Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 160(3): 554-66, 2015 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-25635462

RESUMEN

The mammalian radiation has corresponded with rapid changes in noncoding regions of the genome, but we lack a comprehensive understanding of regulatory evolution in mammals. Here, we track the evolution of promoters and enhancers active in liver across 20 mammalian species from six diverse orders by profiling genomic enrichment of H3K27 acetylation and H3K4 trimethylation. We report that rapid evolution of enhancers is a universal feature of mammalian genomes. Most of the recently evolved enhancers arise from ancestral DNA exaptation, rather than lineage-specific expansions of repeat elements. In contrast, almost all liver promoters are partially or fully conserved across these species. Our data further reveal that recently evolved enhancers can be associated with genes under positive selection, demonstrating the power of this approach for annotating regulatory adaptations in genomic sequences. These results provide important insight into the functional genetics underpinning mammalian regulatory evolution.


Asunto(s)
Elementos de Facilitación Genéticos , Evolución Molecular , Hígado/metabolismo , Mamíferos/clasificación , Mamíferos/genética , Regiones Promotoras Genéticas , Animales , Código de Histonas , Humanos , Factores de Transcripción/metabolismo
2.
Proc Biol Sci ; 289(1982): 20221254, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36100027

RESUMEN

In the last 300 thousand years, the genus Chlorocebus expanded from equatorial Africa into the southernmost latitudes of the continent, where colder climate was a probable driver of natural selection. We investigated population-level genetic variation in the mitochondrial uncoupling protein 1 (UCP1) gene region-implicated in non-shivering thermogenesis (NST)-in 73 wild savannah monkeys from three taxa representing this southern expansion (Chlorocebus pygerythrus hilgerti, Chlorocebus cynosuros and Chlorocebus pygerythrus pygerythrus) ranging from Kenya to South Africa. We found 17 single nucleotide polymorphisms with extended haplotype homozygosity consistent with positive selective sweeps, 10 of which show no significant linkage disequilibrium with each other. Phylogenetic generalized least-squares modelling with ecological covariates suggest that most derived allele frequencies are significantly associated with solar irradiance and winter precipitation, rather than overall low temperatures. This selection and association with irradiance is demonstrated by a relatively isolated population in the southern coastal belt of South Africa. We suggest that sunbathing behaviours common to savannah monkeys, in combination with the strength of solar irradiance, may mediate adaptations to thermal stress via NST among savannah monkeys. The variants we discovered all lie in non-coding regions, some with previously documented regulatory functions, calling for further validation and research.


Asunto(s)
Aclimatación , Termogénesis , Animales , Chlorocebus aethiops , Filogenia , Sudáfrica , Proteína Desacopladora 1
3.
Am J Phys Anthropol ; 171 Suppl 70: 174-194, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32221967

RESUMEN

Primates display a wide range of phenotypic variation underlaid by complex genetically regulated mechanisms. The links among DNA sequence, gene function, and phenotype have been of interest from an evolutionary perspective, to understand functional genome evolution and its phenotypic consequences, and from a biomedical perspective to understand the shared and human-specific roots of health and disease. Progress in methods for characterizing genetic, transcriptomic, and DNA methylation (DNAm) variation is driving the rapid development of extensive omics resources, which are now increasingly available from humans as well as a growing number of nonhuman primates (NHPs). The fast growth of large-scale genomic data is driving the emergence of integrated tools and databases, thus facilitating studies of gene functionality across primates. This review describes NHP genomic resources that can aid in exploration of how genes shape primate phenotypes. It focuses on the gene expression trajectories across development in different tissues, the identification of functional genetic variation (including variants deleterious for protein function and regulatory variants modulating gene expression), and DNAm profiles as an emerging tool to understand the process of aging. These resources enable comparative functional genomics approaches to identify species-specific and primate-shared gene functionalities associated with health and development.


Asunto(s)
Variación Genética , Genoma , Genómica , Primates/genética , Animales , Salud , Primates/crecimiento & desarrollo
4.
Gynecol Oncol ; 153(2): 452-462, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30733081

RESUMEN

OBJECTIVE: Germline mutations occurring in the highly penetrant genes BRCA1 and BRCA2 are responsible for only certain cases of familial breast cancer (BC) and ovarian cancer (OC). Thus, the use of NGS multi-gene panel (MGP) testing has recently become very popular. METHODS: To estimate a reliable BC and OC risk associated with pathogenic variants in the selected candidate BC/OC predisposition genes, a comprehensive meta-analysis of 48 MGP-based studies analyzing BC/OC patients was conducted. The role of 37 genes was evaluated, comparing, in total, the mutation frequency in ~120,000 BC/OC cases and ~120,000 controls, which guaranteed strong statistical support with high confidence for most analyzed genes. RESULTS: We characterized the strategies of MGP analyses and the types and localizations of the identified mutations and showed that 13 and 11 of the analyzed genes were significantly associated with an increased BC and OC risk, respectively. The risk attributed to some of these genes (e.g., CDKN2A and PALB2 for BC) was similar to that observed for BRCA2. The analysis also showed a substantial difference in the profile of genes contributing to either BC or OC risk, including genes specifically associated with a high risk of OC but not BC (e.g., RAD51C, and RAD51D). CONCLUSIONS: Our study provides strong statistical proof, defines the risk for many genes often considered candidates for BC/OC predisposition and excludes the role of other genes frequently analyzed in the MGPs. In the context of clinical diagnostics, the results support the knowledge-based interpretation of identified mutations.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias Ováricas/genética , Femenino , Genes BRCA1 , Genes BRCA2 , Predisposición Genética a la Enfermedad , Humanos , Mutación
5.
PLoS Genet ; 12(5): e1006046, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27176483

RESUMEN

The observation that variants regulating gene expression (expression quantitative trait loci, eQTL) are at a high frequency among SNPs associated with complex traits has made the genome-wide characterization of gene expression an important tool in genetic mapping studies of such traits. As part of a study to identify genetic loci contributing to bipolar disorder and other quantitative traits in members of 26 pedigrees from Costa Rica and Colombia, we measured gene expression in lymphoblastoid cell lines derived from 786 pedigree members. The study design enabled us to comprehensively reconstruct the genetic regulatory network in these families, provide estimates of heritability, identify eQTL, evaluate missing heritability for the eQTL, and quantify the number of different alleles contributing to any given locus. In the eQTL analysis, we utilize a recently proposed hierarchical multiple testing strategy which controls error rates regarding the discovery of functional variants. Our results elucidate the heritability and regulation of gene expression in this unique Latin American study population and identify a set of regulatory SNPs which may be relevant in future investigations of complex disease in this population. Since our subjects belong to extended families, we are able to compare traditional kinship-based estimates with those from more recent methods that depend only on genotype information.


Asunto(s)
Trastorno Bipolar/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo/genética , Alelos , Trastorno Bipolar/patología , Mapeo Cromosómico , Colombia , Costa Rica , Femenino , Expresión Génica , Redes Reguladoras de Genes , Humanos , Masculino , Polimorfismo de Nucleótido Simple/genética
6.
Genome Res ; 25(12): 1921-33, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26377836

RESUMEN

We describe a genome reference of the African green monkey or vervet (Chlorocebus aethiops). This member of the Old World monkey (OWM) superfamily is uniquely valuable for genetic investigations of simian immunodeficiency virus (SIV), for which it is the most abundant natural host species, and of a wide range of health-related phenotypes assessed in Caribbean vervets (C. a. sabaeus), whose numbers have expanded dramatically since Europeans introduced small numbers of their ancestors from West Africa during the colonial era. We use the reference to characterize the genomic relationship between vervets and other primates, the intra-generic phylogeny of vervet subspecies, and genome-wide structural variations of a pedigreed C. a. sabaeus population. Through comparative analyses with human and rhesus macaque, we characterize at high resolution the unique chromosomal fission events that differentiate the vervets and their close relatives from most other catarrhine primates, in whom karyotype is highly conserved. We also provide a summary of transposable elements and contrast these with the rhesus macaque and human. Analysis of sequenced genomes representing each of the main vervet subspecies supports previously hypothesized relationships between these populations, which range across most of sub-Saharan Africa, while uncovering high levels of genetic diversity within each. Sequence-based analyses of major histocompatibility complex (MHC) polymorphisms reveal extremely low diversity in Caribbean C. a. sabaeus vervets, compared to vervets from putatively ancestral West African regions. In the C. a. sabaeus research population, we discover the first structural variations that are, in some cases, predicted to have a deleterious effect; future studies will determine the phenotypic impact of these variations.


Asunto(s)
Chlorocebus aethiops/genética , Genoma , Genómica , Animales , Chlorocebus aethiops/clasificación , Pintura Cromosómica , Biología Computacional/métodos , Evolución Molecular , Reordenamiento Génico , Variación Genética , Genómica/métodos , Cariotipo , Complejo Mayor de Histocompatibilidad/genética , Anotación de Secuencia Molecular , Filogenia , Filogeografía
7.
J Virol ; 90(2): 630-5, 2016 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-26559828

RESUMEN

Wild nonhuman primates are immediate sources and long-term reservoirs of human pathogens. However, ethical and technical challenges have hampered the identification of novel blood-borne pathogens in these animals. We recently examined RNA viruses in plasma from wild African monkeys and discovered several novel, highly divergent viruses belonging to the family Arteriviridae. Close relatives of these viruses, including simian hemorrhagic fever virus, have caused sporadic outbreaks of viral hemorrhagic fever in captive macaque monkeys since the 1960s. However, arterivirus infection in wild nonhuman primates had not been described prior to 2011. The arteriviruses recently identified in wild monkeys have high sequence and host species diversity, maintain high viremia, and are prevalent in affected populations. Taken together, these features suggest that the simian arteriviruses may be "preemergent" zoonotic pathogens. If not, this would imply that biological characteristics of RNA viruses thought to facilitate zoonotic transmission may not, by themselves, be sufficient for such transmission to occur.


Asunto(s)
Infecciones por Arterivirus/transmisión , Infecciones por Arterivirus/veterinaria , Arterivirus/fisiología , Enfermedades de los Primates/transmisión , Enfermedades de los Primates/virología , Zoonosis/transmisión , Zoonosis/virología , Animales , Arterivirus/genética , Infecciones por Arterivirus/virología , Haplorrinos , Humanos
8.
J Virol ; 90(15): 6724-6737, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27170760

RESUMEN

UNLABELLED: Nonhuman primates (NHPs) are a historically important source of zoonotic viruses and are a gold-standard model for research on many human pathogens. However, with the exception of simian immunodeficiency virus (SIV) (family Retroviridae), the blood-borne viruses harbored by these animals in the wild remain incompletely characterized. Here, we report the discovery and characterization of two novel simian pegiviruses (family Flaviviridae) and two novel simian arteriviruses (family Arteriviridae) in wild African green monkeys from Zambia (malbroucks [Chlorocebus cynosuros]) and South Africa (vervet monkeys [Chlorocebus pygerythrus]). We examine several aspects of infection, including viral load, genetic diversity, evolution, and geographic distribution, as well as host factors such as age, sex, and plasma cytokines. In combination with previous efforts to characterize blood-borne RNA viruses in wild primates across sub-Saharan Africa, these discoveries demonstrate that in addition to SIV, simian pegiviruses and simian arteriviruses are widespread and prevalent among many African cercopithecoid (i.e., Old World) monkeys. IMPORTANCE: Primates are an important source of viruses that infect humans and serve as an important laboratory model of human virus infection. Here, we discover two new viruses in African green monkeys from Zambia and South Africa. In combination with previous virus discovery efforts, this finding suggests that these virus types are widespread among African monkeys. Our analysis suggests that one of these virus types, the simian arteriviruses, may have the potential to jump between different primate species and cause disease. In contrast, the other virus type, the pegiviruses, are thought to reduce the disease caused by human immunodeficiency virus (HIV) in humans. However, we did not observe a similar protective effect in SIV-infected African monkeys coinfected with pegiviruses, possibly because SIV causes little to no disease in these hosts.


Asunto(s)
Infecciones por Arterivirus/epidemiología , Evolución Biológica , Infecciones por Flaviviridae/epidemiología , Variación Genética , Infecciones por Lentivirus/epidemiología , Carga Viral , África/epidemiología , Animales , Animales Salvajes , Arterivirus/genética , Arterivirus/patogenicidad , Infecciones por Arterivirus/genética , Infecciones por Arterivirus/virología , Flaviviridae/genética , Flaviviridae/patogenicidad , Infecciones por Flaviviridae/genética , Infecciones por Flaviviridae/virología , Genoma Viral , Haplorrinos , Humanos , Lentivirus/genética , Lentivirus/patogenicidad , Infecciones por Lentivirus/genética , Infecciones por Lentivirus/virología , Filogenia , Prevalencia
9.
J Virol ; 89(16): 8152-61, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26018153

RESUMEN

UNLABELLED: A small number of African green monkeys (AGMs) were introduced into the Caribbean from West Africa in the 1600s. To determine the impact of this population bottleneck on the AGM virome, we used metagenomics to compare the viral nucleic acids in the plasma of 43 wild AGMs from West Africa (Gambia) to those in 44 AGMs from the Caribbean (St. Kitts and Nevis). Three viruses were detected in the blood of Gambian primates: simian immunodeficiency virus (SIVagm; in 42% of animals), a novel simian pegivirus (SPgVagm; in 7% of animals), and numerous novel simian anelloviruses (in 100% of animals). Only anelloviruses were detected in the Caribbean AGMs with a prevalence and levels of viral genetic diversity similar to those in the Gambian animals. A host population bottleneck therefore resulted in the exclusion of adult-acquired SIV and pegivirus from the Caribbean AGMs. The successful importation of AGM anelloviruses into the Caribbean may be the result of their early transmission to infants, very high prevalence in African AGMs, and frequent coinfections with as many as 11 distinct variants. IMPORTANCE: The extent to which viruses can persist in small isolated populations depends on multiple host, viral, and environmental factors. The absence of prior infections may put an immunologically naive population at risk for disease outbreaks. Isolated populations originating from a small number of founder individuals are therefore considered at increased risk following contact with populations with a greater variety of viruses. Here, we compared the plasma virome of West African green monkeys to that in their descendants after importation of a small number of animals to the Caribbean. A lentivirus and a pegivirus were found in the West African population but not in the Caribbean population. Highly diverse anelloviruses were found in both populations. A small founder population, limited to infants and young juvenile monkeys, may have eliminated the sexually transmitted viruses from the Caribbean AGMs, while anelloviruses, acquired at an earlier age, persisted through the host population bottleneck.


Asunto(s)
Chlorocebus aethiops/virología , Extinción Biológica , Fenómenos Fisiológicos de los Virus , Animales , Genoma Viral , Filogenia
10.
Appl Environ Microbiol ; 82(19): 5910-7, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27474712

RESUMEN

UNLABELLED: Staphylococcus aureus is an important pathogen of humans and animals. We genome sequenced 90 S. aureus isolates from The Gambia: 46 isolates from invasive disease in humans, 13 human carriage isolates, and 31 monkey carriage isolates. We inferred multiple anthroponotic transmissions of S. aureus from humans to green monkeys (Chlorocebus sabaeus) in The Gambia over different time scales. We report a novel monkey-associated clade of S. aureus that emerged from a human-to-monkey switch estimated to have occurred 2,700 years ago. Adaptation of this lineage to the monkey host is accompanied by the loss of phage-carrying genes that are known to play an important role in human colonization. We also report recent anthroponotic transmission of the well-characterized human lineages sequence type 6 (ST6) and ST15 to monkeys, probably because of steadily increasing encroachment of humans into the monkeys' habitat. Although we have found no evidence of transmission of S. aureus from monkeys to humans, as the two species come into ever-closer contact, there might be an increased risk of additional interspecies exchanges of potential pathogens. IMPORTANCE: The population structures of Staphylococcus aureus in humans and monkeys in sub-Saharan Africa have been previously described using multilocus sequence typing (MLST). However, these data lack the power to accurately infer details regarding the origin and maintenance of new adaptive lineages. Here, we describe the use of whole-genome sequencing to detect transmission of S. aureus between humans and nonhuman primates and to document the genetic changes accompanying host adaptation. We note that human-to-monkey switches tend to be more common than the reverse and that a novel monkey-associated clade is likely to have emerged from such a switch approximately 2,700 years ago. Moreover, analysis of the accessory genome provides important clues as to the genetic changes underpinning host adaptation and, in particular, shows that human-to-monkey switches tend to be associated with the loss of genes known to confer adaptation to the human host.


Asunto(s)
Chlorocebus aethiops , Genoma Bacteriano , Enfermedades de los Monos/transmisión , Infecciones Estafilocócicas/transmisión , Staphylococcus aureus/fisiología , Animales , Portador Sano , Gambia , Humanos , Enfermedades de los Monos/microbiología , Filogenia , Análisis de Secuencia de ADN , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/clasificación , Staphylococcus aureus/genética
11.
BMC Biol ; 13: 41, 2015 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-26092298

RESUMEN

BACKGROUND: We report here the first genome-wide high-resolution polymorphism resource for non-human primate (NHP) association and linkage studies, constructed for the Caribbean-origin vervet monkey, or African green monkey (Chlorocebus aethiops sabaeus), one of the most widely used NHPs in biomedical research. We generated this resource by whole genome sequencing (WGS) of monkeys from the Vervet Research Colony (VRC), an NIH-supported research resource for which extensive phenotypic data are available. RESULTS: We identified genome-wide single nucleotide polymorphisms (SNPs) by WGS of 721 members of an extended pedigree from the VRC. From high-depth WGS data we identified more than 4 million polymorphic unequivocal segregating sites; by pruning these SNPs based on heterozygosity, quality control filters, and the degree of linkage disequilibrium (LD) between SNPs, we constructed genome-wide panels suitable for genetic association (about 500,000 SNPs) and linkage analysis (about 150,000 SNPs). To further enhance the utility of these resources for linkage analysis, we used a further pruned subset of the linkage panel to generate multipoint identity by descent matrices. CONCLUSIONS: The genetic and phenotypic resources now available for the VRC and other Caribbean-origin vervets enable their use for genetic investigation of traits relevant to human diseases.


Asunto(s)
Chlorocebus aethiops/genética , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple , Animales , Mapeo Cromosómico , Femenino , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Masculino , Repeticiones de Microsatélite , Fenotipo , Sitios de Carácter Cuantitativo , Análisis de Secuencia
12.
J Virol ; 88(10): 5687-705, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24623416

RESUMEN

UNLABELLED: African green monkeys (AGMs) are naturally infected with simian immunodeficiency virus (SIV) at high prevalence levels and do not progress to AIDS. Sexual transmission is the main transmission route in AGM, while mother-to-infant transmission (MTIT) is negligible. We investigated SIV transmission in wild AGMs to assess whether or not high SIV prevalence is due to differences in mucosal permissivity to SIV (i.e., whether the genetic bottleneck of viral transmission reported in humans and macaques is also observed in AGMs in the wild). We tested 121 sabaeus AGMs (Chlorocebus sabaeus) from the Gambia and found that 53 were SIV infected (44%). By combining serology and viral load quantitation, we identified 4 acutely infected AGMs, in which we assessed the diversity of the quasispecies by single-genome amplification (SGA) and documented that a single virus variant established the infections. We thus show that natural SIV transmission in the wild is associated with a genetic bottleneck similar to that described for mucosal human immunodeficiency virus (HIV) transmission in humans. Flow cytometry assessment of the immune cell populations did not identify major differences between infected and uninfected AGM. The expression of the SIV coreceptor CCR5 on CD4+ T cells dramatically increased in adults, being higher in infected than in uninfected infant and juvenile AGMs. Thus, the limited SIV MTIT in natural hosts appears to be due to low target cell availability in newborns and infants, which supports HIV MTIT prevention strategies aimed at limiting the target cells at mucosal sites. Combined, (i) the extremely high prevalence in sexually active AGMs, (ii) the very efficient SIV transmission in the wild, and (iii) the existence of a fraction of multiparous females that remain uninfected in spite of massive exposure to SIV identify wild AGMs as an acceptable model of exposed, uninfected individuals. IMPORTANCE: We report an extensive analysis of the natural history of SIVagm infection in its sabaeus monkey host, the African green monkey species endemic to West Africa. Virtually no study has investigated the natural history of SIV infection in the wild. The novelty of our approach is that we report for the first time that SIV infection has no discernible impact on the major immune cell populations in natural hosts, thus confirming the nonpathogenic nature of SIV infection in the wild. We also focused on the correlates of SIV transmission, and we report, also for the first time, that SIV transmission in the wild is characterized by a major genetic bottleneck, similar to that described for HIV-1 transmission in humans. Finally, we report here that the restriction of target cell availability is a major correlate of the lack of SIV transmission to the offspring in natural hosts of SIVs.


Asunto(s)
Infecciones por Lentivirus/veterinaria , Enfermedades de los Monos/transmisión , Enfermedades de los Monos/virología , Virus de la Inmunodeficiencia de los Simios/aislamiento & purificación , Animales , Chlorocebus aethiops , Análisis por Conglomerados , Femenino , Citometría de Flujo , Gambia , Genotipo , Infecciones por Lentivirus/inmunología , Infecciones por Lentivirus/transmisión , Infecciones por Lentivirus/virología , Subgrupos Linfocitarios/inmunología , Masculino , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN , Virus de la Inmunodeficiencia de los Simios/clasificación , Virus de la Inmunodeficiencia de los Simios/genética
13.
Hum Mol Genet ; 21(15): 3307-16, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22556363

RESUMEN

Non-human primates provide genetic model systems biologically intermediate between humans and other mammalian model organisms. Populations of Caribbean vervet monkeys (Chlorocebus aethiops sabaeus) are genetically homogeneous and large enough to permit well-powered genetic mapping studies of quantitative traits relevant to human health, including expression quantitative trait loci (eQTL). Previous transcriptome-wide investigation in an extended vervet pedigree identified 29 heritable transcripts for which levels of expression in peripheral blood correlate strongly with expression levels in the brain. Quantitative trait linkage analysis using 261 microsatellite markers identified significant (n = 8) and suggestive (n = 4) linkages for 12 of these transcripts, including both cis- and trans-eQTL. Seven transcripts, located on different chromosomes, showed maximum linkage to markers in a single region of vervet chromosome 9; this observation suggests the possibility of a master trans-regulator locus in this region. For one cis-eQTL (at B3GALTL, beta-1,3-glucosyltransferase), we conducted follow-up single nucleotide polymorphism genotyping and fine-scale association analysis in a sample of unrelated Caribbean vervets, localizing this eQTL to a region of <200 kb. These results suggest the value of pedigree and population samples of the Caribbean vervet for linkage and association mapping studies of quantitative traits. The imminent whole genome sequencing of many of these vervet samples will enhance the power of such investigations by providing a comprehensive catalog of genetic variation.


Asunto(s)
Chlorocebus aethiops/genética , Primates/genética , Sitios de Carácter Cuantitativo , Animales , Región del Caribe , Ligamiento Genético , Genoma , Glucuronosiltransferasa/genética , Repeticiones de Microsatélite/genética , Linaje , Polimorfismo de Nucleótido Simple
14.
Geroscience ; 45(6): 3187-3209, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37493860

RESUMEN

Age and sex have a profound effect on cytosine methylation levels in humans and many other species. Here we analyzed DNA methylation profiles of 2400 tissues derived from 37 primate species including 11 haplorhine species (baboons, marmosets, vervets, rhesus macaque, chimpanzees, gorillas, orangutan, humans) and 26 strepsirrhine species (suborders Lemuriformes and Lorisiformes). From these we present here, pan-primate epigenetic clocks which are highly accurate for all primates including humans (age correlation R = 0.98). We also carried out in-depth analysis of baboon DNA methylation profiles and generated five epigenetic clocks for baboons (Olive-yellow baboon hybrid), one of which, the pan-tissue epigenetic clock, was trained on seven tissue types (fetal cerebral cortex, adult cerebral cortex, cerebellum, adipose, heart, liver, and skeletal muscle) with ages ranging from late fetal life to 22.8 years of age. Using the primate data, we characterize the effect of age and sex on individual cytosines in highly conserved regions. We identify 11 sex-related CpGs on autosomes near genes (POU3F2, CDYL, MYCL, FBXL4, ZC3H10, ZXDC, RRAS, FAM217A, RBM39, GRIA2, UHRF2). Low overlap can be observed between age- and sex-related CpGs. Overall, this study advances our understanding of conserved age- and sex-related epigenetic changes in primates, and provides biomarkers of aging for all primates.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Humanos , Animales , Macaca mulatta/genética , Envejecimiento/genética , Papio , Ubiquitina-Proteína Ligasas , Proteínas Portadoras
15.
Front Immunol ; 13: 835994, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35154162

RESUMEN

CCR5, a chemokine receptor central for orchestrating lymphocyte/cell migration to the sites of inflammation and to the immunosurveillance, is involved in the pathogenesis of a wide spectrum of health conditions, including inflammatory diseases, viral infections, cancers and autoimmune diseases. CCR5 is also the primary coreceptor for the human immunodeficiency viruses (HIVs), supporting its entry into CD4+ T lymphocytes upon transmission and in the early stages of infection in humans. A natural loss-of-function mutation CCR5-Δ32, preventing the mutated protein expression on the cell surface, renders homozygous carriers of the null allele resistant to HIV-1 infection. This phenomenon was leveraged in the development of therapies and cure strategies for AIDS. Meanwhile, over 40 African nonhuman primate species are long-term hosts of simian immunodeficiency virus (SIV), an ancestral family of viruses that give rise to the pandemic CCR5 (R5)-tropic HIV-1. Many natural hosts typically do not progress to immunodeficiency upon the SIV infection. They have developed various strategies to minimize the SIV-related pathogenesis and disease progression, including an array of mechanisms employing modulation of the CCR5 receptor activity: (i) deletion mutations abrogating the CCR5 surface expression and conferring resistance to infection in null homozygotes; (ii) downregulation of CCR5 expression on CD4+ T cells, particularly memory cells and cells at the mucosal sites, preventing SIV from infecting and killing cells important for the maintenance of immune homeostasis, (iii) delayed onset of CCR5 expression on the CD4+ T cells during ontogenetic development that protects the offspring from vertical transmission of the virus. These host adaptations, aimed at lowering the availability of target CCR5+ CD4+ T cells through CCR5 downregulation, were countered by SIV, which evolved to alter the entry coreceptor usage toward infecting different CD4+ T-cell subpopulations that support viral replication yet without disruption of host immune homeostasis. These natural strategies against SIV/HIV-1 infection, involving control of CCR5 function, inspired therapeutic approaches against HIV-1 disease, employing CCR5 coreceptor blocking as well as gene editing and silencing of CCR5. Given the pleiotropic role of CCR5 in health beyond immune disease, the precision as well as costs and benefits of such interventions needs to be carefully considered.


Asunto(s)
VIH-1/inmunología , Receptores CCR5/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Línea Celular , Humanos , Receptores CCR5/química , Receptores CCR5/genética
16.
Front Immunol ; 13: 1060985, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36713371

RESUMEN

HIV emerged following cross-species transmissions of simian immunodeficiency viruses (SIVs) that naturally infect non-human primates (NHPs) from Africa. While HIV replication and CD4+ T-cell depletion lead to increased gut permeability, microbial translocation, chronic immune activation, and systemic inflammation, the natural hosts of SIVs generally avoid these deleterious consequences when infected with their species-specific SIVs and do not progress to AIDS despite persistent lifelong high viremia due to long-term coevolution with their SIV pathogens. The benign course of natural SIV infection in the natural hosts is in stark contrast to the experimental SIV infection of Asian macaques, which progresses to simian AIDS. The mechanisms of non-pathogenic SIV infections are studied mainly in African green monkeys, sooty mangabeys, and mandrills, while progressing SIV infection is experimentally modeled in macaques: rhesus macaques, pigtailed macaques, and cynomolgus macaques. Here, we focus on the distinctive features of SIV infection in natural hosts, particularly (1): the superior healing properties of the intestinal mucosa, which enable them to maintain the integrity of the gut barrier and prevent microbial translocation, thus avoiding excessive/pathologic immune activation and inflammation usually perpetrated by the leaking of the microbial products into the circulation; (2) the gut microbiome, the disruption of which is an important factor in some inflammatory diseases, yet not completely understood in the course of lentiviral infection; (3) cell population shifts resulting in target cell restriction (downregulation of CD4 or CCR5 surface molecules that bind to SIV), control of viral replication in the lymph nodes (expansion of natural killer cells), and anti-inflammatory effects in the gut (NKG2a/c+ CD8+ T cells); and (4) the genes and biological pathways that can shape genetic adaptations to viral pathogens and are associated with the non-pathogenic outcome of the natural SIV infection. Deciphering the protective mechanisms against SIV disease progression to immunodeficiency, which have been established through long-term coevolution between the natural hosts and their species-specific SIVs, may prompt the development of novel therapeutic interventions, such as drugs that can control gut inflammation, enhance gut healing capacities, or modulate the gut microbiome. These developments can go beyond HIV infection and open up large avenues for correcting gut damage, which is common in many diseases.


Asunto(s)
Infecciones por VIH , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Chlorocebus aethiops , Linfocitos T CD8-positivos , Macaca mulatta , Inflamación
17.
Microbiol Spectr ; 10(3): e0164321, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35587638

RESUMEN

The study of the mammalian microbiome serves as a critical tool for understanding host-microbial diversity and coevolution and the impact of bacterial communities on host health. While studies of specific microbial systems (e.g., in the human gut) have rapidly increased, large knowledge gaps remain, hindering our understanding of the determinants and levels of variation in microbiomes across multiple body sites and host species. Here, we compare microbiome community compositions from eight distinct body sites among 17 phylogenetically diverse species of nonhuman primates (NHPs), representing the largest comparative study of microbial diversity across primate host species and body sites. Analysis of 898 samples predominantly acquired in the wild demonstrated that oral microbiomes were unique in their clustering, with distinctive divergence from all other body site microbiomes. In contrast, all other body site microbiomes clustered principally by host species and differentiated by body site within host species. These results highlight two key findings: (i) the oral microbiome is unique compared to all other body site microbiomes and conserved among diverse nonhuman primates, despite their considerable dietary and phylogenetic differences, and (ii) assessments of the determinants of host-microbial diversity are relative to the level of the comparison (i.e., intra-/inter-body site, -host species, and -individual), emphasizing the need for broader comparative microbial analyses across diverse hosts to further elucidate host-microbial dynamics, evolutionary and biological patterns of variation, and implications for human-microbial coevolution. IMPORTANCE The microbiome is critical to host health and disease, but much remains unknown about the determinants, levels, and evolution of host-microbial diversity. The relationship between hosts and their associated microbes is complex. Most studies to date have focused on the gut microbiome; however, large gaps remain in our understanding of host-microbial diversity, coevolution, and levels of variation in microbiomes across multiple body sites and host species. To better understand the patterns of variation and evolutionary context of host-microbial communities, we conducted one of the largest comparative studies to date, which indicated that the oral microbiome was distinct from the microbiomes of all other body sites and convergent across host species, suggesting conserved niche specialization within the Primates order. We also show the importance of host species differences in shaping the microbiome within specific body sites. This large, comparative study contributes valuable information on key patterns of variation among hosts and body sites, with implications for understanding host-microbial dynamics and human-microbial coevolution.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Bacterias/genética , Mamíferos , Filogenia , Primates/microbiología
18.
Geroscience ; 44(2): 699-717, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34591235

RESUMEN

DNA methylation-based biomarkers of aging have been developed for many mammals but not yet for the vervet monkey (Chlorocebus sabaeus), which is a valuable non-human primate model for biomedical studies. We generated novel DNA methylation data from vervet cerebral cortex, blood, and liver using highly conserved mammalian CpGs represented on a custom array (HorvathMammalMethylChip40). We present six DNA methylation-based estimators of age: vervet multi-tissue epigenetic clock and tissue-specific clocks for brain cortex, blood, and liver. In addition, we developed two dual species clocks (human-vervet clocks) for measuring chronological age and relative age, respectively. Relative age was defined as ratio of chronological age to maximum lifespan to address the species differences in maximum lifespan. The high accuracy of the human-vervet clocks demonstrates that epigenetic aging processes are evolutionary conserved in primates. When applying these vervet clocks to tissue samples from another primate species, rhesus macaque, we observed high age correlations but strong offsets. We characterized CpGs that correlate significantly with age in the vervet. CpG probes that gain methylation with age across tissues were located near the targets of Polycomb proteins SUZ12 and EED and genes possessing the trimethylated H3K27 mark in their promoters. The epigenetic clocks are expected to be useful for anti-aging studies in vervets.


Asunto(s)
Epigénesis Genética , Epigenómica , Animales , Chlorocebus aethiops , Metilación de ADN , Longevidad , Macaca mulatta/genética , Mamíferos
19.
Hum Mol Genet ; 18(22): 4415-27, 2009 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-19692348

RESUMEN

Genome-wide gene expression studies may provide substantial insight into gene activities and biological pathways differing between tissues and individuals. We investigated such gene expression variation by analyzing expression profiles in brain tissues derived from eight different brain regions and from blood in 12 monkeys from a biomedically important non-human primate model, the vervet (Chlorocebus aethiops sabaeus). We characterized brain regional differences in gene expression, focusing on transcripts for which inter-individual variation of expression in brain correlates well with variation in blood from the same individuals. Using stringent criteria, we identified 29 transcripts whose expression is measurable, stable, replicable, variable between individuals, relevant to brain function and heritable. Polymorphisms identified in probe regions could, in a minority of transcripts, confound the interpretation of the observed inter-individual variation. The high heritability of levels of these transcripts in a large vervet pedigree validated our approach of focusing on transcripts that showed higher inter-individual compared with intra-individual variation. These selected transcripts are candidate expression Quantitative Trait Loci, differentially regulating transcript levels in the brain among individuals. Given the high degree of conservation of tissue expression profiles between vervets and humans, our findings may facilitate the understanding of regional and individual transcriptional variation and its genetic mechanisms in humans. The approach employed here-utilizing higher quality tissue and more precise dissection of brain regions than is usually possible in humans-may therefore provide a powerful means to investigate variation in gene expression relevant to complex brain related traits, including human neuropsychiatric diseases.


Asunto(s)
Sangre/metabolismo , Encéfalo/metabolismo , Chlorocebus aethiops/genética , Perfilación de la Expresión Génica/métodos , Sitios de Carácter Cuantitativo , Transcripción Genética , Animales , Femenino , Variación Genética , Masculino , Linaje
20.
Geroscience ; 43(5): 2413-2425, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34482522

RESUMEN

Human DNA methylation data have previously been used to develop highly accurate biomarkers of aging ("epigenetic clocks"). Subsequent studies demonstrate that similar epigenetic clocks can also be developed for mice and many other mammals. Here, we describe epigenetic clocks for common marmosets (Callithrix jacchus) based on novel DNA methylation data generated from highly conserved mammalian CpGs that were profiled using a custom Infinium array (HorvathMammalMethylChip40). From these, we developed and present here two epigenetic clocks for marmosets that are applicable to whole blood samples. We find that the human-marmoset clock for relative age exhibits moderately high age correlations in two other non-human primate species: vervet monkeys and rhesus macaques. In a separate cohort of marmosets, we tested whether intervention with rapamycin, a drug shown to extend lifespan in mice, would alter the epigenetic age of marmosets, as measured by the marmoset epigenetic clocks. These clocks did not detect significant effects of rapamycin on the epigenetic age of marmoset blood. The common marmoset stands out from other mammals in that it is not possible to build accurate estimators of sex based on DNA methylation data: the accuracy of a random forest predictor of sex (66%) was substantially lower than that observed for other mammals (which is close to 100%). Overall, the epigenetic clocks developed here for the common marmoset are expected to be useful for age estimation of wild-born animals and for anti-aging studies in this species.


Asunto(s)
Callithrix , Metilación de ADN , Animales , Chlorocebus aethiops , Epigénesis Genética , Macaca mulatta , Ratones , Sirolimus/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA