functional characterization of TFs. For instance, ANAC058 and a TINY/AP2 TF were identified as modulators of ABA-mediated germination potential, and RAP2.10/DEAR4 was identified as a regulator of cell death in the hypocotyl-root transition zone. Seeds of TRANSPLANTA lines have been deposited at the Nottingham Arabidopsis Stock Centre for further distribution.


Asunto(s)
Arabidopsis/genética , Plantas Modificadas Genéticamente , Factores de Transcripción/metabolismo , Activación Transcripcional/efectos de los fármacos , Ácido Abscísico/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , ADN Complementario/genética , Estradiol/metabolismo , Expresión Génica , Genes Reporteros , Vectores Genéticos , Germinación , Fenotipo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Plantones/genética , Plantones/metabolismo , Semillas/genética , Semillas/metabolismo , Factores de Transcripción/genética , Transgenes
18.
Plant Cell ; 24(3): 982-99, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22408073

RESUMEN

The Arabidopsis thaliana early in short days6 (esd6) mutant was isolated in a screen for mutations that accelerate flowering time. Among other developmental alterations, esd6 displays early flowering in both long- and short-day conditions. Fine mapping of the mutation showed that the esd6 phenotype is caused by a lesion in the high expression of osmotically responsive genes1 (HOS1) locus, which encodes a RING finger-containing E3 ubiquitin ligase. The esd6/hos1 mutation causes decreased flowering locus C expression and requires CONSTANS (CO) protein for its early flowering phenotype under long days. Moreover, CO and HOS1 physically interact in vitro and in planta, and HOS1 regulates CO abundance, particularly during the daylight period. Accordingly, hos1 causes a shift in the regular long-day pattern of expression of flowering locus T (FT) transcript, starting to rise 4 h after dawn in the mutant. In addition, HOS1 interacts synergistically with constitutive photomorphogenic1, another regulator of CO protein stability, in the regulation of flowering time. Taken together, these results indicate that HOS1 is involved in the control of CO abundance, ensuring that CO activation of FT occurs only when the light period reaches a certain length and preventing precocious flowering in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Proteínas de Unión al ADN/metabolismo , Flores/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Fotoperiodo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas , Péptidos y Proteínas de Señalización Intracelular/genética , Mutación , Proteínas Nucleares/genética , Factores de Transcripción/genética
19.
Nat Genet ; 36(2): 162-6, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14745447

RESUMEN

The initiation of flowering in plants is controlled by environmental and endogenous signals. Molecular analysis of this process in Arabidopsis thaliana indicates that environmental control is exerted through the photoperiod and vernalization pathways, whereas endogenous signals regulate the autonomous and gibberellin pathways. The vernalization and autonomous pathways converge on the negative regulation of FLC, a gene encoding a MADS-box protein that inhibits flowering. We cloned FVE, a component of the autonomous pathway that encodes AtMSI4, a putative retinoblastoma-associated protein. FVE interacted with retinoblastoma protein in immunoprecipitation assays, and FLC chromatin was enriched in acetylated histones in fve mutants. We conclude that FVE participates in a protein complex repressing FLC transcription through a histone deacetylation mechanism. Our data provide genetic evidence of a new developmental function of these conserved proteins and identify a new genetic mechanism in the regulation of flowering.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Copas de Floración/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/metabolismo , Frío , Copas de Floración/genética , Copas de Floración/metabolismo , Datos de Secuencia Molecular , Proteína de Retinoblastoma/genética , Factores de Tiempo
20.
Nat Plants ; 8(9): 1052-1063, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36038656

RESUMEN

Chloroplast biogenesis is crucial in plant development, as it is essential for the transition to autotrophic growth. This process is light-induced and relies on the orchestrated transcription of nuclear and plastid genes, enabling the effective assembly and regulation of the photosynthetic machinery. Here we reveal a new regulation level for this process by showing the involvement of chromatin remodelling in the nuclear control of plastid gene expression for proper chloroplast biogenesis and function. The two Arabidopsis homologues of yeast EPL1 protein, components of the NuA4 histone acetyltransferase complex, are essential for plastid transcription and correct chloroplast development and performance. We show that EPL1 proteins are light-regulated and necessary for concerted expression of nuclear genes encoding most components of chloroplast transcriptional machinery, directly mediating H4K5ac deposition at these loci and promoting the expression of plastid genes required for chloroplast biogenesis. These data unveil a NuA4-mediated mechanism regulating chloroplast biogenesis that links the transcription of nuclear and plastid genomes during chloroplast development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Saccharomyces cerevisiae , Acetilación , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Efrina-A1/genética , Efrina-A1/metabolismo , Regulación de la Expresión Génica de las Plantas , Histona Acetiltransferasas/metabolismo , Plastidios/genética , Plastidios/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA