Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Anal Bioanal Chem ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39028344

RESUMEN

Free iron in human serum or non-transferrin-bound iron (NTBI) can generate free radicals and lead to oxidative damage. Moreover, it is highly toxic to various tissues and a vital biomarker related to the iron-loading status of thalassemia and Alzheimer's patients. In NTBI in healthy individuals, NTBI levels are typically less than 1 µM; current NTBI analysis usually requires advanced instrumentation and many-step sample pretreatment. To address this issue, we employed our invented BODIPY derivative, BODIPY-PH, as a fluorescence probe and trapped it onto the microcentrifuge tube lid using tapioca starch. The fluorescence intensity of BODIPY-PH increased with increasing NTBI concentration (turn-on). The developed portable reaction chamber facilitates rapid analysis (∼5 min) using small sample volumes (10 µL sample in a total volume of 600 µL). Under optimum conditions, using the sample-developed portable fluorescence device and fluorescence spectrometer, we achieved impressive limits of detection (LOD) of 0.003 and 0.0015 µM, respectively. Furthermore, the developed sensors show relatively high selectivity toward Fe3+ over other metal ions and biomolecules (i.e., Fe2+, Cr3+, Cu2+, and glucose). The sensor performance in serum samples of thalassemia patients exhibited no significant difference compared to the labeled value (obtained from standard methods). Overall, the developed fluorescence sensor is suitable for determining NTBI and offers high sensitivity, high selectivity, and a short incubation time (5 min). Moreover, the method requires a limited number of reagents, is simple to use, and uses low-cost equipment to determine NTBI in human serum samples.

2.
Mikrochim Acta ; 191(7): 402, 2024 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-38886225

RESUMEN

A microscale colorimetric assay was designed and implemented for the simultaneous determination of clinical chemistry tests measuring six parameters, including glucose (GLU), total protein (TP), human serum albumin (HSA), uric acid (UA), total cholesterol (TC), and triglycerides (TGs) in plasma samples. The test kit was fabricated using chromogenic reagents, comprising specific enzymes and binding dyes. Multiple colors that appeared on the reaction well when it was exposed to each analyte were captured by a smartphone and processed by the homemade Check6 application, which was designed as a colorimetric analyzer and simultaneously generated a report that assessed test results against gender-dependent reference ranges. Six blood checkup parameters for four plasma samples were conducted within 12 min on one capture picture. The assay achieved wide working concentration ranges of 10.45-600 mg dL-1 GLU, 1.39-10.0 g dL-1 TP, 1.85-8.0 g dL-1 HSA, 0.86-40.0 mg dL-1 UA, 11.28-600 mg dL-1 TC, and 11.93-400 mg dL-1 TGs. The smartphone-based assay was accurate with recoveries of 93-108% GLU, 93-107% TP, 92-107% HSA, 93-107% UA, 92-107% TC, and 99-113% TGs. The coefficient of variation for intra-assay and inter-assay precision ranged from 3.2-5.2% GLU, 4.6-5.3% TP, 4.3-5.3% HSA, 2.8-6.6% UA, 2.7-6.5% TC, and 1.1-3.9% TGs. This assay demonstrated remarkable accuracy in quantifying the concentration-dependent color intensity of the plasma, even in the presence of other suspected interferences commonly present in serum. The results of the proposed method correlated well with results determined by the microplate spectrophotometer (R2 > 0.95). Measurement of these six clinical chemistry parameters in plasma using a microscale colorimetric test kit coupled with the Check6 smartphone application showed potential for real-time point-of-care analysis, providing cost-effective and rapid assays for health checkup testing.


Asunto(s)
Colorimetría , Teléfono Inteligente , Humanos , Colorimetría/métodos , Colorimetría/instrumentación , Femenino , Masculino , Glucemia/análisis , Sistemas de Atención de Punto , Colesterol/sangre , Ácido Úrico/sangre , Triglicéridos/sangre , Pruebas en el Punto de Atención , Albúmina Sérica Humana/análisis
3.
J Fluoresc ; 33(2): 565-574, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36454426

RESUMEN

The fluorescence-based portable device for the determination of lead (Pb2+) and formalin (FA) in food samples by using Nitrogen-doped carbon dots (N-CDs) as a fluorescence probe was developed. The proposed approach, Pb2+, and FA were determined based on the photo-induced electron transfer (PET) mechanism and the silver mirror reaction. The fluorescence intensity of the N-CDs decreased with the increase of Pb2+ concentration and increased with the increasing FA concentration. The fluorescence intensity of N-CDs after the reactions were measured by a filter-free fluorometer platform using a commercial camera module and a Raspberry Pi, a compact computer, as a detector and processor. The experimental results were obtained using control samples with known Pb2+ and FA concentrations in the 0.01-10 mg L- 1 and 25-150 mg L- 1, respectively. The proposed approach is simple, low-cost, and accurate for the on-site monitoring of Pb2+ and FA in various food samples. Of utmost importance, the proposed approach is expected to be a pioneering model for the future development of other analytes with a broad range of practical applications.


Asunto(s)
Puntos Cuánticos , Carbono , Nitrógeno , Plomo , Colorantes Fluorescentes , Espectrometría de Fluorescencia/métodos
4.
Anal Bioanal Chem ; 415(18): 4603-4614, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37227457

RESUMEN

Humans mainly ingest arsenic through contaminated drinking water, causing serious health effects. The World Health Organization (WHO) has set the permissible limit of arsenic in drinking water at 0.01 mg/L and concentrations should be regularly determined to ensure a safe supply. In this study, a leucomalachite green (LMG) pectin-based hydrogel reagent was prepared that selectively reacted with arsenic over other metals including manganese, copper, lead, iron, and cadmium. Pectin, optimized at 0.2% (w/v), was used to form the hydrogel matrix. Arsenic reacts with potassium iodate in sodium acetate buffer medium to liberate iodine that then oxidizes LMG entrapped in pectin hydrogel to form a blue product. Camera-based photometry/ImageJ software was used to monitor the color intensity, eliminating the need for a spectrophotometer. The intensity of gray in the red channel was chosen as optimal for the red, green, and blue (RGB) analysis. The colorimetric assay revealed a dynamic detection range toward arsenic solution standards of 0.003-1 mg/L, covering the WHO recommendation of below 0.01 mg/L arsenic in drinking water. The assay gave recovery rates between 97 and 109% at a 95% confidence interval, with precision of 4-9%. Concentrations of arsenic in the spiked drinking water, tap water, and pond water samples monitored by the developed method agreed well with conventional inductively coupled plasma optical emission spectrometry. This assay showed promise for on-site quantitative analysis of arsenic in water samples.


Asunto(s)
Arsénico , Agua Potable , Contaminantes Químicos del Agua , Humanos , Arsénico/análisis , Agua Potable/análisis , Colorimetría/métodos , Indicadores y Reactivos , Hidrogeles , Pectinas , Espectrofotometría , Contaminantes Químicos del Agua/análisis
5.
Anal Chem ; 94(40): 13785-13794, 2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36153983

RESUMEN

Vanadium-doped porous Co3O4 (V-porous Co3O4) was synthesized via a simple soft-templating method and used as a superior peroxidase mimic for the simultaneous colorimetric determination of glucose and total cholesterol (TC) in whole blood samples on a two-dimensional microfluidic paper-based analytical device (2D-µPAD). The large surface area and the presence of two metals in V-porous Co3O4 contributed to its excellent catalytic activity toward 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and 3,3',5,5'- tetramethylbenzidine (TMB) with Michaelis-Menten constants (KM) of 0.1301 and 0.0141 mM, respectively. The 2D-µPAD was fabricated using simple wax screen-printing and cutting techniques. The colorimetric reactions of both glucose and TC on 2D-µPAD were simultaneously performed by adding a single drop of a whole blood sample on the sample zone made of the LF1 membrane. After the enzymatic reactions, the generated hydrogen peroxide (H2O2) was oxidized by V-porous Co3O4 to produce hydroxy radicals (•OH), inducing ABTS and TMB to generate colored products. The generated H2O2 was proportional to the intensities of the green and blue products of the glucose and TC systems, respectively. The developed 2D-µPAD required a short analysis time (∼5 min) with small volumes of samples (15 µL of whole blood) whereby no sample preparation was needed. Owing to several advantages including simplicity, low cost, long-term stability, and simultaneous readout, the novel V-porous Co3O4 coupled with 2D-µPAD proved to be promising for practical uses as a pioneering portable device for the determination of glucose, TC, and other important biomarkers without the need of technical supports.


Asunto(s)
Glucosa , Peróxido de Hidrógeno , Bencidinas , Benzotiazoles , Colesterol , Cobalto , Colorimetría/métodos , Glucosa/análisis , Peróxido de Hidrógeno/análisis , Óxidos , Peroxidasa , Porosidad , Ácidos Sulfónicos , Vanadio
6.
Anal Chem ; 94(48): 16692-16700, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36409323

RESUMEN

Nanoscale imprinting significantly increases the specific surface area and recognition capabilities of a molecularly imprinted polymer by improving accessibility to analytes, binding kinetics, and template removal. Herein, we present a novel synthetic route for a dual molecularly imprinted polymer (dual-MIP) of the carcinogen oxidative stress biomarkers 3-nitrotyrosine (3-NT) and 4-nitroquinolin-N-oxide (4-NQO) as coatings on graphene quantum-dot capped gold nanoparticles (GQDs-AuNPs). The dual-MIP was successfully coated on the GQDs-AuNPs core via a (3-mercaptopropyl) trimethoxysilane (MPTMS) linkage and copolymerization with the 3-aminopropyltriethoxysilane (APTMS) functional monomer. In addition, we fabricated a facile and compact three-dimensional electrochemical paper-based analytical device (3D-ePAD) for the simultaneous determination of the dual biomarkers using a GQDs-AuNPs@dual-MIP-modified graphene electrode (GQDs-AuNPs@dual-MIP/SPGE). The developed dual-MIP device provides greatly enhanced electrochemical signal amplification due to the improved electrode-specific surface area, electrocatalytic activity, and the inclusion of large numbers of dual-imprinted sites for 3-NT and 4-NQO detection. Quantitative analysis used square wave voltammetry, with an oxidation current appearing at -0.10 V for 4-NQO and +0.78 V for 3-NT. The dual-MIP sensor revealed excellent linear dynamic ranges of 0.01 to 500 µM for 3-NT and 0.005 to 250 µM for 4-NQO, with detection limits in nanomolar levels for both biomarkers. Furthermore, the dual-MIP sensor for the simultaneous determination of 3-NT and 4-NQO provides high accuracy and precision, with no evidence of interference from urine, serum, or whole blood samples.


Asunto(s)
Grafito , Nanopartículas del Metal , Impresión Molecular , Oro , Polímeros Impresos Molecularmente , Impresión Molecular/métodos , Técnicas Electroquímicas/métodos , Carcinógenos , Límite de Detección , Electrodos , Biomarcadores , Estrés Oxidativo , Pruebas en el Punto de Atención
7.
Mikrochim Acta ; 189(2): 72, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35075569

RESUMEN

Nitrogen-doped carbon dots/Ni-MnFe-layered double hydroxides (N-CDs/Ni-MnFe-LDHs) are demonstrated as superior peroxidase mimic antibody labels alternative to horseradish peroxidase (HRP) in an immunoassay, potentially overcoming some of the inherent disadvantages of HRP and other enzyme mimicking nanomaterials. They revealed efficient peroxidase-like activity and catalyzed the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to form the intense blue product (at 620 nm) in the presence of hydrogen peroxide (H2O2). Using low-density lipoprotein (LDL) as a model target, an ultra-low limit of detection (0.0051 mg/dL) and a linear range of 0.0625-0.750 mg/dL were achieved, exhibiting higher sensitivity than the HRP-based immunoassay. Thus, the proposed N-CDs/Ni-MnFe-LDHs can be used as HRP mimicking analogs for developing highly sensitive colorimetric immunosensors for detection of biomarkers, as well as trace chemical analysis.


Asunto(s)
Compuestos Férricos/química , Lipoproteínas LDL/química , Compuestos de Manganeso/química , Nanoestructuras/química , Níquel/química , Nitrógeno/química , Puntos Cuánticos/química , Carbono , Inmunoensayo/métodos
8.
Anal Chem ; 93(18): 6989-6999, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33909416

RESUMEN

This work presents a simple hydrothermal synthesis of nitrogen-doped carbon dots (N-CDs), fabrication of microfluidic paper-based analytical device (µPAD), and their joint application for colorimetric determination of total cholesterol (TC) in human blood. The N-CDs were characterized by various techniques including transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and X-ray powder diffraction (XRD), and the optical and electronic properties of computational models were studied using the time-dependent density functional theory (TD-DFT). The characterization results confirmed the successful doping of nitrogen on the surface of carbon dots. The N-CDs exhibited high affinity toward 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)-diammonium salt (ABTS) with the Michaelis-Menten constant (KM) of 0.018 mM in a test for their peroxidase-like activity. Particularly, since hydrogen peroxide (H2O2) is the oxidative product of cholesterol in the presence of cholesterol oxidase, a sensitive and selective method of cholesterol detection was developed. Overall, the obtained results from TD-DFT confirm the strong adsorption of H2O2 on the graphitic N positions of the N-CDs. The laminated three-dimensional (3D)-µPAD featuring a 6 mm circular detection zone was fabricated using a simple wax screen printing technique. Classification of TC according to the clinically relevant criteria (healthy, <5.2 mM; borderline, 5.2-6.2 mM; and high risk, >6.2 mM) could be determined by the naked eye within 10 min by simple comparison using a color chart. Overall, the proposed colorimetric device serves as a low-cost, rapid, simple, sensitive, and selective alternative for TC detection in whole blood samples that is friendly to unskilled end users.


Asunto(s)
Carbono , Puntos Cuánticos , Humanos , Peróxido de Hidrógeno , Microfluídica , Nitrógeno , Peroxidasas
9.
Analyst ; 145(13): 4457-4466, 2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32378683

RESUMEN

This work presents the development and application of a novel analytical approach for the determination of acid and base concentrations by titration using a microfluidic thread-based analytical device (µTAD). This approach proved to be a simple to fabricate and to use, high precision, and cost-efficient means of acid-base quantification. The µTAD was fabricated by immobilizing the untreated cotton threads onto a wood frame, followed by pre-coating with an indicator (20 µL) and a primary standard solution (3 µL), and was tested using real samples including drug, food, and household products where 3 µL of each sample was dropped onto the center of a thread. Afterward, the distance of color change on the thread, easily observed and measured using the naked eye and a ruler, was used for analysis. The analysis using the µTAD, completed within 2 minutes and validated by the conventional titration, showed high accuracy and precision (RSD < 12.9%), good linearity ranges and low limit of quantification. The fabricated µTAD also remained stable for an extended period of time (>2 weeks under various storage conditions).

10.
Talanta ; 269: 125512, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38091737

RESUMEN

Measuring the levels of the biomarkers vanillylmandelic acid (VMA) and 5-Hydroxyindole-3-acetic acid (5-HIAA) is a valuable tool for clinical diagnosis not only of neuroblastoma or carcinoid syndrome, but also of essential hypertension, depression, migraine, and Tourette's syndrome. Herein, we explore using graphene quantum dots (GQDs) coated with molecularly imprinted polymer (MIP) as novel dual-imprinted sensors for selective and simultaneous determination of VMA and 5-HIAA in urine and plasma samples. The dual-MIP was successfully coated on the GQDs core via co-polymerization of (3-aminopropyl) triethoxysilane (APTES) and tetraethyl orthosilicate (TEOS), acting as functional and cross-linking monomers, respectively. In addition, we successfully created the dual imprinted VMA and 5-HIAA shell on the GQDs' core via a one-pot synthesis. We fabricated a facile and ready-to-use Origami three-dimensional electrochemical paper-based analytical device (Origami 3D-ePAD) for simultaneous determination of VMA and 5-HIAA using a GQDs@dual-MIP modified graphene electrode (GQDs@dual-MIP/SPGE). The Origami 3D-ePAD was designed to form a voltammetric cell on a three-layer foldable sheet with several advantages. For example, they were quickly assembled and enhanced the device's physical durability with the hydrophobic backup sheet. The developed dual imprinted Origami 3D-ePAD leads to substantially enhanced sensitivity and selectivity to electrochemical signal amplification generated from increasing the electrode-specific surface area, electrocatalytic activity, and the large numbers of dual imprinted sites for VMA and 5-HIAA detection. The synthetic recognition sites are highly selective for 5-HIAA and VMA molecules with an imprinting factor of 8.46 and 7.10, respectively. Quantitative analysis relying on square wave voltammetry reveals excellent linear dynamic ranges of around 0.001-25 µM, with detection limits of 0.023 nM for 5-HIAA and 0.047 nM for VMA (3Sb, n = 3). The Origami 3D-ePAD provides high accuracy and precision (i.e., recovery values of 5-HIAA ranged from 82.98 to 98.40 %, and VMA ranged from 83.28 to 104.39 %), and RSD less than 4.37 %) in urine and plasma samples without any evidence of interference. Hence, it is well suited as a facile and ready-to-use disposable device for point-of-care testing. It is straightforward, cost-effective, reproducible, and stable. Furthermore, it allows for rapid analysis (analysis time ∼20s) useful in medical diagnosis and other relevant fields.


Asunto(s)
Tumor Carcinoide , Grafito , Impresión Molecular , Puntos Cuánticos , Humanos , Puntos Cuánticos/química , Polímeros Impresos Molecularmente , Grafito/química , Ácido Vanilmandélico , Biomarcadores de Tumor , Límite de Detección , Ácido Hidroxiindolacético , Acetatos , Impresión Molecular/métodos , Técnicas Electroquímicas/métodos
11.
Food Chem ; 451: 139402, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38678650

RESUMEN

A colorimetric sensing method based on a paper-based vapor-test kit was successfully developed for the selective and sensitive real-time monitoring of formalin in food samples. The device was specifically designed to efficiently extract and detect formalin simultaneously. A microcentrifuge tube was used as the sample solution container, with the inner cap serving as the reaction and detection zone. Formalin was converted into gaseous formaldehyde through controlled heating, which was then extracted and collected on a filter paper coated with Nash's reagent. The color change on paper was used for formalin quantification using a smartphone for detection and image analysis. Under optimal conditions, our method provided a linear range of 0.5-75 mg L-1 with a detection limit of 0.11 mg L-1. This method effectively determined formalin in fresh food and vegetable samples, with recoveries ranging from 92 to 111%, demonstrating comparable accuracy to the standard method for practical food quality control and safety.


Asunto(s)
Colorimetría , Contaminación de Alimentos , Formaldehído , Papel , Formaldehído/química , Formaldehído/análisis , Contaminación de Alimentos/análisis , Colorimetría/instrumentación , Colorimetría/métodos , Verduras/química , Límite de Detección , Análisis de los Alimentos/instrumentación , Análisis de los Alimentos/métodos
12.
Anal Chim Acta ; 1263: 341303, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37225342

RESUMEN

The microfluidic paper-based analytical device (µPAD) platform is gaining attention as a low-cost, portable, and disposable detection tool. However, the limitations of traditional fabrication methods include poor reproducibility and the use of hydrophobic reagents. In this study, an in-house computer-controlled X-Y knife plotter and pen plotter were used to fabricate µPADs, resulting in a simple, more rapid, reproducible process that consumes less volume of reagents. The µPADs were laminated to increase mechanical strength and reduce sample evaporation during analysis. The resulting laminated paper-based analytical device (LPAD) was used to simultaneously determine glucose and total cholesterol in whole blood using the LF1 membrane as a sample zone. The LF1 membrane selectively separates plasma from whole blood by size exclusion and yields plasma for further enzymatic reaction steps while retaining blood cells and larger proteins. The i1 Pro 3 mini spectrophotometer directly detected color on the LPAD. The results were clinically relevant and in agreement with hospital methods, with a detection limit of 0.16 mmol L⁻1 for glucose and 0.57 mmol L⁻1 for TC. The LPAD retained color intensity after 60 days of storage. The LPAD offers a low-cost, high-performance option for chemical sensing devices and expands the applicability of markers for diagnosing whole blood samples.


Asunto(s)
Glucosa , Plasma , Reproducibilidad de los Resultados , Dispositivos Laboratorio en un Chip , Colesterol
13.
Talanta ; 254: 124202, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36549139

RESUMEN

Herein, we present a novel Origami 3D-µPAD for colorimetric carbaryl detection using a super-efficient catalyst, namely mesoporous silica-platinum nanoparticles coated with a molecularly imprinted polymer (MSN-PtNPs@MIP). Morphological and structural characterization reveals that coating MIP on the MSN-PtNPs surface significantly increases the selective area, leading to larger numbers of imprinting sites for improved sensitivity and selectivity in determining carbaryl. The as-prepared MSN-PtNPs@MIP was used for catalytic oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2. Carbaryl selectively binds to the cavities embedded on the MSN-PtNPs surface and subsequently inhibits TMB oxidation leading the color to change to light blue. The change of reaction color from dark blue to light blue depends on the concentration of carbaryl within the 3D-µPAD detection zone. This design integrates the advantages of highly efficient sample delivery through micro channels (top layer) and efficient partition/separation paths (bottom layer) of the cellulose substrate to achieve both improved detection sensitivity and selectivity. Assay on the Origami 3D-µPAD can determine carbaryl by ImageJ detection, over a dynamic range of 0.002-20.00 mg kg-1, with a very low limit of detection at 1.5 ng g-1. The developed 3D-µPAD exhibit high accuracy when applied to detect carbaryl in fruits, with satisfactory recoveries from 90.1% to 104.0% and relative differences from the reference HPLC values less than 5.0%. Furthermore, the fabricated Origami 3D-µPAD provides reliable durability and good reproducibility (3.19% RSD for fifteen devices).


Asunto(s)
Nanopartículas del Metal , Impresión Molecular , Carbaril , Polímeros Impresos Molecularmente , Dióxido de Silicio/química , Polímeros/química , Platino (Metal) , Nanopartículas del Metal/química , Peróxido de Hidrógeno , Microfluídica , Reproducibilidad de los Resultados
14.
Analyst ; 137(9): 2205-10, 2012 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-22433943

RESUMEN

Recent reports on using bio-active paper and bio-active thread to determine human blood type have shown a tremendous potential of using these low-cost materials to build bio-sensors for blood diagnosis. In this work we focus on understanding the mechanisms of red blood cell agglutination in the antibody-loaded paper. We semi-quantitatively evaluate the percentage of antibody molecules that are adsorbed on cellulose fibres and can potentially immobilize red blood cells on the fibre surface, and the percentage of the molecules that can desorb from the cellulose fibre surface into the blood sample and cause haemagglutination reaction in the bulk of a blood sample. Our results show that 34 to 42% of antibody molecules in the papers treated with commercial blood grouping antibodies can desorb from the fibre surface. When specific antibody molecules are released into the blood sample via desorption, haemagglutination reaction occurs in the blood sample. The reaction bridges the red cells in the blood sample bulk to the layer of red cells immobilized on the fibre surface by the adsorbed antibody molecules. The desorbed antibody also causes agglutinated lumps of red blood cells to form. These lumps cannot pass through the pores of the filter paper. The immobilization and filtration of agglutinated red cells give reproducible identification of positive haemagglutination reaction. Results from this study provide information for designing new bio-active paper-based devices for human blood typing with improved sensitivity and specificity.


Asunto(s)
Anticuerpos/química , Anticuerpos/metabolismo , Tipificación y Pruebas Cruzadas Sanguíneas/métodos , Eritrocitos/metabolismo , Hemaglutinación , Papel , Adsorción , Tipificación y Pruebas Cruzadas Sanguíneas/instrumentación , Celulosa/química , Diseño de Equipo , Eritrocitos/inmunología , Filtración , Humanos
15.
Anal Chim Acta ; 1191: 339363, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35033235

RESUMEN

We present a novel dual-imprinted electrochemical paper-based analytical device (Di-ePAD) to simultaneously determine 8-hydroxy-2'-deoxyguanosine (8-OHdG) and 3-nitrotyrosine (3-NT) and assess oxidative and nitrative biomarkers in urine and plasma samples. The Di-ePAD was designed with hydrophobic barrier layers formed on filter paper to provide three-dimensional circular reservoirs and assembled electrodes. The molecularly imprinted polymer (MIP) was synthesized using a silica nanosphere decorated with silver nanoparticles (SiO2@AgNPs) as a core covered with dual-analyte imprinted sites on the polymer to recognize selectively and bind the target biomarkers. This strategy drives monodispersity and enhances the conductivity of the resulting MIP core-shell products. 3-NT-MIP and 8-OHdG-MIP were synthesized by successively coating the surface of SiO2@AgNPs with l-Cysteine via the thiol group, then terminating with MIP shells. The dual imprinted core-shell composites possess attractive properties for the target biomarkers' sensing, including catalytic activity, selectivity, and good conductivity. The Di-ePAD revealed excellent linear dynamic ranges of 0.01-500 µM for 3-NT and 0.05-500 µM for 8-OHdG, with detection limits of 0.0027 µM for 3-NT and 0.0138 µM for 8-OHdG. This newly developed method based on the synergistic effects of SiO2@AgNPs combined with promising properties of MIP offers outstanding selectivity, sensitivity, reproducibility, simplicity, and low cost for quantitative analysis of 3-NT and 8-OHdG. The proposed Di-ePAD showed good accuracy and precision when applied to actual samples, including urine and serum samples validated by a conventional HPLC method.


Asunto(s)
Nanopartículas del Metal , Impresión Molecular , Biomarcadores , Técnicas Electroquímicas , Electrodos , Límite de Detección , Estrés Oxidativo , Reproducibilidad de los Resultados , Dióxido de Silicio , Plata
16.
Talanta ; 236: 122862, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34635244

RESUMEN

A novel fluorometric assay for selective and sensitive determination of formalin (FA) was developed based on nitrogen-doped carbon dots (N-CDs) coupled with silver mirror reaction. N-CDs was synthesized using the hydrothermal method with the ethylene glycol and ammonia solution as carbon and nitrogen precursors, respectively. The detection principle was based on "off-on" fluorescence switching. Specifically, the fluorescence signal of N-CDs was first turned off after incorporating the Ag+ and Tollens' reagents. Then, in the presence of FA, the Ag+ species on the N-CDs surface were reduced to Ag0 species and the fluorescence signal of N-CDs was switched back on. The fluorescence intensity due to the N-CDs signal linearly increased with the increasing FA concentrations in the range of 5-100 mg L-1, with the detection limit of 1.5 mg L-1. The proposed approach provides rapid, simple, sensitive, and selective detection of FA in various food samples.


Asunto(s)
Carbono , Puntos Cuánticos , Colorantes Fluorescentes , Formaldehído , Nitrógeno , Plata
17.
Talanta ; 242: 123305, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35183979

RESUMEN

Cadmium ion (Cd (II)) is a highly toxic heavy metal usually found in natural water. Exposure to Cd (II) can produce serious effects in human organs such as Itai-Itai disease. Therefore, the maximum allowance levels of Cd (II) in drinking water and herbal medicines imposed by the World Health Organization (WHO) are 3 µg L-1 and 300 µg kg-1, respectively. In this work, nitrogen-doped graphene quantum dots (N-GQDs) as a fluorescent sensor for Cd (II) determination was developed in both solution-based and paper-based systems. N-GQDs were synthesized from citric acid (CA) and ethylenediamine (EDA) via the hydrothermal method. The synthesized N-GQDs emitted intense blue fluorescence with a quantum yield (QY) of up to 80%. The functional groups on the surface of N-GQDs measured by FTIR were carboxyl (COO-), hydroxyl (OH-), and amine (NH2) groups, suggesting that they could be bound to Cd (II) for complexation. The fluorescence intensity of N-GQDs was gradually enhanced with the increase of Cd (II) concentration. This phenomenon was proved to result from the fluorescence enhancement (turn-on) based on the chelation enhanced fluorescence (CHEF) mechanism. Under the optimum conditions in the solution-based and paper-based systems, the limits of detection (LODs) were found to be 1.09 and 0.59 µg L-1, respectively. Furthermore, the developed sensors showed relatively high selectivity toward Cd (II) over ten other metal cations and six other anions of different charges. The performance of the sensor in real water and herbal medicine samples exhibited no significant difference as compared to the results of the validation method (ICP-OES). Therefore, the developed sensors can be used as fluorescent sensors for Cd (II) determination with high sensitivity, high selectivity, short incubation time (5 min). As such, the paper-based strategy has excellent promising potential for practical analysis of Cd (II) in water and herbal medicine samples with a trace level of Cd (II) concentrations.


Asunto(s)
Grafito , Puntos Cuánticos , Cadmio , Fluorometría , Humanos , Nitrógeno
18.
Talanta ; 225: 122077, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33592801

RESUMEN

We report a novel three-dimensional microfluidic paper-based analytical device (3D-µPAD) with colorimetric detection, using Mn-ZnS quantum dot embedded molecularly imprinted polymer (Mn-ZnS QD-MIP), for selective glyphosate determination in whole grain samples. Detection is based on the catalytic activity of Mn-ZnS QD-MIP in the H2O2 oxidation of ABTS. Glyphosate imprinted polymer is successfully synthesized on the Mn-ZnS QD surface using a poly (N-isopropylacrylamide) (NIPAM) and N, N'-Methylenebisacrylamide (MBA) as the functional monomers. The catalytic activity depends on binding or non-binding of glyphosate molecules on the synthetic recognition sites of the Mn-ZnS QD-MIP. Glyphosate selectively binds to the cavities embedded on the Mn-ZnS QD surface, and subsequently turns-off or inhibits the ABTS oxidation and color change to light green. The change of reaction color from dark green to light green depends on the concentration of glyphosate. We report, for the first time, using the relatively new penguard enamel colour to create a hydrophobic barrier. The foldable 3D-µPAD comprises three layers (top/center/bottom), named as the detection zone, immobilized Mn-ZnS QD-MIP disc, and sample loading. Assay on the 3D-µPAD can determine glyphosate by ImageJ detection, over an operating range of 0.005-50 µg mL-1 and with a detection limit of 0.002 µg mL-1. Our 3D-µPAD exhibits high accuracy, with a 0.4% (intra-day) and 0.7% (inter-day) relative difference from the certified CRM value. Moreover, the fabricated 3D-µPAD provides good reproducibility (1.7% RSD for ten devices). The developed 3D-µPAD was successfully applied to determine the glyphosate concentration in whole grain samples and shows great promise as an alternative highly selective and sensitive colorimetric method. The 3D-µPAD is well suited to food-quality control and onsite environmental-monitoring applications, without sophisticated instrumentation.

19.
Anal Methods ; 13(32): 3551-3560, 2021 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-34292282

RESUMEN

This work reports a facile synthesis of nitrogen-doped amorphous carbon nanodots (N-CNDs) and their use as a fluorometric paper-based sensor for the determination of Pb2+ at a low concentration. Both solution-based and paper-based systems were developed. The results show that the linearity ranges for Pb2+ determination were 0.010-10 mg L-1 (LOD = 0.008 mg L-1) and 0.005-0.075 mg L-1 (LOD = 0.004 mg L-1) for the solution-based and the paper-based sensors, respectively. Furthermore, the developed sensors show relatively high selectivity toward Pb2+ over ten other metal cations of different charges including As3+, Hg2+, Cd2+, Mg2+, Ni2+, Zn2+, Fe3+, Cu2+, Ba2+, and Ag+. The mechanism of Pb2+ determination was also investigated. It was found that the sensors exploited the quenching of the fluorescence intensity of N-CNDs by Pb2+via the photo-induced electron transfer (PET) mechanism. When applied to real water and herbal medicine samples, the performance of the sensor exhibited no significant difference as compared to the results of the validation method (ICP-OES). Overall, the developed sensors, especially the paper-based one, are promising for the practical analysis of Pb2+ in pharmaceutical and environmental samples with a low Pb2+ concentration.


Asunto(s)
Mercurio , Nitrógeno , Carbono , Fluorometría , Iones
20.
Anal Bioanal Chem ; 396(8): 3079-85, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20174983

RESUMEN

Flow field-flow fractionation (FlFFF) was used for size characterization of gold nanoparticles. The measured particle sizes obtained from FlFFF for the commercial 10 nm gold nanoparticle standard and the gold nanoparticles synthesized in the laboratory were in good agreement with those measured by transmission electron microscopy (TEM). Further, the capability of alpha-tocopherol to induce enlargement of gold nanoparticles by catalysis of the reduction of AuCl(4)(-) by citrate was observed by monitoring the changes in particle size of gold nanoparticles using FlFFF. The effects of alpha-tocopherol and incubation time on enlargement of the gold nanoparticles were examined. Higher concentrations of alpha-tocopherol resulted in larger nanoparticles. At fixed alpha-tocopherol concentration, larger nanoparticles were formed at longer incubation times.


Asunto(s)
Fraccionamiento de Campo-Flujo/métodos , Oro/química , Nanopartículas del Metal/química , Tamaño de la Partícula , alfa-Tocoferol/química , Catálisis , Fraccionamiento de Campo-Flujo/instrumentación , Nanopartículas del Metal/ultraestructura , Microscopía Electrónica de Transmisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA